
AUTOMATED REASONING

SLIDES 10:

CLAUSAL TABLEAUX
 Model Elimination
 Short-cuts: Lemmas and Merging
 LeanCop Theorem Prover

KB - AR - 09

10ai

• In Clausal Tableaux all sentences are clauses.
• Clause Extension rule is derived from free variable γ-rule and ∨-splitting.

Clausal Tableaux and Linear Strategies

Q(y1) P(x1,y1) ¬R(x1)

• Development follows a Linear strategy :
• Select an initial clause called top in set of support (i.e top is necessary for
closure to occur).
• Select a branch B (usually work from left to right) and a clause C with a
literal that is complementary to current leaf L of B. (Re)order literals in C to
close L in selected branch with leftmost literal of C.
• May also be able to close other branches below L with other literals in C.
• Either: propagate bindings as they are made (usual method), or record
potential closures for later solution.

Closure rule is the free
variable closure rule

eg using Q(y) ∨ P(x,y) ∨ ¬R(x)

• Called a connection tableau, or Model Elimination (ME) tableau.
• Do not need to use a clause that results in a literal being duplicated in a
branch. Then called a regular tableau.
• Note : P(x1) and P(x2) are not duplicates! x1 and x2 could end up being
bound to different values.

10bi

NOTE: Each internal node
matches leftmost leaf
literal immediately below.
Reorder used clause if
needed. eg at (∗∗∗∗∗∗∗∗)

¬Pxy ∨ ¬Pyx, Pf(u)u ∨ Pua,
Pvf(v) ∨ Pva

¬Px1y1 ⇒
¬Py1x1 ⇒
¬Pu1f(u1)⇒
 ¬Paf(a)

Pf(u1)u1
x1==f(u1)
y1==u1

Pu1a

¬Pu1a
¬Pau1
u1==a

¬Pf(u1)u1

Paf(a)

Paa

¬Paa

¬Paa

(∗)

Note there is no possible closure at
(∗) between ¬Pf(u1)u1 and Pu1a
due to occurs check.

Example Model Elimination Tableaux

¬Ha , ¬Gx ∨ ¬Fb, ¬Fx ∨ ¬Hb,
Gx ∨ ¬Fx, Fx ∨ Hx

¬F(x4)
x4==x1

Fx1 Hx1 ⇒ Hb

G(x4)
⇒Gx1 ¬Hb ¬ Fx2

¬Gx1
Fx2 Hx2¬Fb

x1==b

¬Ha
x2==a

(∗∗∗∗∗∗∗∗)

10biiModel Elimination Tableaux:
The examples of Model Elimination tableaux shown on 10bi illustrate several features of
connection tableaux. In the left-hand example notice that in the extension below Fx1 an explicit
introduction of x4 for x in the use of the clause ¬Fx ∨ Gx is made. The resulting literal ¬Fx4 is
matched with Fx1 to give closure with binding (x4==x1}. This binding is then propagated
through the tableau (indicated by ⇒). These steps can be combined, and in subsequent steps
are, to save unnecesary introduction of new free variables. Thus in the next step below Gx1, a
copy of ¬Gx ∨ Fb is taken, implicitly using new free variable x3, to enable closure between
¬Gx3 and Gx1; x3 is immediately bound to x1 and only the value after closure is shown. This
saves some clutter in depicting the tableau. Note also the reordering of ¬Fx ∨ Hb so the leftmost
branch closes below Hb.

In the example on the right the introduction of fresh variable u1 in the first step is made explicit,
so the copy (of Pf(u)u ∨ Pua) uses free variable u1. This is reasonable here, as it is the older
variable x1 that is bound (x1==f(u1)), not the new one, u1. The bindings must be propagated in
the tableau, so ¬Px1y1 becomes ¬Pf(u1)u1 and ¬Py1x1 becomes ¬Pu1f(u1).
(In fact, since y1 is also bound to u1, it isn't necessary to introduce u1 here either, since an
implicit u1 could be bound to y1 leading to x1==f(y1). However, it is clearer to introduce u1, I
think.) Notice that the possible closure between ¬P(x1,y1) = ¬Pf(u1)u1 and Pu1a fails. When u1
is later bound to a this is propagated to ¬Pu1f(u1), which becomes ¬Paf(a). Closing a branch by
unifying the leaf with a literal higher in the same branch (eg beneath ¬Pau1) is sometimes
called ancestor resolution, or ancestor matching.

