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Example    Given: 1. Rx ∨¬Px,    2. Px ∨Q,     3. ¬Ra ∨¬Rb,    4. ¬Q

An Extension to Basic ME Tableaux (1)

Notice that clauses 5 and 6 correspond to the 
leaf literals of the open branches after each of 
the first 2 steps of ME.

Comparing step 3 with ME: 

Instead of standard ME tableau below ¬Rb try 
repeating enclosed part of the tableau below 
¬Rb but with new free variables x3 and x4, 
which will bind to b instead of a. 

(See next slide)

QPx1⇒Pa

¬Px2
x2==x1

Rx2=>Rx1
       ⇒Ra

¬Ra
x1==a

¬Rb

Rb ¬Pb

Pb Q

¬Q

¬Q

Cannot unify Rb 
with Rx2 here as 
x2 has been 
bound to a.

Standard ME Tableau Resolution Refutation

(5 = 2+1): Rx ∨Q            
(6 = 5+3): ¬Rb ∨Q
(7 = 6+5): Q ∨Q ⇒  Q
(9 = 8+4): [ ]

11aii

Example    Given: 1. Rx ∨¬Px,    2. Px ∨Q,     3. ¬Ra ∨¬Rb,    4. ¬Q

An Extension to Basic ME Tableaux (2)

Instead of standard ME tableau 
below ¬Rb try repeating blue 
part of the tableau below ¬Rb 
but with new free variables x3 
and x4, which will become 
bound to b instead of a. 

In some cases can avoid actual 
duplication. e.g. here would 
close at the leaf ¬Rb (implicitly 
matching a second copy of Rx2). 
Results in the generalised 
closure rule.

Notice that x2 does not occur in 
any open branch to the right of the 
branch ending at ¬Rb. In the fresh 
instance of the enclosed tableau 
the branch below Q  can be closed 
by a merge with Q**, so simulating 
the resolution proof.

Q**
Px1

¬Px2 Rx2⇒Rx1
       ⇒Ra

¬Ra
x1==a

¬Rb

Px3⇒Pb Q

¬Px4
¬Q

¬Q

Rx4⇒Rx3

x1==x2

x4==x3 x3==b

corresponds to the
resolution step 
Rx1 ∨Q + ¬Rb ∨Q ⇒ Q ∨Q

Can merge Q
with Q**

Merge step 
corresponds 
to Q ∨Q ⇒Q 

Features of Universal Variables in T:
• bindings to x1 cannot affect literals in other open branches;
• once a free variable becomes universal it cannot lose this status as long as 
the convention for bindings on closure given on Slide 11av is followed ;
• a free variable x1 might not be universal in T when first introduced into a 
tableau T, but can become so if x1 eventually occurs in a single open branch;
       e.g. in S ∨P(x1,y) ∨Q(x1) ∨R if the branch below P(x1,y) is closed without 
              binding x1, then x1 becomes universal.
•   some variables are always universal in a clause and hence also when used 
in a tableau     e.g. y is universal in S ∨P(x,y) ∨Q(x) ∨R ;

•    a Universal variable can be treated as if it were universally quantified - as 
many (different) copies as may be needed are available implicitly;
•    as a result any bindings made to a universal variable can be ignored .

•   Exercise (Not easy!) : 
Consider whether use of the generalised closure rule can be used in a tableau 
together with either the (re-use) and/or the (merge) closure rules.

11aiiiGeneralised Closure Rule and Universal Variables
Let T be a partially developed ME tableau and B be an open branch of T. 
If free variable x1 occurs in some literal in B and all other occurrences of x1 
in an open branch are also in B, then x1 is called a universal variable in T.



11aiv

Rx ∨¬Px,  Px ∨Q,  ¬Ra ∨¬Rb,  ¬Q

In Px ∨Q x is universal. The clause Px1∨Q is used 
in the tableau as if it were ∀∀∀∀x.P(x) ∨∨∨∨Q.

At closure (1)  use instance P(x2) of ∀x.P(x). 
Rx2 becomes universal and is treated as ∀x.R(x). 

At closure (2)  use instance  R(a) of ∀x.R(x). 

At closure (3)  use instance  R(b) of ∀x.R(x). 

Example Revisited

Q
Px1

(∀x.P(x))

¬Px2 Rx2
(∀x.R(x))

¬Ra
 (2)

¬Rb

¬Q

(1)

(3)

None of the bindings made affects the branch beneath Q, since the universal 
variables do not appear in it. That branch only needs to be completed once. 

