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13ai

•   In developing a tableau  two equality rules are used:
•   Reflex (EQAX1)   and  Substitution (also called paramodulation) which 
                                                             uses EQAX2 and EQAX3 implicitly.:

a=b
P(…,a,…)

P(…,b,…)

r=s
P(…,t,…)

P(…,sθ,…)θ

where rθ=tθ
and θ is mgu
of r and t.

EQUALITY IN TABLEAUX

Example:   (1) a<b ∨ a=b     (2) ¬ a<c     (3)  b<c     (4) ¬x<y ∨ ¬y<z ∨ x<z    

a<b a=b

¬x1<y1
x1==a
y1==b

¬y1<z1⇒
    ¬b<z1
   z1==c

x1<z1⇒
   a<c

a<c (Sub in *)
or ¬b<c (Sub in (**))

¬a<c (**)
b<c (*) NOTE:

a=b can be used
from Left to Right
or from Right to Left

13aiiSimulation of  (Free variable) Tableau 
Equality Rules using Equality Axioms

r=s

P(...,f(t),...)

¬x1=y1 f(x1)=f(y1)⇒ f(r)=f(s)

¬x2=y2 ¬P(...,x2,...)
⇒
¬P(...,f(r),...)

P(...,y2,...)
⇒
P(...,f(s),...)
⇒
P(...,f(sθ),...)θ

x1==r
y1==s

x2==f(r)
y2==f(s)

unify r and t
with mgu θ

This remaining open 
branch contains 
exactly the result of 
using the substitution 
rule

r, s may contain 
variables. Assume r 
and t unify with mgu θ

1. generate required 
equality by EQAX2

2. Apply appropriate 
EQAX3

13aiiiModels including the Equality Literal:

Recall from Slide 12dii that in a normal  model the equality predicate is interpreted as 
identity and hence if p=q is true, then p and q must be interpreted as the same domain 
element. Alternatively, Herbrand models that satisfy the basic requirement of substitutivity 
can be used and as far as satisfiability is concerned the two approaches are equivalent. 

The completeness proof for tableau involved constructing a saturated tableau from some 
consistent set and then constructing a model from the  saturated tableau.  A saturated tableau 
is one in which every rule is applied in every branch in every possible way. For the equality 
substitution rule, notice that it can be restricted to apply only to ground literals in the tableau. 
Substitution into sentences with quantifiers can be delayed until after the quantifier has been 
eliminated and the resulting sentence has been reduced to literals.

In order to show that the constructed model, which was derived from the literals in an open 
saturated branch, was indeed a model, a complexity ordering based on the length of formulas 
was used.   When using equality substitution this ordering must be extended to literals. 
However, how might this be done? eg if the equation a=b and literal P(b) are in a branch, 
then P(a) can be derived, but in what way is P(a) smaller than P(b)? To answer this requires 
to consider orderings on terms as well as sentences. We will return to the topic in Slides 16 
and 17. But notice that the model that is found will have as domain the terms occurring in 
the branch and will definitely not be a normal model. Instead, the model will satisfy the 
EQAX and be an E-model.



13bi

Possible Systematic Method1:
•  Form a tableau  to some limit 

(eg allow each universal rule to be 
expanded once and then allow a 
maximum number of “extra” 
applications.)

•  Ignore substitution using equality 
literals, but allow those branches 
that can close in the usual way to do 
so.

•  For each unclosed branch apply 
equality rules to  equations in it in 
order to force a closure (see 
example on right).

P(a)
¬P(b)
Q(u1,f(b))
¬Q(c,g(b))
b=c
f(c)=g(c)

Branch will close 
if can show
(a=b) or 
(u1=c & f(b)=g(b))

b=c          (equalities from
f(c)=g(c)        branch)

a≠b          (from negated goal)
u1≠c ∨ f(b)≠g(b) 
                (from negated goal)
Close?     Yes,  if u1==b

The most difficult aspect of dealing with equality  is in controlling  substitution 
as there are usually many ways in which it can be applied in a tableau branch.

Controlling Equality Substitution in Tableaux
Controlling Equality Substitution in Tableaux:

The approach on 13bi,  called Systematic Method 1, develops a tableau to a maximum depth 
and allows, if possible, branches to be closed in the usual way. If there are any open branches 
remaining, which also contain equations, an attempt is made to find a contradiction using the 
equations. Potential closure between 2 literals is made, subject to the constraint that the 
arguments can be made equal. e.g.  P(a,f(X)) and ¬P(b, g(b)) would be complementary, if a=b 
and g(b)=f(X) (for some X) could be derived. (This is quite similar to the RUE refinement.) 
These can be derived in many ways; they could be refuted by ordinary resolution and 
substitution (paramodulation) using the equations E in the branch: derive closure from 
E+{¬a=b}+ {¬g(b)=f(X)}; or by adapting the rewriting methods for reasoning with equality 
(see Slides 14 onwards). A third way is to systematically enumerate equivalence classes of 
terms from the equations in the branch in the hope that both sides of an equation will be 
contained in one class.