It is also possible to delay propagation of unifications on closure until the end. In the second
tableau a possible closure at depth 2 could be derived if the following unifiers could be
combined: {x1==f(u1), y1==u1}, {x1==u1, y1==a}, {v1==y1, x1=f(v1)}, {y1==v1, x1==a}.
(v1 is introduced in the right-hand branch using the free variable instance Pv1f(v1) ∨ Pv1a of
clause 3.) These unifiers cannot be combined, so some other closed tableau must be found.

10ci

The refutation X (found beneath the rightmost
occurrence of ¬B) could also be used below the
occurrence at ¬B*. Why?

This step is valid only because the tableau is
developed left to right; all ancestors of ¬B
(indicated by (A)) are available also to ¬B*.

On encountering ¬B* and noticing that ¬B occurs
also to the right in the ME tableau, can close ¬B*
by merging.

Merging is the tableau version of factoring. In the first order case, analogous to
safe factoring, merging is usually restricted so that variables in ¬B and any
other unclosed branches on the right of ¬B* are not bound by the merge step
unifier. Those in ¬B* may be.
eg1: if ¬B* is ¬G(a) and ¬B is ¬G(x1) then merging binds x1==a; it may be
that ¬G(a) can be closed at ¬B* but not at ¬B, whereas ¬G(x1) does close at B
but for x1==c (say).
eg2: ¬B* is ¬G(x1) and ¬B is ¬G(a) and a second sibling of ¬B is H(x1). If
x1==a is no good for H(x1) it is better not to make the merge. Since one
doesn't know this when at ¬B* merge is not the best option necessarily.

Some Short cuts: Merging

¬M ¬B

M L

¬L M

¬B*

X

X

}A
10cii

In this tableau the second occurrence of ¬B
occurs in the right hand branch below the sibling
of ¬B* (i.e. ¬M) so merge is not available on
encountering the first occurrence at ¬B*.

Instead, can use Re-use: once a closure below a
literal has been found, any other occurrences can
use the same closure (as long as the necessary
ancestors are available).

Can use closure Y below ¬B. Simulate this by placing (B) in the branch to
represent closure below ¬B*, so when ¬B is encountered can use closure rule.

Similarly, can use (¬L) to represent closure beneath L in the 3rd branch. This is
ok since the ancestors of L used in the closure beneath it are ¬M, and ¬M is in
the 4th branch.

In general, re-use is usually used in two cases only: (i) when no ancestors
were required in closure beneath a literal, or (ii) when the second closure is
beneath a sibling branch of the first closure (both cases in example).

Some Short cuts: Re-use

¬B*

Y

¬M

M L ¬B

¬L M

(B)

(¬L)

10ciii

K L

¬L S¬K
S*

¬S ¬K

T

¬T S

(¬S)

(¬K)

First order case:
Suppose K was the literal K(x1) and closure beneath it does not bind free
variable x1. What would this imply about K(x)?

Can simulate this by adding ∀x ¬K(x) to right branch, representing that K(x)
can be closed for any x. Some quite sophisticated short cuts can take place
when variables remain unbound by closure - will return to this on slides 11.

After closing occurrence of S at
S*, notice that ancestor K was
necessary. Since K is not an
ancestor of S in the right-most
branch, cannot re-use here the
closure made under S*.

Example showing when re-use is inapplicable

Cannot apply re-use to S here

10civRefinements of Model Elimination:
There are two simple refinements for ME-tableaux shown on 10ci/10cii, which are here
called merging and re-use. (Note: in the Chapter Notes re-use was also called "Use of
Lemmas".) Consider the case for propositional tableau first.

Important Note 1: merging and re-use cannot both be used in a single tableau; otherwise
soundness is not in general maintained.