What if clause Rx ∨¬Px happened to be Rx ∨¬Px ∨Sx? 
Variable x in {Rx ∨¬Px ∨Sx is not universal, so it is important not to attempt 
to bind x1 to x2 at closure (1), as x1 would then lose its universal status. 
Instead, use a fresh instance of x1.

11avAn Important Criterion
In Example A , to close at (1), it is important to 
introduce instance P(x2) of the implicit ∀x.P(x). 
If instead x2 and x1 were simply bound to each other,  
then x1 would be propagated to both Rx2 and Sx2 
and x1 would lose its universal status.

In Example B, when closing at (2) it is important to 
introduce instance ¬Px1 of implicit ∀x.¬P(x). 
Otherwise x2 and x1 would be bound to each other 
and x2 would lose its universal status, which would 
affect the literal Rx2 as well.

These observations lead to the following convention 
which will guarantee universal variables remain so.

In making a closure that involves at least one 
universal variable always introduce an instance 
of the universal variable to make the closure. 

P(x1)

¬Py2 Rx2  (∀x.R(x))

S(x1)B

¬Rx2 ¬Px2
(∀x.¬P(x)

(2)

y2==x1

x2 not
in 
here

Px1
(∀x.P(x))

¬Px2 Rx2
(1)

Sx2

A x1 not
in 
here

11aviNormal Form Representation of a Partial Tableau

Consider the tableau after closure (1) (above the 
wavy line).  The open branches  ≡ 
∀y1 [(∀x.A(x,y1) ∧ (∀x.P(x) ∨   R(y1)))∨ B(y1)] (*) ≡  
∀y[(∀x.A(x,y) ∧∀x.P(x))∨ (∀x.A(x,y) ∧R(y))∨ B(y)]

Before treating variables as universal, the 
expression would have been:
∀y1∀x1[(A(x1,y1) ∧ (P(x1) ∨   R(y1)) ∨ B(y1)]  ≡ 
∀y [∀x[A(x,y) ∧ (P(x) ∨   R(y)) ]∨ B(y)]  ≡ (∗)  
Effect is to maximally distribute ∀.

Given (1)  ¬P(a)∨∀z.¬A(b,z) ;   (2) ¬R(c) ∨ ¬A(c,c)  (3) ∀x.A(x,y)∨ B(y)
           (4) ¬A(x,y) ∨ P(x) ∨ R(y)

Variables x and z in clauses (3)/ (1) are universal.
Notice x1 becomes universal and y1  is not 
universal. Can ``forget’’  the bindings to universal 
variables (they are not shown).  Thus instances 
A(x3,y1) and A(b,z3) are unified  at (**) leaving y1 
unbound. It is bound to c at (***). After the closures 
the remaining open branch contains B(c). Notice  
B(c) can be derived B(c) from (*), (1) and (2).

∀x.A(x,y1) B(y1)

¬ A(x1,y2)
y2==y1

(1)

P(x1)
(∀x.P(x))

R(y2)
⇒
R(y1)

¬P(a)

∀z.¬A(b,z)
¬R(c)
y1==c

¬A(c,c)(**)

(***)

11aviiGeneralised Closure Rule:

The slides 11ai - 11avi illustrate and explain an extension for ME-tableaux called the 
generalised closure rule, which uses the concept of a universal variable. For the simplest 
case, let C be a clause in which variable u occurs in exactly one literal L. u is called a 
universal variable. The quantifier for this variable could (implicitly) be distributed across to 
L. When the clause is developed, one can treat L as if it were  ∀u.L, implicitly including in 
the tableau branch containing L several copies of L, each with a fresh free variable for u. 
(Any non-universal variables in L would each have the same free variables substituted in all 
copies.) The effect is that bindings to u can be ignored since there are available enough 
copies for each different binding, giving rise to the generalised closure rule. This rule states 
that in any closure step involving a universal variable u  possible bindings to u can be 
ignored.

e.g. if L is P(v,u), and u is universal but v is not, then  L is regarded as if it were ∀u.P(v,u) 
and can be copied in the tableau as P(v1,u1), P(v1,u2), giving the possibility of closure with  
¬P(a,b)∨¬P(a,c), for example. If L is part of a clause L∨ Q(w), the duplication treats the 
clause as having the more general (nnf) form (P(v,u1)∧ P(v,u2))∨ Q(w). 

More generally, let T be a partially developed ME tableau and B be an open branch of T. 
If free variable x1 occurs in some literal in B and all other occurrences of x1 in an open 
branch are also in B, then x1 is called a universal variable in T.

(Note: in the Chapter" notes, the generalised closure rule was also called generalised ancestor 
resolution.)