The equivalence class approach applied to the  open branch in 13bi would enumerate the 
classes {b,c, ...} and {f(c), g(c), f(b), g(b), ...}, from which f(b)≠g(b) is refuted. 

As shown on Slide 13aii  using equations in tableaux  can be simulated using the equality 
axioms. An approach to their control would be to incorporate this simulation within the 
strategy used to develop the tableau. For example, if ME is in use then a ME simulation is 
used, or if KE, were in use, then a KE simulation would be used. (Actually, no one has done 
the latter yet, to my knowledge.) 13bii

Given: 
x=a ∨ x=b  
g(x)≠g(y) ∨ x=y
g(a)=b 
g(g(a))≠a   

EXAMPLE

13biii

a) Use each non-unit clause a maximum of once in each branch.
b) Can close first branch normally by unification  (match with g(g(a))≠a).
c) Can close at (*) if g(y2)=b is shown and 
            either x2==g(a) (match with g(g(a))=b),
            or x2==a (match with g(a)=b)

To show g(y2)=b, set y2==g(a) or y2==a; unify x2  - Leads to 4 possibilities:
di)    y2==g(a), x2==g(a): cannot refute g(a)=g(a).
dii)   y2==g(a), x2==a: ==> refute a=g(a)  (see e  on next slide)
diii)  y2==a, x2==a: cannot refute a=a.
div)  y2==a, x2==g(a): ==> refute g(a)=a  (see e)

(Use systematic method 1)

x2=y2  (**)

x1=a x1=b
x1==g(g(a))

⇒ g(g(a))=b 

g(x2)≠g(y2) (*)
(unify)

g(a)=b 
g(g(a))≠a 

Given: 
x=a ∨ x=b  
g(x)≠g(y) ∨ x=y
g(a)=b 
g(g(a))≠a   

EXAMPLE continued 13biv

 x2=y2 =>g(a) = a  (**)

x1=b⇒ g(g(a))=b 

g(a)=b 
g(g(a))≠a 

e) From 13biii one remaining branch (**) to 
close:  Can close if 
  (ei) g(g(a))=g(a) can be shown 
         (match g(a)=a with g(g(a))≠a), or if
  (eii) a=b can be shown 
         (match g(g(a))=b with g(g(a))≠a)
See steps below – add to equations
         either  a≠b or g(g(a))≠g(a) 

1.  g(g(a))≠g(a)
2.  g(a)=b
3.  g(g(a))=b
4.  g(a)=a

g(a)≠g(a)  (1+4)
close by refex

b≠g(a)  (1+3)
close by (2)

either:

1.  a≠b
2.  g(a)=b
3.  g(g(a))=b
4.  g(a)=a

g(a)≠b  (1+4)
close by (2)



Using Systematic Method 1 in Tableaux:

The example on 13biii and 13biv illustrates the method of forming a tableau to some limit (here 
using each clause a maximum of once in each branch) and then trying to close branches using 
equations.  There are two open branches and two possible closures for the first of these: between 
g(a)=b and g(x2)≠g(y2) or between g(g(a))=b and g(x2)≠g(y2).  One can obtain closure either if 
x2==a and g(y2)=b can be derived, or if x2==g(a) and g(y2)=b can be derived. i.e. refute  
¬g(y2)=b using the set of equations {g(a)=b, g(g(a))=b}, which is easy: y2==a or y2==g(a). There 
is another possibility, to close g(x2)=g(y2) by reflex, but this yields x2=x2 in the second open 
branch which cannot be refuted.

For the second open branch, two of the substitution pairs result in a=a or g(a)=g(a), which clearly 
cannot be refuted as they are instances of (Reflex). The other two substitution pairs both result in 
g(a)=a and the branch can be closed if g(g(a))≠a matches either g(g(a))=b or g(a)=a or g(a)=b. 
The first of these requires b=a to be shown using {g(a)=a, g(a)=b}, which is clearly possible; the 
second requires g(g(a))=g(a) to be shown, again using {g(a)=a, g(a)=b}. Again this is easy. The 
third requires to show g(g(a))=g(a) and a=b, which is done as before. (See 13biv.)

Exercise: Show these things).

13bv

The equivalence class approach applied to the first open branch of  the tableau on 13biii would 
enumerate the class {g(a), b, g(g(a)), g(b), g(g(b)), g(g(g(a))), ....}, from which g(x2)≠g(y2) is 
refuted. E.g. put x2=g(a), y2=b.

It is clear that there are many and various possibilities when using equations and that the search 
space can become very large.  Next we see if using the ME strategy is any better.

13ci

P[x]

Some equations 
from branch or from 
input clauses

P[x] and P[y] are 
complementary 
modulo equations 
in the branch.

Possible Systematic Method 2
The equations are used in substitution 
(paramodulation) steps to enable P[x] and P[y] 
to match. There may be bindings made which 
are propagated as usual.

