AUTOMATED REASONING

SLIDES 10:

CLAUSAL TABLEAUX
Model Elimination

Short-cuts: Lemmas and Merging
LeanCop Theorem Prover

KB - AR - 09

Clausal Tableaux and Linear Strategies 10ai

* In Clausal Tableaux all sentences are clauses. -
» Clause Extension rule is derived from free variable y-rule and [Fsplitting.

eg using Q(y) OP(x,y) O-R(x)

Closure rule is the free
variable closure rule

Q(y1) Px1y1) ~R(x1)

« Development follows a Linear strategy :

« Select an initial clause called top in set of support (i.e top is necessary for
closure to occur).

» Select a branch B (usually work from left to right) and a clause C with a
literal that is complementary to current leaf L of B. (Re)order literals in C to
close L in selected branch with leftmost literal of C.

* May also be able to close other branches below L with other literals in C.

« Either: propagate bindings as they are made (usual method), or record
potential closures for later solution.

» Called a connection tableau, or Model Elimination (ME) tableau.

» Do not need to use a clause that results in a literal being duplicated in a
branch. Then called a regular tableau.

* Note: P(x1) and P(x2) are not duplicates! x1 and x2 could end up being
bound to different values.

Example Model Elimination Tableaux 10bi

=Ha , -Gx O=Fb, =Fx O=Hb, =Pxy O-Pyx, Pf(u)u OPua,
Gx O-Fx, Fx OHx Pvf(v) OPva

Hx1 O Hb /\—'Pylxl O
-Px1lyl O =Pulf(ul)m
/\ /\ Nl)ul ~Paf(a)

-F(x4) G(x4)
4 =1 DoGx1 Hb -Fx2

/ | /\ Pula
f ul ul

“Fb Fx2 Hx2 f(ul) Paa

-Gx1 X_::b | yl::ul /\

-Pula -Paa
NOTE: Each internal node -Ha -Paul Paa
matches leftmost leaf x2==a ul==a oPaal
literal immediately below. Note there is no possible closure at
Reorder used clause if (D) between -Pf(ul)ul and Pula
needed. eg at ([1) due to occurs check.

Model Elimination Tableaux: 10bii
The examples of Model Elimination tableaux shown on 10bi illustrate several features o
connection tableaux. In the left-hand example notice that in the extension below Fx1 an
introduction of x4 for x in the use of the clause 4F®X is made. The resulting literal -Fx4
matched with Fx1 to give closure with binding (x4==x1}. This binding is then propagatec
through the tableau (indicated by). These steps can be combined, and in subsequent sti
are, to save unnecesary introduction of new free variables. Thus in the next step below
copy of =GxOFb is taken, implicitly using new free variable x3, to enable closure betwes
-Gx3 and Gx1; x3 is immediately bound to x1 and only the value after closure is shown
saves some clutter in depicting the tableau. Note also the reordering @fH#-go the leftmos
branch closes below Hb.

In the example on the right the intrartion of fresh variable ul in the first stispmade explicit
so the copy (of Pf(u)@ Pua) uses free variable ul. This is reasonable here, as it is the o
variable x1 that is bound (x1==f(ul)), not the new one, ul. The bindings must be propa
the tableau, so -Px1y1 becomes —-Pf(ul)ul and -Py1x1 becomes -Pulf(ul).

(In fact, since y1 is also bound to ul, it isn't necessary to introduce ul here either, since
implicit ul could be bound to y1 leading to x1==f(y1). However, it is clearer to introduce
think.) Notice that the possible closure between -P(x1,y1) = =Pf(ul)ul and Pula fails. \
is later bound to a this is propagated to -Pulf(ul), which becomes -Paf(a). Closing a b
unifying the leaf with a literal higher in the same branch (eg beneath -Baametimes
calledancestor resolution, or ancestor matching.

It is also possible to delay propagation of unifications on closure until the end. In the se
tableau a possible closure at depth 2 could be derived if the following unifiers could be
combined: {x1==f(ul), yl==ul}, {x1==ul, yl==a}, {vi==y1, x1=f(v1)}, {yl==v1, x1==a}.
(v1is introduced in the right-hand branch using the free variable instance PV1Rv1j of
clause 3.) These unifiers cannot be combined, so some other closed tableau must be fi

Some Short cuts: Merging 10ci

A The refutation X (found beneath the rightmost
occurrence of —=B) could also be used below the
/\ occurrence at -B*. Why?
-M -B This step is valid only because the tableau is
/N developed left to right; all ancestors of -B
\ - (indicated by (A)) are available also to —-B*.
M - . .
- On encountering =B* and noticing that =B occurs
/\ & also to the right in the ME tableau, can close -B*
4L M by merging.