Generalised Closure Rule  – Criterion for Maintaining maximal Universality of 
Variables:

Example: Let x be a universal variable in a branch B of tableau T, say in Q(x), and some step 
use the clause instance ¬Q(z1)∨ R(z1)∨ S below it. One of the implicit instances of ∀x.Q(x) 
is Q(x1) and x1 can be bound to  z1. In the literal R(z1), z1 will now be universal, since if x 
was universal then no occurrences of x occurred in T other than in B, and the same applies to 
the extension of B ending in leaf node R(z1) (branch B', say). In effect ∀z.R(z) has been 
derived in B'. To see this, add the negation ¬∀z.R(z) to B'  and see it closes.  That a variable 
becomes universal part way through a Model Elimination tableau derivation  can be detected 
syntactically by noticing that the variable does not occur in any leaf literals in open branches 
to its right in the tableau.  In this example that is the case, as explained.

It is assumed that as construction of a tableau progresses variables are implicitly marked as 
universal whenever possible, in the manner described in the previous example. That is, a free 
variable x occurring in leaf literal L in an open branch B is marked as  universal if the only 
occurrence of x in a leaf literal in an open branch is in L. Observe that (non-universal) 
occurrences of x could only occur in the branch above L if the occurrence of x in L was 
originally z (say) and arose because z was bound to x by a clause used in the closure of one of 
L's left (closed) siblings.  Note x would not be classified universal in L in this case.  An 
example (where x is the variable y2) is on slide 11avi, when ¬A(x1,y2) closes with 
∀x.A(x,y1), binding y2 to y1. All occurrences of y1 remain non-universal.

Exercise: Explain why, if the criterion on Slide 11av is adhered to, any variable declared 
universal will remain so during subsequent development of the tableau.

11aviii

Soundness of the Generalised Closure Rule:

Justification that the generalised closure rule is sound can be made by appealing to the 
expression represented by a  partial tableau, distributing quantifiers maximally across 
literals containing universal variables.  

The ``open part'' of any tableau (i.e. the set of branches not yet closed) typically represents 
a  universally quantified formula in dnf; i.e. a disjunction of (possibly quantified) 
conjunctions.  This was illustrated on slide 11avi. Suppose a new clause is added to the 
leftmost open branch. Assume that non-universal variables in the added clause are always 
renamed as fresh free variables. There are several options for forming the binding in the 
closing unifier for a variable x: either x is universal and an instance of x becomes bound, or 
x is not-universal and is bound in the normal way. Thus e.g. when matching ∀x.A(x,y1) 
with ∀z.¬A(u1,z), the universal instance x2 of x is bound to u1, and the universal instance 
z2 of z is bound to y1. The open part of the extended tableau can be recomputed and 
universal quantifiers distributed to maximise occurrences of universal variables. By the 
earlier observation, newly designated universal variable occurrences will be in leaf literals 
only. (Exercise: Show the last statement is true.)  Given the dnf representation of a partial 
tableau (call it dnf(T) ), it is easy to show that if T' is derived from T then dnf(T)|=dnf(T').

(Soundness can also be shown by demonstrating how to construct an ordinary free variable 
tableau from one using generalised closure. The re-constructed tableau is not a ME tableau. 
The construction was informally illustrated on 11aii, but if the generalised closure rule is 
used in more than one branch, some care must be taken to ensure the construction is made 
correctly.  See the problem sheet.) 11aix

11bi

 Given ¬Paa, ¬Pf(a)a ∨¬Paf(a), Pf(a)a ∨¬Q ∨Paa,  Paf(a) ∨ Paa,  Q ∨R, ¬R

In a similar way can derive Paf(a) by 
using Paf(a) ∨Paa instead of 
Pf(a)a ∨¬Q ∨Paa 
(Called Intermediate Lemmas)

Intermediate Lemma Extension:
1.   Select a positive literal from each 
non-Horn clause as the conclusion 
literal of that clause. Other positive 
literals are called lemma literals.
2.  Proceed as in Prolog - begin from 
an all-negative clause, match with 
"conclusion"  literals and  ignore other 
positive literals that arise unless  they  
match the immediate parent.

A Generalisation of Prolog to arbitrary clauses

Step 1 : choose (and underline) 
conclusion literals
Step 2 : derive lemmas.

Can derive Pf(a)a ∨ R from 
above tableau: add ¬(Pf(a)a ∨ R) 
and derive a closed tableau.

If positive literals Pf(a)a and R are 
ignored then tree is complete

¬Paa

Paa Pf(a)a

|– Pf(a)a ∨ R

¬Q

Q R

Ground clause example

Step 3:  Find lemmas Pf(a)a ∨ R and  Paf(a).

