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EQAX2 and EQAX3 are substitutivity schema.
There is one axiom for each argument position for each function/predicate.

(1)    T(p,q)∨T(q,p)   (p,q are constants)
(2)    ¬T(X,X)
(3)      p=q

12aiEQUALITY

(1)    T(p,q)∨T(q,p)                (2)    ¬T(X,X)                 (3)    p=q
(4)  (1 + 3) T(q,q)∨T(q,p)         (substitute q for p in T(p,q))
(5)  (4 + 2)  T(q,p)  
(6)  (5 + 3)  T(q,q)                    (substitute q for p in T(q,p))                    
(7)  (6 + 2)  []

A "Natural"  derivation of  []

EQAX2 and EQAX3 as clauses:
EQAX2      ∀[¬xi=yi ∨ f(x1,…,xi,…,xn)=f(x1,…,yi,…,xn)]
EQAX3      ∀[¬xi=yi ∨ ¬P(x1,…,xi,…,xn) ∨ P(x1,…,yi,…,xn)]

Reasoning with equality  "naturally" uses implicit equality axioms.
EQAX1      ∀x[x=x]
EQAX2      ∀[xi=yi → f(x1,…,xi,…,xn)=f(x1,…,yi,…,xn)]
EQAX3      ∀[xi=yi ∧ P(x1,…,xi,…,xn) → P(x1,…,yi,…,xn)]

• They  do have a model!            Domain = {1,2}  p -> 1;  q -> 2
      T(1,1) ,  T(2,2)  are false ; T(1,2),  T(2,1) are true       =(1,2)  is true

•  But, they do not  have a model in which "=" is identity,
      i.e. a model which forces p and q to denote the same element.

•  They  do not  have a H-model in which '=' satisfies the  'equality axioms'.

12aii

The "substitution" using p=q + EQAX3 +(1) can be generalised to incorporate 
variables in the equation and the clause.  It is then called Paramodulation.

Given the derivation of [ ] on 12ai, would you 
expect (1), (2), (3) to be satisfiable or not?
(Hint: replace = by the predicate symbol S.)

(1)    T(p,q)∨T(q,p)} 
(2)    ¬T(X,X)
(3)      p=q

Exercise: Where, in the previous "natural" derivation, are the EQAX used?

To derive line 4: Use EQAX3: ∀x,y,z[¬x=y ∨ ¬T(x,z) ∨ T(y,z)] +1 + 3:
3+EQAX3 ==> ∀z[¬T(p,z) ∨ T(q,z)]
∀z[¬T(p,z) ∨ T(q,z)] +  T(p,q)∨T(q,p) ==>  T(q,q)∨T(q,p)

e.g. in EQAX3: ∀[¬x=y ∨ ¬T(x,z) ∨ T(y,z)], put x/p, y/q and resolve with p=q:
gives ∀z[¬T(p,z) ∨ T(q,z)], which forces the interpretations of T(p,p) and 
T(q,p), and similarly T(p,q) and T(q,q), to have the same truth value. 
But T(q,q) and T(p,p) are False and at least one of T(p,q) or T(q,p) is True.

12aiiiThe Equality Axioms

Use of equality in reasoning, and in tableau reasoning in particular,  implicitly makes use of a 
set of clausal axiom schema and the reflexivity of equality (EQAX1). There are 2 basic 
schema:

(i) those that deal with substitution at the argument level of atoms (EQAX3), and
(ii) those that deal with substitution at the argument level of terms (EQAX2).
They are given on Slide 12ai.

An alternative form of EQAX combines the schema for each argument place into a single 
schema that will deal with one or more arguments at the same time. They are:

EQAX2 (Alternative) ∀[x1=y1∧...∧ xn=yn → f(x1,…,xn)=f(x1,…,xn)]
EQAX3 (Alternative) ∀[x1=y1∧...∧ xn=yn ∧ P(x1,…,xn) → P(x1,…,xn)]

Exercise (a jolly good one!): Show that the two forms of EQAX are equivalent.
Hint: To show EQAX2(Alternative) implies EQAX2 (and similarly for EQAX3) is easy. You 
need to use Reflexivity. The other direction is a bit harder.

