
Design Patterns 1

Behavioral Patterns
Chain of Responsibility
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Behavioral patterns 
are concerned with 
algorithms and the 
assignment of 
responsibilities 
between objects.

Design Patterns 2

Chain of Responsibility
Avoid coupling the sender of a request to its 
receiver by giving more than one object a chance to 
handle the request. Chain the receiving objects and 
pass the request along the chain until an object 
handles it.

aClient aConcreteHandler aConcreteHandler

request() request()

Design Patterns 3

Structure - Chain of Responsibility

Client

+request()

Handler

+request()

ConcreteHandler1

+request()

ConcreteHandler2

successor

Design Patterns 4

Example - Chain of Responsibility

Command Image
file

Color
name

File
name General



Design Patterns 5

Code - Chain of Responsibility

public interface Chain
{
public abstract void addChain(Chain c);
public abstract void sendToChain(String mesg);
public Chain getChain();

}

Note: Java only permits single inheritance, so we make Chain 
an  interface and have to include a “nextChain”or successor 
reference in each chainable class.

Design Patterns 6

Code - Chain of Responsibility

public class ColorImage extends JPanel
implements Chain      {

private Chain nextChain;

//-----------------------------------
public ColorImage() {

super();
setBorder(new LineBorder(Color.black));

}

//-----------------------------------
public void addChain(Chain c) {

nextChain = c;
}

Design Patterns 7

Code - Chain of Responsibility

//-----------------------------------
public void sendToChain(String mesg) {

Color c = getColor(mesg);
if (c != null) {

setBackground(c);
repaint();

} else {
if (nextChain != null)

nextChain.sendToChain(mesg);
}

}
//-----------------------------------

public Chain getChain() {
return nextChain;

}

Design Patterns 8

Code - Chain of Responsibility

//-----------------------------------
private Color getColor(String mesg) {

String lmesg = mesg.toLowerCase();
Color c = null;
if (lmesg.equals("red"))

c = Color.red;
if (lmesg.equals("blue"))

c = Color.blue;
if (lmesg.equals("green"))

c= Color.green;
return c;

}
}



Design Patterns 9

Code - Chain of Responsibility

//set up the chain of responsibility
sender.addChain(imager);
imager.addChain(colorImage);
colorImage.addChain(fileList);
fileList.addChain(restList);

Design Patterns 10

Applicability - Chain of Responsibility

When more than one object may handle a request, 
and the handler isn’t known a priori. 

You want to issue a request to one of several 
objects without specifying the receiver explicitly.

The set of objects that can handle a request 
should be specified dynamically.

Design Patterns 11

Consequences - Chain of Responsibility

Reduced Coupling
object does not know handling object
simplifies interconnection

Added flexibility in assigning 
responsibilities to objects

Receipt is not guaranteed.

Design Patterns 12

Command
Encapsulate a request as an object, thereby letting 
you parameterize clients with different requests, 
queue or log requests, and support undoable 
operations.

public interface Command    
{

public void Execute();
public void unDo();

}



Design Patterns 13

Structure - Command

Client Invoker

+execute()

Command

+execute()

ConcreteCommand
+action()

Receiver receiver

receiver.action()
Design Patterns 14

Collaboration - Command

aReceiver aClient aCommand anInvoker

new Command()

storeCommand()

execute()

action()

Design Patterns 15

Applicability - Command

when you want to parameterise objects by an 
action to perform.

to specify, queue and execute requests at 
different times.

to support undo.

Design Patterns 16

Consequences - Command

Decouples object that invokes operation from 
object that knows how to perform it

Commands can be manipulated and extended like 
any other object.

Can assemble commands into composite command 
(macros) using Composite pattern.

Easy to add new commands - no change to existing 
classes.



Design Patterns 17

Interpreter
Given a language, define a representation for its 
grammar along with an interpreter that uses the 
representation to interpret sentences in the 
language.

The pattern uses a class to represent each 
grammar rule. A sentence in the language is 
represented using these classes as an abstract 
syntax tree.