Merging is the tableau version of factoring. In the first order case, analogous to
safe factoring, merging is usually restricted so that variables in =B and any
other unclosed branches on the right of -B* are not bound by the merge step
unifier. Those in =B* may be.

egl: if =B* is =G(a) and -B is =G(x1) then merging binds x1==a; it may be
that -G(a) can be closed at -B* but not at =B, whereas -G(x1) does close at B
but for x1==c (say).

eg2: -B* is -G(x1) and -B is =G(a) and a second sibling of =B is H(x1). If
x1==a is no good for H(x1) it is better not to make the merge. Since one
doesn't know this when at =B* merge is not the best option necessarily.

Example showing when re-use is inapplicable 10ciii
/\ After closing occurrence of S at
(=K) S*, notice that ancestor K was
necessary. Since K is not an
/\ ancestor of S in the right-most
S branch, cannot re-use here the
closure made under S*.

_|/\ l\ Cannot apply re-use to S here

First order case:
Suppose K was the literal K(x1) and closure beneath it does not bind free
variable x1. What would this imply about K(x)?

Can simulate this by adding Ox —=K(x) to right branch, representing that K(x)
can be closed for any x. Some quite sophisticated short cuts can take place
when variables remain unbound by closure - will return to this on slides 11.

Some Short cuts: Re-use 10cii
/\ (B) In this tableau the second occurrence of =B
* - occurs in the right hand branch below the sibling

of =B* (i.e. -M) so merge is not available on
-L) encountering the first occurrence at -B*.

L oB Instead, can use Re-use: once a closure below a
literal has been found, any other occurrences can
use the same closure (as long as the necessary
ancestors are available).

B

i 8 M

Can use closure Y below -B. Simulate this by placing (B) in the branch to
represent closure below -B*, so when =B is encountered can use closure rule.

Similarly, can use (L) to represent closure beneath L in the 3rd branch. This is
ok since the ancestors of L used in the closure beneath it are =M, and =M is in
the 4th branch.

In general, re-use is usually used in two cases only: (i) when no ancestors
were required in closure beneath a literal, or (ii) when the second closure is
beneath a sibling branch of the first closure (both cases in example).

Refinements of Model Elimination:

There are two simple refinements for ME-tableaux shown on 10ci/10cii, which are ﬂe
calledmerging andre-use. (Note: in the Chapter Notes re-use was also called "Use of
Lemmas".) Consider the case foopositional tableau first.

Important Note 1. merging and re-usgnnot both be used in a single tableau; otherwise
soundness is not in general maintained.

Important Note 2: merging and re-use are only available for ME-tableau; this is due to th
left to right development of such tableaux.

Merging is the simplest. If a leaf literal L can be unified with another leaf literal L'in au
open brancho itsright (necessarily a sibling of L or a sibling of an ancestor of L), thei
branch ending at L can be closedrbsrge without further steps. This is sound because
when the (necessary) closure beneath L' is made, it can be repeated (retrospectively
L. Any ancestors needed for the closure beneath L' will also be available beneath L,
the tableau structur®lerging is the tableau version of factoring.

The other extension is called-use. If a sub-tableau beneath a literal L at node n close:
then any other occurrences of L at nodes n' that may occur in open branches of the
can be closed also, as long as the ancestors needed to close L at n are also availabl
the subsequent occurrences of L appear at siblings of n or at descendants of sibling:
then this will be so. Otherwise, it needs to be checked. In the simplest case, when n
ancestors are needed, then any occurrence of L can be closed in the same manner |
occurrence of L at n is closed. The (re-use) rule can be implemented in a simple wa
including -L in all branches that are known to share the necessary ancestors. Then (
will be made by the normal (ancestor matching) closure rule. Usually, implementatiol
check only the 2 cases of sibling branches and no ancestors used, to receive the lite

Mergingin First Order Tableaux:

Assume the first occurrence (the one to be closed by merge) is L and that it
merged with a second occurrence L'. There are 2 basic cases to consider.

Case 1 is when bindings are required to be made to L but not to L". This case
safe as long as the variables in L that are bound do not occur in other leaf it
branches to the right of L or in ancestors of L. The reason is that the binding
would be propagated to those literals and they may not be appropriate to
completing the tablealbeneath them. This restricted case is sound because
the (necessary) closure beneath L' is made, it can be repeated beneath L, fc
unification they are identical. Any ancestors needed for the closure beneath
also be available beneath L, due to the tableau structure.

(In fact, if the bindings affeainly L and ancestors of L the merge is also safe,
see Slides 11 for a discussion of this case).

Case 2 is when bindings are required to be made to L'. This case is not usual
implemented (see Slide 10ci for an example).
10cv

Re-Usein First Order Tableaux:

Assume the first occurrence occurs at leafnodad the second occurrence occu
atn'. Eithern' should be a descendant of a siblingpbr, if closure beneati
involved no ancestors, thehcan also be a descendant of an ancestar Tiere are
then 2 basic cases.