Step 4 : Use these lemmas to form lemma R

Step 2/3 : Find a refutation. 

11bii
Intermediate Lemma Extension (contd.):
3.  Either - find a refutation - no lemma 
literals left as leaves; 
    Or - derive a lemma - only lemma literals 
left as leaves; form a lemma from the 
disjunction of all leaf literals. 
4.  Deal with the lemma as in 1, then can try 
an alternative path in 2, using new lemma.

¬Pf(a)a ¬Paf(a)

Pf(a)a Paf(a)R

Form lemma R.

¬R

R

Can piece together the various tableaux used to obtain lemmas to form a 
closed tableau - it will not be a regular nor a ME tableau. In the example, in the 
final refutation, replace use of lemma R by tableau used to derive R, then 
replace use of other lemmas by tableaux used to derive them. (See 11bvii.)



Given: ¬G,  G ∨¬Pxy ∨¬Pyx,  Pf(u)u ∨Pua,  Pvf(v) ∨Pva 11biii

¬G

G ¬Px1y1 ¬Py1x1

Px1a Pf(x1)x1
Paa

Pf(a)a

⇒ ¬Px1a ⇒ ¬Pax1

x1==a⇒ Pf(a)a

Tableau 1
finding 
lemmas.

Pf(a)a∨ Pf(a)a
factors to Pf(a)a

If lemma is L∨M  (open branches ending in L and 
M) then can close tableau by placing  ¬(L∨M)  ≡≡≡≡ 
¬L∧¬M as an initial sentence in the tableau. So 
L∨M really is a lemma. e.g. Pf(a)a is implied by 
tableau 1 and Paf(a) is implied by tableau 2. 

¬G

G ¬Px3y3 ¬Py3x3⇒ ¬Pax3

Px3a Px3f(x3) Paa Paf(a)
x3==ay3==a ⇒ Paf(a)

Paf(a) ∨ Paf(a)
factors to Paf(a)

Tableau 2
finding  lemmas.

General clause example

11biv

In case of a more general lemma, eg open branches ending in P(x) and 
Q(y,x), the lemma is ∀xy [P(x) ∨ Q(y,x)], since adding  ¬ ∀xy [P(x) ∨ Q(y, x)] to 
the initial set of sentences, which Skolemises to the two facts ¬P(a), ¬Q(b, a) 
for new a and b, will enable the tableau to close.

The method seems to be fairly  
efficient:

In effect, many
sub-tableau of small depth are 
joined together to form a large 
tableau. (When a lemma is 
used the tableau which derived 
it could be used instead.)

Because the individual search 
spaces are small the total 
search is reduced.

Given: ¬G,  G ∨¬Pxy ∨¬Pyx,  Pf(u)u ∨Pua,  Pvf(v) ∨Pva,  
Lemmas: Pf(a)a, Paf(a)   (found as on 11biii)

Use lemma 2 
(Paf(a))

¬G

G ¬Px2y2
¬Py2x2⇒ ¬Paf(a)

Pf(a)a

x2==f(a)
y2==a

Use lemma 1 
(Pf(a)a)
beneath
¬Px2y2.

Tableau 3  using lemmas

Paf(a)

11bv

Intermediate Lemma Extension (1):
The Intermediate lemma extension described in slides 11b is a hyper-resolution (or Prolog) like 
extension for tableaux. (Don't confuse with other ME-extensions that lead to so-called hyper-
tableaux - see TABLEAUX conferences.) In any clause with at least one positive literal, exactly 
one positive literal is marked as the conclusion  literal. Other positive literals (if any) are called 
lemma literals. (If a clause has exactly one positive literal it is the conclusion.) Each clause with 
no positive literals is called a goal clause. For uniformity, a new literal "G" can be appended to 
each goal clause (then all given clauses will have at least one positive literal). The top clause is a 
new clause, ¬G. A ME-tableau is constructed from the top clause, in which the lemma literals 
are initially ignored – branches in which they occur as leaf literals are not pursued. 

If  a tableau closes and there are no ignored lemma literals then this indicates that a refutation has 
been found. Otherwise, if a tableau closes and there are ignored lemma  literals, the lemma 
literals are put into a new clause (i.e. the new clause is the disjunction of the lemma leaf  
literals), which is added to the data and called an intermediate lemma. This clause will have only 
positive literals, and one is chosen as the conclusion literal. Only intermediate lemmas that are 
not subsumed need be added. Clauses that are subsumed by the new intermediate lemma can also 
be removed.  In case an intermediate lemma is retained, a new attempt at a refutation from ¬G 
can be made using all given clauses and all non-subsumed intermediate lemmas.