A discussion of models and interpretations of Equality is given later.
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Given  (1)  T(p,q)∨T(q,p)    (2) ¬T(X,X)     (3)  p=q

(4).  ¬S=Z ∨ ¬T(S,W) ∨ T(Z,W)  (EQAX3)
(5)   (3+4)  ¬T(p,W) ∨ T(q,W) 
             + (1)  =>  T(q,q) ∨ T(q,p) 
(6)  (5+2)   T(q,p)
(7)  ¬S=Z  ∨ ¬T(W,S) ∨ T(W,Z)  (EQAX3)                  
(8)  (3+7)  ¬T(W,p) ∨ T(W,q)  
             + (1) => T(q,q)  
(9)   (8+2) []

Using the Equality Axioms in Resolution

Transitivity can be shown similarly. (Exercise: DIY!)

EQAX1 and EQAX3 ⇒ symmetry of '='.

1.  X=X                              (EQAX1)
2.  ¬U=V ∨ ¬U=Z ∨ V=Z    (EQAX3)
         (¬U=V ∨ ¬P(U,Z) ∨ P(V,Z) put = for 'P' )
3.  a=b
4.  ¬(b=a)   (3 and 4 from ¬∀x∀y [x=y → y=x]

5.  (2+4)  ¬U=b ∨ ¬U=a
6.  (5+3)  ¬a=a
7.  (6+1)   []

Note:  intermediate 
clauses like (5) or (8)
formed from (4) + (3) 
or from (7) + (3),  
need not be retained.

DEFN: (PARAMODULATION)  (generalises simple substitution)

 if  C1≡ L[t]∨ C1' (i.e. t occurs in L) , C2 ≡  r=s ∨ C2' (or s=r ∨ C2') and rθ=tθ,   
 then the clause  C1' ∨ C2' ∨ L[sθ]θ is called a  paramodulant.

12bii

a=b  L(X) ∨ M(X) 

 L(b) ∨ M(a) 

(P)

match X with a
replace a by b
in L(a)
(P) stands for 
paramodulation

Symmetry is built in so 
can also match X with b 
and replace by a. 
Can match X either in 
L(X) or in M(X).

Can also obtain: L(a)∨ M(b).  Substitutions occur in 1 arg. position at a time. 

Example

In general:
1. Unify the "to" term – the one to be replaced in C1 (t) 
and the "from" term – the one in the equality being replaced (r) (mgu is θ)

2. Apply the unifier θ to both clauses C1 and C2 to give C1θ and C2θ

3. Replace the "to" term in C1θ by the term on the other side of the "from" 
equation – the one in the equality that is the replacement (sθ)

4. The result is the disjunction of C1θ and C2θ after replacement and 
without the equation.

12biii

{f(X)=b ∨ C(X) R(f(a))∨ Q 

 C(a) ∨  R(b) ∨ Q
(P)

match f(X) with  f(a) and 
replace  by b.

f(X,g(X))=e ∨  T(X) S(Y,f(g(Y),Z)) ∨ W(Z)

 S(Y,e)∨W( g(g(Y)) )∨T(g(Y) ) 

(P)

match f(X,g(X)) with f(g(Y),Z)  (X/g(Y), 
Z/g(g(Y)) ) and replace f( g(Y),g(g(Y)) ) by  e.

1.  T(p,q) ∨T(q,p)   (Not everyone is trying equally hard. 
                                                                      ¬∀x∀y[¬T(x,y) ∧ ¬T(y,x)] )
2.  ¬T(X,X)      (No-one tries harder than himself)
3.  U=V            (There is not more than one person.¬ ∃x∃y¬ [x = y]  )

(4)  (P. 3+1)  T(V1,q) ∨T(q,p)        (take instance U1=V1 of (3);
                                                      match U1 with p and replace by V1)
(5)  (4+2)  T(q,p)               
(6)  (P. 5+3)  T(V2,p)                     ( take instance U2=V2 of (3);
                                                        match U2 with q and replace by V2)
(7)  (6+2) []

SOME MORE EXAMPLES

12bivParamodulation

Paramodulation  is the method by which equality is included in resolution refutations. It is a 
generalisation of equality substitution: if s=t and s occurs in some sentence S, then t can replace  
s in any (or all) of the occurences. Similarly, if t occurs in S, then s can replace t. (See 
definition on 12bii.)

The paramodulation rule implicitly makes use of the Equality Axiom schema and consists of 
several steps, given in 12bii. It is easiest to apply instantiation first, to both the clause 
containing the equality E as well as to the clause containing the term to which the equality will 
be applied, so that the term being substituted from  is the same as the term being substituted 
into. Then apply the equality substitution.  The resulting clause, called a  paramodulant,  is the 
disjunction of the instantiated and substituted clauses (apart from equality E, which is omitted).