No ancestor involved in closure beneath n: if the literal atn has the form P[x] anc
there is a completed sub-tableau beneath it, which does not bind x, then this r
thatxP[x] can be proven. i.e. for any instance of P[x] a closed sub-talxseath
it can be constructed. Thikx-P[x] can be added to the tableau. Note that, eve
occurs in other leaf literals and is later bound, this property still holds. If the lii
atn' becomes bound by the application of Re-use, this does not affect soundn
it may not lead to a closed tableau.

Some ancestor isinvolved in closure beneath n: This is a more complex propert
as even if variables in the literalraare not bound by the step, those variables c
appear in an ancestor of If such variables do not also appear in any sibling of
of n' then this case is also sound and worth considering (see Slides 11 fora b
discussion of this case). Otherwise, while still sound, the result may not lead t
closed tableau and is is not usually implemented. 10cvi

Completeness of Model Elimination Tableau:

Let S be a set of minimally unsatisfiable ground clauses (ie removing any clause from S
satisfable set). Then a closed ME tableau exists for S starting from any top clause (from
proof is by induction on the number of non-unit clauses k in S, whebe Tkerefore, let S be :
minimally unsatisfiable set of ground clauses with k non-unit clauses. Assume as inductic
hypothesis (IH), that, for any minimally unsatisfiable set of ground clauses#kthon-unit
clauses a ME tableau can be found. In order to show that a ME tableau exists for S thert
cases.

Case 1. k=0. In this case all clauses are unit clauses. If S is unsatisfiable then it must con:
two complementary unit clauses. One of these can be selected as the top clause and the
will close by extension using the other one.

Case 2: k>0. Choose as top clause a non-unit clause C, say21..00n. Then for each Li
there must exist a clause that has a literal complementary to Li (ie containing -Li).
(Exercise: Show this. The proof requires to show that if for some Li such a clause did not
then S could not be minimally unsatisfiable - eg consider pure literals.)

Consider the set of clauses S1' = S - {C} +{L1}. ie remove the clause C and add the unit (
L1. Then S1'is also unsatisfiable and L1 belongs to some minimally unsatisfiable subset
(Exercise: Show this.) S1' has <k non-unit clauses and the IH is applicable, using L1 as tt
clause and the clause complementary to L1 as the second clause. (If this clause is a unit
that is not a problem.) Repeat the argument exemplified for L1 for each literal Li, i>1, in (

It is easy to lift a ground ME tableau to the first order case, as described in Slide 9dvii.

You are encouraged to follow the proof construction to find a closed ME tableau for the ¢
instances -Ha, -Ha-Hb, FalHa, Fb[Hb, Gall=Fb, GalJFa with top clause FbHb.

Exercise: Show how to adapt Case 2 for regular ME tableaux. 10cvii

Constructing Model Elimination Tableaux: 10di
Slide 10dii shows an outline program for constructing model elimination table

The predicats how implements the basic part of the construction (note that it
clauses include only the 3 basic steps. Initial data is a list of clauses, given §
3rd argument (arg3) and the list of leaf literals, given as argl. The ancestor |
available to these leaf literals are in arg2, which is initially empty.

To avoid following an infinite branclshow has a fourth argument, the maximu
depth of a tableau constructedddyow. Each timeshow recurses, the maximum
depth is reduced by 1. If it reaches 0 then only closure is allowed, not exteng
The predicatshowd controls the use of D, the Depth argument. Initially, D is
small value; it is increased if no closed tableau can be found atsi2pth

Various extensions of this basic structure are easy to implement, such as me
re-use. (Remember, onbne of these is possible in a given tableau.)

Later, you'll see LeanCop, which is a cleverly implemented version of the ba:
model elimination tableaux.

Implementing Model Elimination tableaux:

e Start with a top clause;

« Each literal at an internal node matches directly below with leftmost literal.

* Aliteral at a leaf node may match any literal in the branch above.

* Only one instantiation of any literal in the tableau may be made.

showm([],A C D).

show([§ Rest], A C D) :- D=0, conplenent(G A),

showm Rest, A, C D).

show([Rest],A,C,D) :- D>0,match(G New, C),Dl is D1,
show(New, [§ A], C, D1), show(Rest , A, C, D).

mat ch(G New, C) finds a clause in Cwith a literal L that unifies with,
and is complementary to, Gand has other literals New.

showd(Goal s,C,D):- showGoals,[]1,C D, !.
showd(Goal s,C, D) :- D2 is D+1, showd(Goal s, C, D2).

showd controls attempts to show the Goals at ever increasing depth.

* The tableau is usually constructed in a depth first way, as in the program.

 |Initial call is showd(Top, C, D) for some small initial D (eg D=3). [Top] is
the top clause represented as a list of literals.