Factoring can be incorporated in two different ways. Either: (i) clauses can be (safe-factored) 
before being accepted (either as a given clause or as an intermediate lemma), or (ii), a positive 
literal that would otherwise be ignored may be matched with its parent (if possible).  I prefer the 
first method, since it allows for all safe-factors to be found regardless of which positive literal 
might be selected as a conclusion literal. The second method is more dependent on the selection 
of conclusion literals to detect safe-factors. However, it is simpler to implement.

11bvi

Intermediate lemma Extension (2):

The process of forming lemmas and refutations needs to be controlled in some way, analogous to 
setting depth limits in the standard ME procedure.  The simplest is the following: All possible 
ways of closing a tableau descended from ¬G are formed and all intermediate lemmas formed, 
both upto some initial fixed depth. Then the process is repeated, but making use of the new 
clauses as well. If no further tableaux can be formed at the given depth and no refutation has 
been found then the process is repeated but to a greater depth.

Unfortunately, the depth may need to be increased even though new intermediate lemmas can be 
found at the current depth.  e.g. initial clauses include ¬Q, P(a), Q∨¬P(x)∨P(f(x)). Together, if Q 
is the conclusion literal in the third clause, these allow for the lemmas P(f(a)), P(f(f(a)), etc. to be 
formed, all at depth 2, even though none of these lemmas may be the ones required for a 
refutation. To overcome this problem can make a lemma contribute more than 1 to the depth-
count when it is used in a refutation. e.g. make a lemma count exactly 1+number of lemmas used 
in its derivation. This is consistent with giving an initial clause a count of 1, since it uses no 
lemmas in its derivation. Hence, at a given depth there is a maximum number of lemmas that can 
be used and a finite number of possible refutations that could be made.  

Once a refutation has been found, a complete tableau can be constructed from the various 
tableaux used to form the lemmas. Beginning with the last used lemma, the use of each lemma is 
replaced by the tableau that derived it. All its leaves will match in the same way that the lemma 
did. This substitution of tableaux can be repeated until all lemmas have been replaced. 

In the tableau on 11bi/ii, first the tableau for R is used beneath ¬R. This tableau uses the clauses 
Pf(a)a ∨R and Paf(a), which are also lemmas. They are replaced by the tableaux which derived 
them, the leaf literals that formed the lemmas now matching where those of Pf(a)a ∨R or Paf(a) 
did.  See diagram on 11bvii.



11bvii

Soundness and Completeness of the Intermediate lemma Extension:

Next we show that the method of the Intermediate Lemma Extension is both sound and 
complete (at the ground level).  The ground level tableau can then be lifted to give 
completeness and soundness at the general level in a similar way to that used for free variable 
tableau on slides 9. 

To show soundness, note that each generated lemma is associated with a sub-tableau.  These 
various sub-tableaux can be used in place of the corresponding lemma, as described on 11bvi. 
Each closure that was possible using the conclusion literal of the lemma is still possible using 
the tableau.  For the example on 11bi/ii the final closed tableau is shown above.

Intermediate Lemma Extension: Reconstructing a closed tableau from lemmas

¬R

¬Pf(a)a ¬Paf(a)

Pf(a)a Paf(a)R

¬Paa

Paa Pf(a)a ¬Q

Q R

¬R

¬Pf(a)a ¬Paf(a)

¬ Paa

Paa Paf(a)

Replace tableaux 
deriving Pf(a)a ∨R 
and Paf(a)

Completeness of the Intermediate Lemma Extension:

The proof is by induction on the number of lemma literals in the given clauses. Let S be a 
minimally unsatisfiable set of clauses with a total of k lemma literals.  (i.e. if any clause is 
removed from S then S would become satisfiable.)

If k=0 then the clauses are Horn clauses and since S is unsatisfiable there will be at least one 
all-negative clause in the set-of-support. Then there is a standard ME tableau starting from this 
all-negative top clause that will close (by completeness of ME).  It is not hard to show the 
structure of the closed tableau is of the right form (and simulates a Prolog derivation from S).

If k>0, suppose as induction hypothesis (IH) that, for 0≤m<k lemma literals, there is always a 
set of sub-tableaux formed using the method, which can be pasted together to give a closed 
and soundly formed tableau.  Let C be a clause with a lemma literal L and let C'=C-{L}.   
Form S'=S-{C}+{C'} and S''=S-{C}+{L}. Each may be made minimally unsatisfiable such 
that, for the case of S', C' is needed to show unsatisfiability, and in the case of S''  {L} is 
needed. (Show this by using the assumption that S is minimally unsatisfiable). Since  in both S' 
and S'' the number of lemma literals <k, by IH there is a well-formed tableau from an all-
negative clause for S' and for S''.  