Paramodulation can be simulated by resolution, in which case there are two distinct phases: 
(a) use EQAX2 and E to obtain an equation E',  between terms, that can be used to substitute at 
atom level; 
(b) use E' and EQAX3 to make the substitution at atom level. 

For  (a) there may need to be  (none, 1 or more) applications of using the appropriate EQAX2. 

For example, suppose the clause a=b ∨ C were to be used (E is a=b). In order to substitute into 
P(f(a)), an equality of the form f(..)=t is required. From a=b∨ C and the instance (of EQAX2) 
x=y→f(x)=f(y) we get f(a)=f(b)∨C (E' is f(a)=f(b)); then we can use the instance (of EQAX3) 
x=y∧P(x)→P(y) to obtain P(f(b))∨C.  If, instead of P(f(a)), the atom was P(g(f(a))), then an 
additional instance of EQAX2, x=y→g(x)=g(y), is necessary to obtain g(f(a))=g(f(b))∨C from  
f(a)=f(b)∨C.   Exercise: Show how paramodulation of X=b into P(f(Y),Y) to derive P(f(b),Y) 
is simulated by resolution and appropriate instances of EQAX2 and EQAX3.



Can apply refinements (eg locking) to use of equality axioms to combine 
refinements with paramodulation to control use of equality axioms.  

eg Paramodulation can be combined with hyper-resolution:

In Hyper-paramodulation,  Hyper-resolution is used for the resolution steps and is 
forced on the use of EQAX. There are some restrictions:

•   Can only use X=Y if it is an atom in an electron.
•   Can only paramodulate into an electron.

•   May need specific instances  of EQAX1 - e.g. f(x) = f(x),  g(x,y) = g(x,y), 
            or must allow explicit use of EQAX2.

12ci

Example:   (1) a<b ∨ a=b     (2) ¬ a<c     (3)  b<c     (4) ¬x<y  ∨  ¬y<z  ∨  x<z        
(5)  1+3+4: a=b ∨ a<c}     (6)  P: 5+3: a<c  ∨ a<c ==> a<c (factor)    (7)  6+2: []

Example: (1)  a=b      (2) ¬P(f(a),f(b) )         (3)  P(x,x)       (4) x=x

(Note: (5) P: 1+2: ¬P(f(b),f(b))    would violate restriction)  
(6) P: 1+3:  P(a,b)  also P(b,a)   Then STUCK!                 
                                                   Need (4a)  f(x)=f(x) (or use of EQAX2 +1)
(7)  P:1+4a: f(b)=f(a)  (8)  P: 7+3: P(f(a),f(b))    (9)  8+2: [ ]

Paramodulation Strategies

•  Using EQAX3 (eg ¬x=y ∨ ¬ P(…,x,…) ∨ P(…,y…)) which is a nucleus: 
it needs 2 electrons:
One electron must be the one in which a=b occurs and the other must be the one 
in which  P(…,a,…) occurs. This enforces the two restrictions (a) and (b)                                    

•  Using EQAX2 (eg ¬x=y ∨ f(x) =f(y)), also a nucleus and needs 1 electron:
which must be the one in which a=b occurs; helps enforce (a) 

• (c) is caused by (b); eg cannot make ¬P(f(a),f(b)) into ¬P(f(a),f(a)) using a=b  (in 
order to match P(x,x)), so must derive P(f(a),f(b)) instead; 
this requires to derive f(a)=f(b) from a=b

12cii

How do the restrictions for Hyper-paramodulation arise?
a)   Can only use X=Y if it is an atom in an electron.
b)   Can only paramodulate into an electron.
c)   May need specific instances  of EQAX1 - e.g. f(x) = f(x),  g(x,y) = g(x,y), 
            or must allow explicit use of EQAX2.

From a HR refutation using EQAX can obtain a Hyper-paramodulation refutation:
Use of EQAX3 simulates a paramodulation step already
Use of EQAX2 can also be turned into a paramodulation step using reflexive 
axioms such as f(x)=f(x).   (Details an exercise.)