(see - Compiler course)

Design Patterns 18

Example - Interpreter

Command line interpreter

Design Patterns 19

Iterator
Provides a way to access the elements of an 
aggregate object sequentially without exposing its 
underlying representation

+iterator()

«interface»
Collection

+hasNext()
+next()
+remove()

«interface»
Iterator

ConcreteCollection ConcreteIterator

In Java, the 
concrete 
iterator class 
is never 
visible

Design Patterns 20

Example usage - Iterator

public class IteratorDemo {
Collection agg = new ArrayList();

public IteratorDemo() {
agg.add("one");
agg.add("two");
agg.add("three");

}

public void print() {
Iterator I = agg.iterator();
while (I.hasNext()) {
System.out.println(I.next());

}
}

}



Design Patterns 21

Applicability - Iterator

to access an aggregate object’s contents without 
exposing its internal representation.

to support multiple traversals of aggregate 
objects.

to provide a uniform interface for traversing 
different aggregate structures (i.e. to support 
polymorphic iteration.)

Design Patterns 22

Consequences - Iterator

supports variations in the traversal of an 
aggregate (e.g. ListIterator supports “previous”).

Iterators simplify the aggregate interface - no 
need for traversal methods in aggregate class.

More than one traversal can be pending on an 
aggregate. An iterator keeps track of its own 
traversal state (e.g. position in list). Therefore, 
more than one traversal can be in progress at 
once.

Design Patterns 23

Mediator
Define an object that encapsulates how a set of 
objects interact. Mediator promotes loose coupling by 
keeping objects from referring to each other 
explicitly, and it lets you vary their interaction 
independently.

Mediator

before after

colleagues
Mediator routes requests between colleagues.

Design Patterns 24

Example - Mediator



Design Patterns 25

Example - Mediator

Name text

Name list Picked list

Copy Clear

before

Design Patterns 26

Example - Mediator

Name text

Name list

Picked list

Copy Clear

after

Mediator

Design Patterns 27

Applicability - Mediator

when a set of objects communicate in well-defined 
but complex ways. The resulting interdependencies 
are unstructured and difficult to understand.

reusing an object is difficult because it refers to 
and communicates with many other objects.

a behavior that is distributed between several 
classes should be customizable without a lot of 
subclassing.

Design Patterns 28

Consequences - Mediator

It limits subclassing - only need to subclass 
Mediator not each Colleague.

It decouples colleagues - can vary mediator and 
colleague classes independently.

It simplifies object protocols - replaces many-to-
many with one-to-many communication.

It abstracts how objects cooperate.

It centralizes control - can become a complex 
monolith that is difficult to maintain (God class).



Design Patterns 29

Memento
Without violating encapsulation, capture and 
externalise an object’s internal state so that the 
object can be restored to this state later.

Example:
remember position
& size of rectangles
for undo

Design Patterns 30

Code - Memento
public class visRectangle {

int x, y, w, h;    //package protected
...

}

public class Memento {
visRectangle rect;
private int x, y, w, h; //saved fields
public Memento(visRectangle r) {

rect = r; x = rect.x;  y = rect.y;
w = rect.w;  h = rect.h;

}

public void restore() {
rect.x = x;  rect.y = y;
rect.h = h;  rect.w = w;

}
}

Design Patterns 31

Code - Memento

public void rememberPosition(visRectangle rect) {
Memento m = new Memento(rect);
undoList.addElement(m);

}

Saving state:

Restoring state:

private void undo() {
Memento m = (Memento) undoList.lastElement();
undoList.removeElement(m);
m.restore();     //and restore old position

}
Design Patterns 32

Applicability - Memento

Use when a snapshot of (some portion of) an 
object’s state must be saved so that it can be 
restored to that state later, and

a direct interface to obtaining the state would 
expose implementation details and break the 
object’s encapsulation



Design Patterns 33

Consequences - Memento
Preserving encapsulation boundaries - avoids exposing 
originating object’s state.

Simplifies originating object - removes storage 
management burden.

Using mementos can be expensive - creation, copying 
and restoring can have high overhead.

Can be difficult in some languages to ensure that only 
the originating object can access memento’s state.

Hidden cost in managing mementos - caretaking.

Design Patterns 34

Observer
Define a one-to-many dependency between objects so 
that when one object changes, all its dependents are 
notified and updated automatically.