Important Note 2: merging and re-use are only available for ME-tableau; this is due to the
left to right development of such tableaux.

Merging is the simplest. If a leaf literal L can be unified with another leaf literal L'in an
open branch to its right (necessarily a sibling of L or a sibling of an ancestor of L), then the
branch ending at L can be closed by merge without further steps. This is sound because
when the (necessary) closure beneath L' is made, it can be repeated (retrospectively) beneath
L. Any ancestors needed for the closure beneath L' will also be available beneath L, due to
the tableau structure. Merging is the tableau version of factoring.

The other extension is called re-use. If a sub-tableau beneath a literal L at node n closes,
then any other occurrences of L at nodes n' that may occur in open branches of the tableau
can be closed also, as long as the ancestors needed to close L at n are also available at n'. If
the subsequent occurrences of L appear at siblings of n or at descendants of siblings of n,
then this will be so. Otherwise, it needs to be checked. In the simplest case, when no
ancestors are needed, then any occurrence of L can be closed in the same manner as the
occurrence of L at n is closed. The (re-use) rule can be implemented in a simple way by
including ¬L in all branches that are known to share the necessary ancestors. Then closure
will be made by the normal (ancestor matching) closure rule. Usually, implementations
check only the 2 cases of sibling branches and no ancestors used, to receive the literal ¬L.

Merging in First Order Tableaux:

Assume the first occurrence (the one to be closed by merge) is L and that it is to be
merged with a second occurrence L'. There are 2 basic cases to consider.

Case 1 is when bindings are required to be made to L but not to L'. This case is
safe as long as the variables in L that are bound do not occur in other leaf literals in
branches to the right of L or in ancestors of L. The reason is that the bindings
would be propagated to those literals and they may not be appropriate to
completing the tableau beneath them. This restricted case is sound because when
the (necessary) closure beneath L' is made, it can be repeated beneath L, for after
unification they are identical. Any ancestors needed for the closure beneath L' will
also be available beneath L, due to the tableau structure.

(In fact, if the bindings affect only L and ancestors of L the merge is also safe, but
see Slides 11 for a discussion of this case).

Case 2 is when bindings are required to be made to L'. This case is not usually
implemented (see Slide 10ci for an example).

10cv
10cvi

Re-Use in First Order Tableaux:

Assume the first occurrence occurs at leafnode n and the second occurrence occurs
at n'. Either n' should be a descendant of a sibling of n, or, if closure beneath n
involved no ancestors, then n' can also be a descendant of an ancestor of n. There are
then 2 basic cases.

No ancestor involved in closure beneath n: if the literal at n has the form P[x] and
there is a completed sub-tableau beneath it, which does not bind x, then this means
that ∀xP[x] can be proven. i.e. for any instance of P[x] a closed sub-tableau beneath
it can be constructed. Thus ∀x¬P[x] can be added to the tableau. Note that, even if x
occurs in other leaf literals and is later bound, this property still holds. If the literal
at n' becomes bound by the application of Re-use, this does not affect soundness, but
it may not lead to a closed tableau.

Some ancestor is involved in closure beneath n: This is a more complex property,
as even if variables in the literal at n are not bound by the step, those variables could
appear in an ancestor of n. If such variables do not also appear in any sibling of n or
of n' then this case is also sound and worth considering (see Slides 11 for a brief
discussion of this case). Otherwise, while still sound, the result may not lead to a
closed tableau and is is not usually implemented.

10cvii

Completeness of Model Elimination Tableau:

Let S be a set of minimally unsatisfiable ground clauses (ie removing any clause from S yields a
satisfable set). Then a closed ME tableau exists for S starting from any top clause (from S). The
proof is by induction on the number of non-unit clauses k in S, where k≥0. Therefore, let S be a
minimally unsatisfiable set of ground clauses with k non-unit clauses. Assume as induction
hypothesis (IH), that, for any minimally unsatisfiable set of ground clauses with n<k non-unit
clauses a ME tableau can be found. In order to show that a ME tableau exists for S there are 2
cases.