Example: (1)  a<b ∨ a=b     (2) ¬a<c       (3)   b<c        (4)  {x<z ∨ ¬y<z ∨ ¬x<y    
(5)  RUE: 2+3: ¬a=b     (6)  5+1: a<b   (7) 4+6+3: a<c    (9)  7+2: []

12ciiiRUE-RESOLUTION (Digricoli,Raptis)

Informal example:  
P(a)∨D, ¬P(b) and ¬x=y ∨ ¬P(x)∨P(y)  (ie C1, C2 and EQAX3) ==> D∨¬a=b

To match P(a)  and ¬ P(b) (to resolve C1 and C2) must show a = b. 
The goal "show a=b" (represented by ¬a=b) is refuted after matching P(a),P(b)

Can use some simplification steps to reduce ¬t1=t2 
eg ¬f(a)=f(b) reduces to ¬a=b by EQAX2 implicitly
¬x=a reduces to x==a by EQAX1 implicitly

RUE forces a kind of locking  on use of EQAX

Given C1≡L[t1]∨ D and C2≡¬L'[t2]∨ E, the RUE-resolvent is D ∨ E ∨¬t1=t2;

Uses EQAX3 ¬x=y∨¬L[x]∨L[y]: L[t1] unifies with L[x] and L'[t2] unifies with L[y].
The locking gives x=y higher index than other literals.

Notes on RUE-resolution

RUE-resolution is an alternative to paramodulation as a way of including EQAX 
implicitly into the deduction. It can, informally, be interpreted as trying to impose 
locking onto the use of equality axioms.  It is as though some kind of locking strategy is 
applied to EQAX3 such that the non-equality literals must be resolved (with other 
clauses) before any other useful resolvents can be made using these axioms. i.e. the 
equality literals are locked highest in EQAX3.

If the RUE-resolvent includes an equality ¬t1=t2 such that t1 and t2 are not different 
constants, then further simplifications can be applied using either EQAX1 or EQAX2.
For instance:

If t1 and t2 are identical terms, then resolve with EQAX1.
If t1 or t2 is a variable, then resolve with EQAX1 to instantiate the variable.
If t1 and t2 are functional terms f(x1,...,xn) and f(y1,...,yn), then resolve with the 
(Alternative) EQAX2 (for f) to get ¬x1=y1∨... ∨¬xn=yn. Can possibly apply further 
simplifications to each of the inequalities so introduced.

In all 3 cases the original inequality will be eliminated.

Exercise (good one): 
Compare the use of RUE-resolution and Paramodulation for the 3 clauses
(1)   P(x,x,a),    (2)   ¬P(b,y,y),    (3)   b=a.

12civ
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•    An E-interpretation is an H-interpretation HI ,  which satisfies:
         t=t is true in HI for all t in the Herbrand Universe
         if s=t is true in HI then t=s is true in HI
         if s=t and t=r are true in HI then s=r is true in HI
         if s=t is true in HI then f(s)=f(t) is true in HI for every functor f
                           (and similarly generalised to functors of arity > 1)
         if s=t and L[s] are true in HI   then L[t] is true in HI

•    In other words,  '=' satisfies EQAX at ground level.

•   S is  E-unsatisfiable if S has no E-interpretations.

•   (Corollary)  S is E-unsatisfiable iff S+EQAX is unsatisfiable.

•   (Theorem)  A set of clauses S is E-unsatisfiable  iff  S has no models in 
which '=' is interpreted as  the identity relation (called normal models).  

•  Completeness Result:  (Peterson 1983)     If S is E-unsatisfiable, 
then [] can be derived from S ∪ {X=X} by paramodulation and resolution.  

SOME PROPERTIES OF EQAX

•  Paramodulation allows the properties of '=' to be taken into account 
implicitly and avoids using them explicitly.

12diiModels including the Equality Literal: Notes on Normal Models(1)

Standard approaches to incorporating equality in tableau and first order logic introduce 
the notion of normal  models, in which the equality predicate is interpreted as identity. 
I.e. if p=q is true, then p and q must be interpreted as the same domain element.  
However,  such models are not Herbrand models (Why?) (Because Herbrand models 
satisfy the property that each term maps to itself in the Herbrand domain. So p and q 
map to unique elements of the domain.)

Normal models do not sit well within a clausal framework. Instead, Herbrand models 
that satisfy the basic requirement of substitutivity are used.  As far as satisfiability is 
concerned, the two approaches are equivalent: there is a normal model of some clauses S 
iff there is a Herbrand model of S that also satisfies the substitutivity schema. 