Now take the well-formed tableau for S' and put back L into C', forming C again.  The tableau 
for S’ was closed but will now give rise to the lemma L: in the derivation of the tableau for S’, 
use of C (where before C' was used)  will include using L, multiple occurrences all being 
factored to give the lemma L.  In the well-formed tableau for S'', this tableau deriving lemma L 
can now be used wherever originally the clause L was used. 

11bviii

11bix

For the example on 11bi/ii the choices made for L are R from Q ∨R, Pf(a)a  from Paa ∨Pf(a)a 
∨¬Q and Paf(a) from Paa ∨ Paf(a);  lemma atoms are non-conclusion atoms. There are 3. 
(Conclusion atoms are underlined.)

Assume C1 is Paa ∨ Paf(a), giving C1'= Paa. S1'={Q ∨R, ¬R, Paa ∨Pf(a)a ∨¬Q, Paa, ¬Paa, 
¬Pf(a)a ∨¬Paf(a)}, which reduces to minimally unsatisfiable {Paa, ¬Paa}, 
and S1''={Q ∨R, ¬R, Paa ∨Pf(a)a ∨¬Q, Paf(a), ¬Paa, ¬Pf(a)a ∨¬Paf(a)}.

In S1'' choose as C2 the clause Paa ∨Pf(a)a ∨¬Q, and use the IH to form tableaux from 
S2'={Q ∨R, ¬R, Paa ∨¬Q, Paf(a), ¬Paa, ¬Pf(a)a ∨¬Paf(a)} and S2''={Q ∨R, ¬R, Pf(a)a, 
Paf(a), ¬Paa, ¬Pf(a)a ∨¬Paf(a)}. 

For S2' choose C3=Q ∨R and S3'={Q, ¬R,Paa ∨¬Q, Paf(a), ¬Paa, ¬Pf(a)a ∨¬Paf(a)} and 
S3''={R, ¬R}. The tableaux for S3'', S2'', S1' are fairly obvious. Tableau (i) below is for S3'. 
After  re-inserting L3=R into S3' can use  it in closure for S3'', as shown in (ii). Two more 
constructions are needed to complete the full tableau according to the proof. These are left as 
an exercise for you.

Paa ¬Q

(i) Q

¬Paa

¬Paa

Paa

(ii)

¬Q

Q R

¬R

11ciKE-TABLEAUX   (D'Agostino, Mondadori, Pitt)

• Generalises Davis Putnam to first order sentences
• Only one splitting rule -  called PB (Principle of Bivalence)

•   Although quite a lot of theory for KE-tableaux has been developed, there is 
rather less on theorem proving techniques for it.
•   KE is rather like  Davis-Putnam, but with a more general splitting rule.
•   KE can be simulated by standard tableau if the PB rule is added to the 
standard ruleset.  This can easily be shown to be sound by extending the 
SATISFY property.  
•  The re-use rule in ME tableau also allows simulation for clausal data.
•  KE can simulate standard tableau (for Skolemised sentences, at least).

Other rules 
the same as 
before

A → B
¬B

¬A

 A ∨ B
¬A

B

¬(A ∧ B)
A

¬B

A → B
A

B

Non-splitting 
rules:

¬ A A

for any ground sentence APB rule
(ground):



11cii

Given data:
1. a ∧ w → p     2. i ∨ a    3. ¬ w →m,     4. ¬ p      5. e → ¬ i∧ ¬ m     6. e

¬p
e
¬ i ∧ ¬ m   (5, →rule)
¬i              (∧rule)
a                (2, ∨rule)

               ¬ (a ∧ w)
(¬∧rule)     ¬ w
(∧rule)       ¬m
(3, →rule)    m
                -------
                 []

a ∧ w        (PB)
p               (1, →rule)
-------
 [ ]

KE seems to be good for 
propositional
tableaux.

The amount of 
branching is generally 
lower than for standard 
tableaux

Example of KE

The PB rule is often used to introduce the second premise for the non-
splitting rules.   e.g. see the use of PB on a ∧ w  above.

PB rule
(non-ground):

for new free variables x 
in sentence A

¬ A[x] A[x]

•  The ∃-rule and ∀-rule are the same as for ordinary free-variable tableau;
•  One method to deal with quantifiers is to draw them into a prefix and use free 
variable tableaux  rules. These are often combined with one of the two-premise 
rules. See example on next slide.
• Little investigation of techniques for automatic first order KE have been made 
to date, so far as I'm aware. 
•  Soundness and Completeness have been shown for the ground case. • The 
KE-approach has proved useful for modal logics as well.
•  Clausal KE is very similar to Davis Putnam, effectively providing a first order 
version of it.