Exercise . Add a clause to show that will enforce regular tableaux. 10dii

LeanCop: A ME Theorem Prover 10diii
prove([],_, _,_)-

prove([Lit|C a], vat, Path, PathLim :-
(-NegLit=Lit;-Lit=NegLit) ->
(menber (NeglL, Pat h), %branch cl osure case
uni fy_wi th_occurs_check(NegL, NegLit);
append(Mat A, [O al| vat B], Mat),
copy_ternm(d al,da2), %ind natching cl ause
append(Cd aA, [NegL| C aB], O a2),
uni fy_wi th_occurs_check(NegL, NegLit),
append(d aA C aB, d a3),
(Adal==Cla2 -> %ground cl ause nat ched
append(Mat A, Mat B, Mat 1) ;
I engt h(Pat h, K), K<PathLim%ars in clause nmatched
append(Mat A [G al| Mat B], Mat 1)
), o%continue with sane branch
prove(d a3, Mat 1, [Li t | Pat h], Pat hLi nm)
, o%continue wi th next branch
prove(d a, Mat, Pat h, Pat hLi m) .

Data: Mat is a list of clauses, each clause a list of Literals

Pat hLi mL i s Pat hLi m+1,
prove(Mat, Pat hLi ni) .

% per at or precedences (put at top of program
L Op(4001 fyl _)) Op(5007 Xf y1 &)) Op(6001 Xfyv V) y
op(650, xfy,=>), op(700, xfy, <=>).

Examples :
prove([[-h(@)], [f(X),h(X)], [-9(2).-f(b)], [-(Y).-h(b)[.[g(V).-f(L)]], 4)

prove([[—a,—w,p],[e],[i,a], [W,m], [_p]7 [-e,-i], [—e,—m]],O)
Exercises :

(1) Explain why PathLim doesn't need to increase for propositional case.
(Hint: look at test Clal==Cla2).

(2) Add a test to enforce only regular tableau to be generated and searched.

prove(Mat, Pat hLin) : - 10div
append(Mat A, [Cl a| vat B], Mat),
\ +mrenber (- _, d a), % op clause all positive
append(Mat A, Mat B, Mat 1),
prove([!],[[-!'|Ca]|Matl],[],PathLim.

prove(Mat, PathLinm :-
\ +ground(Mat), % f not propositional increase PathLim

The L eanCop Prolog Prover:

LeanCopis similar to LeanTap in that it is written in Prolog and is very compact.
However, it is designed by different people: Jens Otten and Wolfgang Bibel — s
website (more up-to-date than LeanTap's) at http://www.leancop.de/

LeanCop is a Model Elimination prover, so takes clauses as input. The four arg
of prove are: ““current list of leaf literals, list of all clauses, current branch, cur
max depth of branch for search".

In one sense using clauses makes it simpler than LeanTap. In another, it make
complicated, as there are more possibilities for clever tricks. In particular, consi
line

(dal==C a2 -> %gr ound cl ause nat ched

In case the test is true, this means that the result of the earliercafpyet er mdid
not introduce fresh variables because there were no free variabGksaihto be
copied. Therefore the clau€kal is ground and there is no need to re-use it in th
current branch in the future, so it can be discarded. Moreover, there is no need
increasePat hLi m—it is only increased when extension is by a non-ground clau
instance, which potentially may have to be re-used.

As in LeanTap, if no closure is found at an initial depth, the depth is incre&;s(jed.
v

Summary of Slides 10 10ei

1. The tableau method can be applied to sets of clauses, when special
development rules can be used to good effect. Since clausal form has already
eliminated Oquantifiers, only one extension rule is required, derived from the
free variable y rule and Orule. The closure rule uses unification.

2. The most usual development rules result in the Model Elimination method,
or Connection tableaux. The first step selects a top clause. Thereafter, every
extension must use a clause that has a literal which unifies with the leaf literal
at the left-most open branch. This literal is placed left-most in its clause. The

tableau is developed from Left to Right and depth-first.

3. If the development rules summarised in 2) are in force, then some short cuts
can be incorporated, of which we considered Merging and Re-use. Merging is
the tableau variant of factoring and Re-use allows whole derivations to be re-
used.

4. At ground level, there are simple restrictions on merging and re-use to
ensure soundness. In the general case the restrictions are tighter, and it is
harder to show soundness.

5. The LeanCop theorem prover uses model elimination and uses Prolog in
an elegant implementation.

6. Soundness of Model elimination follows from the soundness of ordinary
free variable tableau.

7. Completeness must be proved separately, since the development
imposes restrictions, which could compromise completeness.

One proof of completeness for the simple ground case uses induction on
the number of non-unit clauses available in a branch is given. The ground
tableau can be lifted as described on Slides 9 for general free variable
tableaux.

Other proofs are possible, that construct any ground tableau using
instances of the given clauses and then transform the constructed tableau
into one that follows the refinement. 10eii