Case 1: k=0. In this case all clauses are unit clauses. If S is unsatisfiable then it must consist of
two complementary unit clauses. One of these can be selected as the top clause and the tableau
will close by extension using the other one.

Case 2: k>0. Choose as top clause a non-unit clause C, say L1∨L2∨...∨Ln. Then for each Li
there must exist a clause that has a literal complementary to Li (ie containing ¬Li).
(Exercise: Show this. The proof requires to show that if for some Li such a clause did not exist
then S could not be minimally unsatisfiable - eg consider pure literals.)
Consider the set of clauses S1' = S - {C} +{L1}. ie remove the clause C and add the unit clause
L1. Then S1' is also unsatisfiable and L1 belongs to some minimally unsatisfiable subset of S1'.
(Exercise: Show this.) S1' has <k non-unit clauses and the IH is applicable, using L1 as the top
clause and the clause complementary to L1 as the second clause. (If this clause is a unit clause,
that is not a problem.) Repeat the argument exemplified for L1 for each literal Li, i>1, in C.

It is easy to lift a ground ME tableau to the first order case, as described in Slide 9dvii.

You are encouraged to follow the proof construction to find a closed ME tableau for the ground
instances ¬Ha, ¬Fa ∨¬Hb, Fa ∨Ha, Fb ∨Hb, Ga ∨¬Fb, Ga ∨Fa with top clause Fb ∨Hb.
Exercise: Show how to adapt Case 2 for regular ME tableaux.

10diConstructing Model Elimination Tableaux:

Slide 10dii shows an outline program for constructing model elimination tableaux.

The predicate show implements the basic part of the construction (note that its
clauses include only the 3 basic steps. Initial data is a list of clauses, given as the
3rd argument (arg3) and the list of leaf literals, given as arg1. The ancestor literals
available to these leaf literals are in arg2, which is initially empty.

To avoid following an infinite branch, show has a fourth argument, the maximum
depth of a tableau constructed by show. Each time show recurses, the maximum
depth is reduced by 1. If it reaches 0 then only closure is allowed, not extension.
The predicate showd controls the use of D, the Depth argument. Initially, D is a
small value; it is increased if no closed tableau can be found at depth ≤D.

Various extensions of this basic structure are easy to implement, such as merging or
re-use. (Remember, only one of these is possible in a given tableau.)

Later, you'll see LeanCop, which is a cleverly implemented version of the basic
model elimination tableaux.

10dii

Implementing Model Elimination tableaux:

• Start with a top clause;
• Each literal at an internal node matches directly below with leftmost literal.
• A literal at a leaf node may match any literal in the branch above.
• Only one instantiation of any literal in the tableau may be made.
show([],A,C,D).
show([G|Rest],A,C,D) :- D≥0,complement(G,A),
show(Rest,A,C,D).
show([G|Rest],A,C,D) :- D>0,match(G,New, C),D1 is D-1,
 show(New,[G|A],C,D1),show(Rest,A,C,D).

match(G,New, C) finds a clause in C with a literal L that unifies with,
and is complementary to, G and has other literals New.

showd(Goals,C,D):- show(Goals,[],C,D), !.
showd(Goals,C,D) :- D2 is D+1,showd(Goals,C,D2).

showd controls attempts to show the Goals at ever increasing depth.

• The tableau is usually constructed in a depth first way, as in the program.

• Initial call is showd(Top,C,D) for some small initial D (eg D=3). [Top] is
the top clause represented as a list of literals.

Exercise . Add a clause to show that will enforce regular tableaux.

LeanCop: A ME Theorem Prover 10diii

prove([],_,_,_).

prove([Lit|Cla],Mat,Path,PathLim) :-
 (-NegLit=Lit;-Lit=NegLit) ->
 (member(NegL,Path), %branch closure case
 unify_with_occurs_check(NegL,NegLit);
 append(MatA,[Cla1|MatB],Mat),
 copy_term(Cla1,Cla2), %find matching clause
 append(ClaA,[NegL|ClaB],Cla2),
 unify_with_occurs_check(NegL,NegLit),
 append(ClaA,ClaB,Cla3),
 (Cla1==Cla2 -> %ground clause matched
 append(MatA,MatB,Mat1);
 length(Path,K), K<PathLim,%vars in clause matched
 append(MatA,[Cla1|MatB],Mat1)
), %continue with same branch
 prove(Cla3,Mat1,[Lit|Path],PathLim)
), %continue with next branch
 prove(Cla,Mat,Path,PathLim).