First Order KE rules
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Given :   (1) ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x) ) → pr(x)
(2) div(u,w) ∧ div(w,z) → div(u,z)    (3) less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x))
(4) ¬(pr(y)∧div(y,n))    (5)  div(x,x)    (6) less(1,n)

div(x2,x2)  (∀) (5)
¬ pr(n)   (∀, ¬∧) (4)

¬(div(g(x1),x1)∧less(1,g(x1)) 
∧ less(g(x1),x1)) 
pr(x1)  (1, ∀→) 
---------------
x1==n

div(g(x1),x1) ∧ less(1,g(x1)) ∧ less(g(x1),x1)
⇒div(g(n),n) ∧ less(1,g(n)) ∧ less(g(n),n) 
div(g(n),n),     less(1,g(n)) ∧  less(g(n),n)   (∧)
div(f(g(n)), g(n)) ∧  pr(f(g(n)))       (3, ∀→)  
div(f(g(n)), g(n)),  pr(f(g(n)))         (∧)

11civ

(u,w,x,y,z are universally quantified)

div(u1,w1)∧div(w1,z1)
div(u1,z1)     (2, ∀→)  
¬ pr(u1)         (4, ∀¬ ∧)  z1==n
----------------
u1==f(g(n))

¬(div(u1,w1)∧div(w1,z1))  ⇒
¬(div(f(g(n)),w1)∧div(w1,n))  
¬div(g(n), n)     (¬ ∧)  w1==g(n)
----------------

First Order KE example

(PB)

(PB)

11cvKE Tableau Method:

The KE tableau method is more recent than other techniques, having been investigated in the last 
15 years or so. (See "The Taming of the Cut", D'Agostino and Mondadori, and also Endriss: A 
Time Efficient KE Based Theorem prover.) In the first order  case there has been very little work 
on practical theorem provers, so the example here is illustrative of what could be done. The KE 
rules can be viewed either as generalisations of the Davis Putnam steps or as variations of ordinary 
tableau rules, trying to retain much of  the ME method, but for arbitrary sentences. There is just 
one splitting rule, but it is not restricted to atoms. The non-splitting rules are similar to the DP 
steps which prune atoms, and for clauses they are exactly the same. KE is more efficient than 
standard tableau (in the worst case), unless  re-use (see Slide 10cii) is included in tableaux 
development, in which case (for clausal form) KE-tableaux can be simulated by ordinary ME-
tableau +Re-use. Alternatively, one can soundly (and redundantly) add the splitting rule to the 
ordinary tableau method. See Problem sheet.

In the example on Slide 11civ it is appropriate to draw the universal quantifiers into a prefix, but 
more generally, this may not be so. Similar benefits to those provided by universal variables might 
be obtained if universal quantifiers are distributed as much as possible, but this remains to be 
investigated. The first step (in the example on 11civ) uses the (¬∧) rule, together with the free 
variable ∀ elimination rule to derive ¬pr(n) from (4) and div(x2,x2). The next step anticipates the 
use of the(→) rule and sets this up by a PB application using ¬(div(g(x1),x1) ...). In the second 
branch of the PB the(→) rule is used several times, in combination with free variables. 

The KE method is quite human oriented in the ground case.  But it is quite hard in the first order 
case because of the various ways that the (∀) rule can be combined with other rules.  It tends to 
give rise to less branching than ME tableau. There is another approach  to adapting a linear style 
ME tableau to non-clausal sentences, which first compiles sentences into Q-clauses. This is 
described in the "Chapter" notes if you are interested.



Soundness and Completeness for Ground KE (Outline)

The soundness of KE is simple to show; it is sufficient to show the property SATISFY for 
the rules (as for the standard tableau method) and including the PB rule. SATISFY is 
obviously true for an application of this rule (say for the sentence A), since the model of the 
branch before the rule must assign either T or F to A; if it assigns T then the branch below A 
will still be satisfiable and if it assigns F then the branch below ¬A will still be satisfiable.  

It is also quite easy to show correctness (soundness and completeness) in a manner similar to 
that used for DP on Slides 1. This is not a coincidence, since KE is very similar to DP, 
especially if all sentences are clauses. (The extension mentioned in Slides 1 for non-clauses 
is very similar to KE.) 

We define the α-rules to be those rules which are α-rules of ordinary tableau, and the β-rules 
to be the remaining non-splitting rules (e.g. A and ¬(A∧B) ==> ¬B). The minor sentence in a 
non-branching KE rule application of the β-kind is the smaller sentence (e.g. A in the above 
example rule). There are then basically 5 cases: a contradiction between a sentence and its 
negation, no sentences left to develop in a branch, an application of an α-rule, a sentence S 
used as the minor sentence in a β-rule application, and a PB application. 