Justification of Corollary on Slide 12di: We show the contrapositive: S is E-satisfiable 
iff S+EQAX is satisfiable. Let M be (any) model of S+EQAX; then there is also a H-
model of S+EQAX. But this is an E-interpretation by definition, so S is E-satisfiable. On 
the other hand, suppose S is E-satisfiable and let M be an E-interpretation that satisfies 
S; then M also satisfies the EQAX by definition.

12diii

Notes on normal models (2):

(Proof outline of Theorem) Suppose S+EQAX are unsatisfiable then S has no normal 
model, for such a model would violate the assumption. On the other hand, if S +EQAX 
are satisfied by some model M, then S+EQAX have a H-model H; this H is therefore an 
E-interpretation. From H can be constructed a normal model (see Chapter notes on 
paramodulation for construction).

Example:  Given: S is the set of facts p=q, T(p,q), ¬T(X,X). 
Suppose T(p,q), p=q, q=p, p=p, q=q are true and T(p,p), T(q,p), T(q,q) are false.
This is not an E-interpretation as it doesn't satisfy the following instance of EQAX3: 
¬p=q  ∨ ¬T(p,q) ∨ T(q,q).

Let  S' be S without ¬T(X,X).
Suppose all atoms are true, then both facts in S' are true in this E-interpretation.  It is 
still not a normal model as it satisfies p=q, yet p and q are not mapped to the same 
domain element.

A normal model M for S' could use the domain {d}, and the mapping p->d, q->d. 
M sets T(d,d) true and interprets "=" as the identity relation (i.e. d=d is true). 
M satisfies p=q (which is interpreted as d=d), and clearly satisfies the equality axioms.
(In general, to obtain a normal model must ensure that all terms that are equal to one 
another, i.e. in the same equivalence class, are mapped to the same domain element. The 
domain of the normal model consists of  the names of the equivalence classes (c.f.  d in 
the example.))

12eiSummary of Slides 12
1. The use of equality is ubiquitous in every day reasoning. It uses the natural rule 
of substitution. Given an equality atom such as p=q, occurrences of p may be 
repalced by q (or vice versa) in any context.

2. Equality reasoning implicitly makes use of equality axiom schema. We called 
these schema EQAX1 (Reflex), EQAX2 (for building up equations between terms) 
and EQAX3 (for substitution).

3. In resolution theorem provers the natural rule of equality substitution is 
generalised to paramodulation, in which the equality may be one disjunct of a 
clause, and may involve variables, both in the equality and/or the context.

4.Paramodulation leads to a large increase in the search space, especially when 
equalities have variables, since they will match many contexts. e.g. given f(x)=x, 
even if the equality  is restricted so that only occurrences of the RHS may be 
substituted for occurrences of the LHS, there are four places in which the equality 
can be used in the context P(f(f(y)),y). (What are they?)

5. The completeness of paramodulation and resolution states that E-
(un)satisfiability can be checked using paramodulation.
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6. Models for equality in which = is interpreted as the identity predicate (x=x for all x 
and no other relationships) are not usually Herbrand models. They are called normal 
models. E-interpretations are the Herbrand/clausal analogue: a set of clauses that 
have a model which is also a model of the equality axioms is called E-satisfiable. E-
satisfiable clauses S have normal models as well, formed by considering the 
equivalence classes imposed by the given equalities as domain elements.

7. In fact,  a set of clauses S is E-unsatisfiable iff S has no normal models. Hence there 
is only need to detect E-unsatisfiability.

8. Ways to control paramodulation have been investigated. Hyper-paramodulation is 
one way, in which hyper-resolution restrictions are imposed on the use of equality 
substitution axioms, as well as the ordinary clauses. These restrictions constrain both 
the equality used to provide the substitution and the literal being substituted into to 
belong to an electron. For completeness, functional instances of EQSUB1 (Reflex) may 
be needed.

9. A second control method is RUE resolution, in which the equality in equality axioms 
is always the last literal to be resolved upon. This enforces resolution on the two literals 
in such axioms, which results in ``matching'' the literals and generating negative 
equality literals that can be interpreted as goals to be derived. e.g. P(f(f(y)),y) can be 
RUE-resolved with ¬P(f(a),a): first match corresponding terms: f(f(y))=f(a) and y=f(a) 
and then set them as goals (i.e. negate them) yielding ¬f(f(y))=f(a) ∨ ¬y=f(a), which 
gives ¬f(y)=a ∨ ¬y=a. These have to be proved from the given data.


