
Design Patterns 1

Structural Patterns

Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Structural patterns
are concerned with
how classes and
objects are composed
to form larger
structures.

Design Patterns 2

General Principles (inform all design patterns)

Program to an interface, not an
implementation.

Favour object composition over
class inheritance.

Design Patterns 3

Object Adapter
Converts the interface of a class into another
interface that clients expect.

+specificRequest()

Adaptee

+request()

«interface»
Target

+request()

Adapter

Client

-adaptee

adaptee.specificRequest()

anAdapteraClient anAdaptee
Design Patterns 4

Use of Adapters in Java API

public interface WindowListener extends EventListener
{
public void windowOpened(WindowEvent e);
public void windowClosing(WindowEvent e);
public void windowClosed(WindowEvent e);
public void windowIconified(WindowEvent e);
public void windowDeiconified(WindowEvent e);
public void windowActivated(WindowEvent e);
public void windowDeactivated(WindowEvent e);

}

A class which implements WindowListener must
provide an implementation for each method, even it
only needs to implement one e.g. windowClosing.

Design Patterns 5

Window Adapter

public abstract class WindowAdapter implements
WindowListener {
public void windowOpened(WindowEvent e) {}
public void windowClosing(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}

Provides default implementation for WindowListener
methods.

Design Patterns 6

Usage - anonymous class

public class Closer extends Frame {

public Closer() {
/* stuff */
addWindowListener(
new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);

}
}

);
/* the rest */
}

Design Patterns 7 Design Patterns 8

Bridge

Decouple an abstraction from
its implementation so that the
two can vary independently.

+operation()

Abstraction

Client

+operation()

RefinedAbstraction

+operationImp()

Implementor

+operationImp()

ConcreteImpA

+operationImp()

ConcreteImpB

-imp

imp.operationImp()

Design Patterns 9

Bridge - example
Window

Xwindow PMwindow IconWindow

XIconWindow PMIconWindow

Before

Design Patterns 10

Bridge - example

Window

XwindowImp PMwindowImp

WindowImp

TransientWindow IconWindow

-imp

After

Design Patterns 11

Bridge - usage

to avoid permanent binding between an
abstraction and its implementation e.g.
select or switch at run-time

both abstraction and implementation must
be extensible by subclassing

changes in implementation of abstraction
do not affect client code

Design Patterns 12

Composite

Compose objects into tree structures to represent part-whole
hierarchies. Lets clients treat individual objects and compositions
uniformly.

+operation()
+add()
+remove()
+getChild()

Component

+operation()

Leaf

+operation()
+add()
+remove()
+getChild()

Composite

Client

-children

forall g in children
g.operation()

Design Patterns 13

Composite Object example

aComposite

aLeaf aLeaf

aLeaf

aComposite

aLeaf

Design Patterns 14

Composites in Java

Swing components are organised as a
composite.
Which components are leaf
components and which are
composites?
Which methods are used to navigate
the composite tree?

Design Patterns 15

Decorator

Attach additional responsibilities to
an object dynamically. Provide a
flexible alternative to subclassing
for extending functionality.

The basic concepts on which the
SceneBeans framework is built are
scene graphs, behaviours and activities
and sprites. Scene Beans can be
monitored and controlled by an
application via events and commands.
A scene-graph is a directed acyclic
graph (DAG) of beans that describes
how to draw a 2D image. Leaf nodes in
the graph draw primitive shapes such as
circles, ellipses, rectangles, polygons.

The basic concepts on which the
SceneBeans framework is built are
scene graphs, behaviours and activities
and sprites. Scene Beans can be
monitored and controlled by an
application via events and commands.
A scene-graph is a directed acyclic
graph (DAG) of beans that describes
how to draw a 2D image. Leaf nodes in
the graph draw primitive shapes such as
circles, ellipses, rectangles, polygons.

aScrollDecorator

aBorderDecorator

aTextView

Design Patterns 16

Java example

Decorated Buttons

Design Patterns 17

Decorator Class

public class Decorator extends JComponent
{

public Decorator(JComponent c) {
setLayout(new BorderLayout());
add("Center", c);

}
}

Design Patterns 18

Concrete Decorator
public class SlashDecorator extends Decorator {

int x1, y1, w1, h1;

public SlashDecorator(JComponent c) {
super(c);

}
public void setBounds(int x, int y, int w, int h) {

x1 = x; y1= y;
w1 = w; h1 = h;
super.setBounds(x, y, w, h);

}
public void paint(Graphics g) {

super.paint(g);
g.setColor(Color.red);
g.drawLine(0, 0, w1, h1);

}
}

Design Patterns 19

Using the Decorator

JPanel jp = new JPanel();
getContentPane().add(jp);
jp.add(new CoolDecorator (

new JButton("Cbutton")));
jp.add(new SlashDecorator(

new CoolDecorator(
new JButton("Dbutton"))));

aCoolDecoratoraSlashDecorator Dbutton

Design Patterns 20

Decorator Example
JComponent

Decorator

CoolDecorator SlashDecorator

Structure

Design Patterns 21

Question

In what way is a decorator
different from an adapter?

Adapters change the interface of a
class for a client.
Decorators add methods to
particular instances of classes
rather than to all of them.

Design Patterns 22

Facade
Provides a unified interface to a set of interfaces in a
subsystem. Façade defines a higher-level interface that
makes the subsystem easier to use.

Facade

Design Patterns 23

Flyweight
Use sharing to support large numbers of fine-
grained objects efficiently

Key Concepts:
Intrinsic state:
stored in flyweight and independent of context,
shareable
Extrinsic state:
dependent on context, passed to flyweight by
client

Design Patterns 24

Flyweight - example

Consider how a text editor stores characters:

• • • a p p a r e n t • • •• • • a p p a r e n t • • •• • • a p p a r e n t • • •• • • a p p a r e n t • • •

••••
••••
••••

••••
••••
••••

character
objects

row
objects

column
objects

Design Patterns 25

Logically, there is an object for every occurrence of a
given character in the document.

column

rowrow row

a p p a r e n t

Design Patterns 26

column

rowrow row

a p p a r e n t

a b c d e f g h i j k l m

n o p q r s t u v w x y z flyweight
pool

Design Patterns 27

Flyweight - structure

+draw(Context)
+intersects(Point,Context)

Glyph

+draw(Context)
+intersects(Point,Context)

Column

+draw(Context)
+intersects(Point,Context)

Row

+draw(Context)
+intersects(Point,Context)

char c
Character

-children-children

A flyweight representing the letter “a” only stores the corresponding
character code; it does not store its location or font. Clients supply
the context information that the flyweight needs to draw itself.

Design Patterns 28

Flyweights - consequences

May introduce additional run-time cost.

Usually offset by saving in space
Dependent on the amount of intrinsic state per
object
and the amount of intrinsic state per object
and whether extrinsic state is computed or
stored.

Design Patterns 29

Proxy

Provide a
surrogate or
placeholder
for another
object to
control
access to it.

+request()

Subject

+request()

RealSubject

+request()

ProxyrealSubject

realSubject.request();

Client

Design Patterns 30

Example

Proxy image displayed until real image loads.

Design Patterns 31

Proxy - example instance structure

aClient

subject aProxy

realSubject aRealSubject

Design Patterns 32

Question

Discuss the use of proxies in
Java RMI.