0

10

20

30

40

50

60

70

80

90

1st

Qtr

2nd

Qtr

3rd

Qtr

4th

Qtr

East

W est

North

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

North 45.9 46.9 45 43.9

W est 30.6 38.6 34.6 31.6

East 20.4 27.4 90 20.4

1st Qtr2nd Qtr 3rd Qtr 4th Qtr

North = {45.9, 46.9, 45, 43.9}
West =  {30.6, 38.6, 34.6, 31.6}
East  =  {20.4, 27.4, 90, 20.4}

notify change

request,
modify

Design Patterns 35

Structure - Observer

+attach()
+detach()
+notify()

Subject

+update()

«interface»
Observer

observers

+getState()
-subjectState
ConcreteSubject

+update()
-observerState
ConcreteObserversubject

forall o observers {
o.update();

}

return subjectState

observerState =
subject.getState()

Design Patterns 36

Collaborations - Observer

Subject Observer Observer

setState()

notify()

update()

getState()

update()

getState()



Design Patterns 37

Example - Observer

Design Patterns 38

Example - Observer

public interface Subject {
public void registerInterest(Observer obs);

}

registerInterest() is the attach() pattern method

public interface Observer {
public void sendNotify(String s);

}

sendNotify() is the update() pattern method
the updated state is passed as a parameter to
this method

Design Patterns 39

Example - Observer

public class Watch2Windows extends JxFrame
implements ActionListener, ItemListener, Subject {
private Collection observers;
...
private void notifyObservers(JRadioButton rad) {
String color = rad.getText();
for (Iterator I=observers.iterator(); I.hasNext();)

((Observer)I.next()).sendNotify(color);
}

public void registerInterest(Observer obs) {
observers.add(obs);
}
...

}

Design Patterns 40

Example - Observer

public class ListFrame extends JFrame
implements Observer {

...
public void sendNotify(String s) {

listData.addElement(s);
}

}



Design Patterns 41

Applicability  - Observer

When an abstraction has two or more inter-
dependent aspects. Encapsulating these aspects in 
different objects lets you vary and reuse them 
independently.

When a change to one object requires changing 
others, and you do not know how many objects need 
to be changed.

To decouple subject  from observers.

Design Patterns 42

Consequences - Observer

Abstracts coupling between Subject 
and Observer.

Support for broadcast 
communication.

Unexpected updates - or spurious 
updates to observers.

Design Patterns 43

State
Allow an object to alter its behaviour when its 
internal state changes. The object will appear to 
change its class.

Objects often have internal modes or states with 
different behaviour (responses to messages) in each 
mode.
State pattern introduces explicit subclasses - a 
different subclass for each mode.
In this pattern, the choice between responses to 
methods is handled by polymorphism of state 
subclasses, not by the programmer.

Design Patterns 44

Structure - State

+request()

Context

+handle()

StateA

+handle()

«interface»
State

+handle()

StateB

+handle()

StateC

-state

1 *

state.handle()



Design Patterns 45

Example - State
opened closed

/ enter/ enter

public class Door {
private static final int Opened = 1;
private static final int Closed = 2;
int state = Opened;

public void open()  { state = Opened; }
public void close() { state = Closed; }

public boolean enter() {
if (state == Opened)

return true;
else if (state == Closed)
return false;

else
throw new Error();

}
}

before

Design Patterns 46

Example - State

interface State { boolean enter(); }

class Opened implements State {
public boolean enter() {return true;}}

class Closed implements State {
public boolean enter() {return false;}}

public class Door {
private Opened opened = new Opened();
private Closed closed = new Closed();
State state = opened;

public void open()  { state = opened; }
public void close() { state = closed; }

public boolean enter() {
return state.enter();

}
}

after

Design Patterns 47

Applicability - State

An object’s behaviour depends on its state and it 
must change its behaviour at runtime depending on 
that state.

Methods have large multipart conditional 
statements that depend on the object’s state. 
Often, several operations will contain this same 
conditional structure. The State pattern puts each 
branch of the conditional into a separate class. 
Each state of the original object is now a separate 
object and can vary independently from other 
state objects.

Design Patterns 48

Consequences - State

Localises state-specific behaviour and partitions 
behaviour for different states.

It makes state transitions explicit.

State objects can be shared - a single instance can 
be ensured by using the Singleton pattern.


