
Design Patterns 1

Behavioral Patterns - the rest
Chain of Responsibility
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Behavioral patterns
are concerned with
algorithms and the
assignment of
responsibilities
between objects.

Design Patterns 2

Strategy (aka Policy)

Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm
vary independently from the clients that use it.

+algorithmInterface()

«interface»
Strategy

+contextInterface()()

Context
-strategy

1 *

+algorithmInterface()

ConcreteStrategyA

+algorithmInterface()

ConcreteStrategyB

+algorithmInterface()

ConcreteStrategyC

Structure

Design Patterns 3

Example - Strategy

Design Patterns 4

Example - Strategy

public abstract class PlotStrategy extends JFrame {
...
public abstract void plot(float xp[], float yp[]);
...

}

public class Context {
private PlotStrategy plotStrategy;

public void setBarPlot() {
plotStrategy = new BarPlotStrategy();}

public void setLinePlot() {
plotStrategy = new LinePlotStrategy(); }

public void plot() { plotStrategy.plot(x, y);}
}

Design Patterns 5

Applicability - Strategy

When many related classes differ only in their
behaviour.

You need different variants of an algorithm.

To encapsulate algorithm specific datastructures.

A class defines many behaviours and these appear
as multiple conditional statements. Move related
conditional branches into their own Strategy class.

Design Patterns 6

Consequences - Strategy

Defines families of related algorithms.

Its is an alternative to direct sub-classing. We
could sub-class Context - “hard-wired”.

Strategies eliminate conditional statements.

Can have choice of implementations for the same
behaviour.

Disadvantages: Communication overhead -
Context-Strategy + increased #objects.

Design Patterns 7

Template Method
Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.
Lets subclasses refine steps without changing
algorithm structure.

+templateMethod()
+operation1()
+operation2()

AbstractClass

+operation1()
+operation2()

ConcreteClass

templateMethod(){
operation1();
….
operation2();Structure

Design Patterns 8

public abstract class AbstractCollection
implements Collection {
public abstract Iterator iterator();
public abstract int size();

public boolean contains(Object o) {
Iterator e = iterator();
if (o==null) {

while (e.hasNext())
if (e.next()==null) return true;

} else {
while (e.hasNext())
if (o.equals(e.next())) return true;

}
return false;

}
...

}

Template Method - Example

The AbstractCollection class from
java.util -Tutorial 6, includes examples
of template methods:

Design Patterns 9

Applicability - Template method

Implement the invariant part of algorithm once
and leave parts that vary to subclasses.

Factor out common behaviour in subclasses -
“refactor to generalize”.

Control subclass extensions - “hook” operations.

Design Patterns 10

Consequences - Template method

Fundamental technique for code re-use.

Leads to an inverted control structure in which
base class calls sub-class methods:-
“Hollywood Principle - Don’t call us, we’ll call you”.

Template methods call:
concrete operations
primitive operations
factory methods
hook operations - default behaviour that can be over-
ridden by subclasses.

Design Patterns 11

Visitor
Represent an operation to be performed on the
elements of an object structure. Visitor permits a
new operation to be defined without changing the
classes of the elements on which it operates.

An external class is created to act on the data in
other classes.

Can also be though of as an OO way of implementing a
switch statement...

Design Patterns 12

Motivation - Visitor

Shape

Square Circle Rectangle

Suppose we want a
method Selected to print
out the object class when
we click on it.

void selected(Shape obj) {
if (obj instanceof Circle)
System.out.println("its a Circle");

else if (obj instanceof Square)
System.out.println("its a Square");

else
System.out.println("its a Rectangle");

}

Design Patterns 13

Motivation - Visitor

However, for 100 shapes,
we have up to 99
comparisons, try...

abstract class Shape {
abstract int id()

}

class Circle Extends Shape
{ ...

static final int ID = 1;
int id() { return ID; }

}

Shape

Square Circle Rectangle

id()id()id()

id()

class Square Extends Shape
{ ...

static final int ID = 2;
int id() { return ID; }

}

class Rectangle Extends Shape
{ ...

static final int ID = 3;
int id() { return ID; }

}

Design Patterns 14

Motivation - Visitor

void selected(Shape obj) {
switch (obj.id()) {
case Circle.ID:
System.out.println("its a Circle"); break;

case Square.ID:
System.out.println("its a Square"); break;

case Rectangle.ID:
System.out.println("its a Rectangle"); break;

}

This solution has the problem of leaving the
management of unique ID’s to the programmer - easy
to make mistake + ID is redundant since we can
identify class of an object using instanceof

Design Patterns 15

Example - visitor

interface Visitor {
void visit(Circle obj);
void visit(Square obj);
void visit(Rectangle obj);

}

abstract class Shape {
...
abstract void accept(Visitor v);

}

class Circle Extends Shape
{ ...

void accept(Visitor v)
{v.visit(this);}

}

Shape

Square Circle Rectangle

accept()

id()

accept() accept()

Design Patterns 16

Example - visitor
class Printer extends Visitor {

void visit(Circle obj) {
System.out.println("its a Circle");

}
void visit(Square obj) {

System.out.println("its a Square");
}
void visit(Rectangle obj) {

System.out.println("its a Rectangle");
}

}

//using the Printer Visitor
void selected(Shape obj) {

obj.accept(new Printer());
}

Design Patterns 17

Collaboration - Visitor

Client Circle Square Printer

accept(p)

visit(this)

println()op()

accept(p)

visit(this)

println()op()

Double Dispatch Design Patterns 18

Applicabiliy - Visitor

Essentially, when the classes defining an object
structure rarely change, but you want to to define
new operations over the structure.
(e.g. the compiler-compiler sablecc generates set
of classes - which accept visitors - to represent
abstract syntax tree. Users write visitor classes
to implement static semantic checks, pretty
printing, code generation etc.

Design Patterns 19

Consequences - Visitor

Visitor makes adding new operation easy - add new
visitor class.

Visitor gathers related operations and separates
unrelated ones.

Adding new concrete elements (e.g. Shape classes)
is difficult.

Can break encapsulation - visitors most have
access to enough visited element state to perform
their function.

Design Patterns 20

Discussion Point

“Most problems in computer
science can be solved by another
level of indirection”.