However, the proof similar to that used for DP requires the KE derivation to make all 
applications of a β-rule using the chosen minor sentence at once. Since this is not the normal 
way to make a KE derivation we'll give a different proof for completeness for ground KE.  
See 11cvii. 

11cvi
Completeness for Ground KE (Continued)

Each sentence that occurs as a (sub)formula in the given data is a potential candidate for a 
β-rule application and is called a given sub-formula. (Note that atoms occurring in a given 
sentence are counted as given sub-formulas.)

An open branch of a KE tableau is called fully developed if every given sub-formula in 
the branch, or its negation, occurs at a node in the branch and no further rule applications 
are possible. Clearly, there is no need to use PB for any given sub-formula that already 
appears in a branch. 

Let S be a given set of sentences and suppose a KE tableau is found with a fully 
developed open branch B. From this branch a model for S can be found in a similar way 
to that described for standard tableau and shown to satisfy the sentences in the branch. 
The proof for satisfiability is by contradiction from the asumption that some smallest 
sentence  in B is false. For example, suppose such a smallest false sentence was of the 
form  X∨Y. Then both X is false and Y is false. Since B is fully developed  either X or 
¬X is in B. If it is X then this contradicts the assumption that  X∨Y is a smallest false 
sentence.  If it is ¬X then the (∨) rule would have derived Y, again a contradiction.  The 
full details are left as an exercise.   

If S is an unsatisfiable set of sentences, then no fully developed open branch can exist and 
the KE tableau must close. For the first order case the method is similar.

A reasonable way to develop a KE tableau is thus to use the α-rules and β-rules as much 
as possible, only using PB to introduce the minor sentence for a β-rule application. The 
amount of splitting is then kept to a minimum.

11cvii

11di

•  Prolog-like - use stacks for implementation (but: need to detect ancestors,           
and use the occurs check)
•  Prolog technology: compilation, structure sharing, stack maintenance
•  Easy to obtain variations
•  Easy to implement in Prolog
•  Easy to extend to modal logic

•  Let the original problem be Data |– C, where C = P → Q.  Clausal form of 
¬(P → Q) is P and ¬Q.  May want to work forwards from P and "backwards "  
from ¬Q. In ME (but not KE) must choose one of them as top clause.
•   May be beneficial to resolve some clauses initially if they only resolve 
with one or two others. i.e. a non-linear beginning.
•  As in Prolog, L-R depth first generation of search space may not give the 
smallest one.
•  Quite often the search space contains several variations of the same 
refutation, in which the clauses are used in different orders.
•  In case interested in finding models, ME tableaux can also help, but not  
as good as special model checking techniques - e.g. transitivity/symmetry 
axioms can cause digressions if they occur in the data.

Summary of A dvantages of ME-style tableaux

Disadvantages

11fiSummary of Slides 11
1. The Model Elimination (ME) tableau method can be extended and modified 
in various ways.

2. The introduction of universal variables and the generalised closure rule that 
results leads, in many cases, to reduced tableaux. Universal variables are 
treated in the tableau as being universally quantified, instead of as free 
variables, so multiple instances are allowed. This leads to the generalised 
closure rule, which in practce means bindings to universal variables can 
simply be ignored.

3. A modification of ME, which is related both to logic programming (extending 
that approach to non-Horn clauses in a simple way) and to hyper-resolution 
(generating all-positive lemmas), is the Intermediate Lemma Extension.

4.The Intermediate Lemma Extension tends to produce many, but small, 
search spaces. Even though there is a fair amount of re-computation in the 
search, the limit to the search space size limits the computation.
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5.A variation of the tableau method, called KE-tableau, can be viewed as a 
generalisation of the Davis Putnam procedure to arbitrary sentences, including 
first order.

6. KE-tableau have been proved to be computationally more efficient than the 
standard tableau method. However, although much work has been done on 
propositional theorem proving in KE, little has been done for first order theorem 
proving. Thus there are no well known extensions for the method, analogous to 
the generalised closure rule, for instance.

7. ME style tableau have advantages, especially in that they are easily 
implementable in Prolog, which is good for testing new ideas. All the Prolog 
technology is available to build good systems. The method extends to other 
logics, e.g. modal logic. 

8. ME style tableau have disadvantages, mainly related to their being linear.

11fiiiQuestion for next week

What do you understand by statements such as

  “1+1 = 2”, or “father(william)=charles”?