Data: Mat is a list of clauses, each clause a list of Literals

10divprove(Mat,PathLim) :-
 append(MatA,[Cla|MatB],Mat),
 \+member(-_,Cla), %top clause all positive
 append(MatA,MatB,Mat1),
 prove([!],[[-!|Cla]|Mat1],[],PathLim).
prove(Mat,PathLim) :-
 \+ground(Mat), %if not propositional increase PathLim
 PathLim1 is PathLim+1,
 prove(Mat,PathLim1).

Examples :
prove([[-h(a)], [f(X),h(X)], [-g(Z),-f(b)], [-f(Y),-h(b)[,[g(U),-f(U)]], 4)

prove([[-a,-w,p],[e],[i,a], [w,m], [-p], [-e,-i], [-e,-m]],0)

Exercises :
(1) Explain why PathLim doesn't need to increase for propositional case.
(Hint: look at test Cla1==Cla2).

(2) Add a test to enforce only regular tableau to be generated and searched.

%Operator precedences (put at top of program)
:- op(400,fy,-),op(500,xfy,&),op(600,xfy,v),
 op(650,xfy,=>), op(700,xfy,<=>).

10dv

The LeanCop Prolog Prover:

LeanCop is similar to LeanTap in that it is written in Prolog and is very compact.
However, it is designed by different people: Jens Otten and Wolfgang Bibel – see the
website (more up-to-date than LeanTap's) at http://www.leancop.de/

LeanCop is a Model Elimination prover, so takes clauses as input. The four arguments
of prove are: ``current list of leaf literals, list of all clauses, current branch, current
max depth of branch for search''.

In one sense using clauses makes it simpler than LeanTap. In another, it makes it more
complicated, as there are more possibilities for clever tricks. In particular, consider the
line

 (Cla1==Cla2 -> %ground clause matched

In case the test is true, this means that the result of the earlier call to copy-term did
not introduce fresh variables because there were no free variables in Cla1 to be
copied. Therefore the clause Cla1 is ground and there is no need to re-use it in the
current branch in the future, so it can be discarded. Moreover, there is no need to
increase PathLim – it is only increased when extension is by a non-ground clause
instance, which potentially may have to be re-used.

As in LeanTap, if no closure is found at an initial depth, the depth is increased.

10eiSummary of Slides 10
1. The tableau method can be applied to sets of clauses, when special
development rules can be used to good effect. Since clausal form has already
eliminated ∃ quantifiers, only one extension rule is required, derived from the
free variable γ rule and ∨ rule. The closure rule uses unification.

2. The most usual development rules result in the Model Elimination method,
or Connection tableaux. The first step selects a top clause. Thereafter, every
extension must use a clause that has a literal which unifies with the leaf literal
at the left-most open branch. This literal is placed left-most in its clause. The
tableau is developed from Left to Right and depth-first.

3. If the development rules summarised in 2) are in force, then some short cuts
can be incorporated, of which we considered Merging and Re-use. Merging is
the tableau variant of factoring and Re-use allows whole derivations to be re-
used.

4. At ground level, there are simple restrictions on merging and re-use to
ensure soundness. In the general case the restrictions are tighter, and it is
harder to show soundness.

5. The LeanCop theorem prover uses model elimination and uses Prolog in
an elegant implementation.

6. Soundness of Model elimination follows from the soundness of ordinary
free variable tableau.

7. Completeness must be proved separately, since the development
imposes restrictions, which could compromise completeness.

One proof of completeness for the simple ground case uses induction on
the number of non-unit clauses available in a branch is given. The ground
tableau can be lifted as described on Slides 9 for general free variable
tableaux.

Other proofs are possible, that construct any ground tableau using
instances of the given clauses and then transform the constructed tableau
into one that follows the refinement. 10eii