ME TABLEAUX AND EQUALITIES

(i)  If an equality atom is the selected literal P[x] 
and it does not resolve in the usual ME-way, then 
closure is sought between two literals L and M, 
which may either be ancestors of P[x] or from 
input clauses,  by applying P[x], and possibly other 
equality atoms in the branch or from input clauses, 
to L and M so they become complementary.

(ii)  If the selected literal P[x] is not an equality 
atom and it does not resolve in the usual ME-way, 
then attempt to close by applying equality atoms 
to P[x] and to another literal M, where M and the 
equalities are either ancestors or from an input 
clause.

¬ P[y]

•

•

Given: x=a ∨ x=b        g(g(a))≠a         g(a)=b        g(x)≠g(y) ∨ x=y

EXAMPLE 13cii(Use Systematic method 2)

Use equalities and try to close either 
with g(g(a))≠a or with g(x1)≠g(y1)

Second case can be done:
Use g(a)=b ==> g(g(a))=g(a)
(replace b in g(g(a))=b by g(a))

Use equalities and try to close with 
g(g(a))≠a.

g(a)=a in g(g(a))=g(a) ==> g(g(a))=a

Problem is that there are many different possibilities for closure.
Exercise: find other closures for the right side of this tableau using  
systematic method 2. Hint: can derive [g(b)=b] and then [g(a)=g(b)]

x1=a
x1==g(g(a))

x1=b => g(g(a))=b

g(x2) ≠ g(y2)
x2==g(a)
y2==a

x2=y2 =>g(a)=a 

[ g(g(a))=a ]

[ g(g(a))=g(a) ]

g(a)=b
g(g(a))≠a

13ciii

 

Using Systematic Method 2 in Tableaux: 

On Slide 13cii in the second branch of example the aim is either to derive a literal 
complementary to g(x2)≠g(y2) using g(g(a))=b, or complementary to g(g(a))≠a.  The slide 
shows the first: substitute g(a) for b in g(g(a))=b==> g(g(a))=g(a). For the remaining branch 
you can easily derive g(g(a))=a from g(g(a))=g(a) and g(a)=a.  This is not the only closure 
using systematic method 2. It's easy also to derive first g(b)=b and then g(a)=g(b), which also 
closes with g(x2)≠g(y2), but binding x2==a, y2==b , leading to b=a in the final branch. That 
branch easily closes also, by deriving g(g(a))=a from g(g(a))=b.  Note that the derived 
equality g(g(a))=g(a), derived for branch 2 is used in the closure of branch 3.

If the equality axioms are to be used explicitly in a ME tableau, then one might consider 
restricting their use. E.g. perhaps an equation can be constrained to be used only if it already 
occurs in a branch. The clauses P(a), ¬P(b) and a=b , with P(a) as top clause demonstrate that 
this restriction would not be complete. Other restrictions have been suggested, such as 
restricting the use of equations unless they are in a clause with all positive literals. Again this 
won't be complete. (Exercise: Find a counterexample.) 

So perhaps the axioms themselves can be used in the ME way. If an equation is a leaf literal, 
then one can match a suitable EQAX3 instance with the equation and with either a literal in 
the same branch or from another clause. This will give the effect of paramodulation. 
Sometimes, instances of EQAX2  are required and these can be incorporated too. If an 
equation is not a leaf literal, still an instance of EQAX3 can be used, this time matching the 
leaf literal which is to be paramodulated into, and the equation must come either from the 
same branch or from another input clause. Sometimes it is possible to apply several 
paramodulation steps to make a leaf literal match the desired complement.



13civSimulation in ME using Equality Axioms

In (1) use EQAX3 explicitly in the ME 
way to simulate the substitution of f(a)=b 
into P(f(x1)).

b=c
f(a)=b
P(f(x1))

¬f(a)=b) ¬P(f(a))
x1==a

P(b)

(1) b=c
P(f(x1))

¬b=c f(b)=f(c)

P(f(c))¬f(b)=f(c) ¬P(f(b))
x1==b

(2)

b=c 
∀x(P(x) ∨ Q(x))

¬b=c
¬P(b)
x1==b

P(c)

P(x1) Q(x1) ==> Q(b)

(3)In (2) use EQAX2 and EQAX3 in the 
ME way to simulate the substitution of 
b=c into P(f(x1)).

If either the required equation or literal 
being substituted into is not yet in the 
branch, can force it to be so by introducing 
the  appropriate input clause, as in (3). 
Simulate substitution of b=c into P(x1).

Theory  (T2)
iv) c≤a  
v) c≤b
vi) x≤y ∧P(x) → P(y)
vii) x≤y ∧ Q(x) → Q(y)

•   A theory   is any consistent set of sentences.
•   e.g. equality axioms, relational theory, sorts and types,  taxonomic theory

Theory T1

i) R is transitive
ii) R is irreflexive
iii) R is symmetric

13diTHEORIES AND TABLEAUX - Some Examples

R(a,b) ∨ a=b

R(a,b)

(iii: R(b,a) )

(i: R(a,a) 
close by ii)

a=b

P(c) ∨ Q(c)
¬P(a)
¬Q(b)

P(c) Q(c)

(iv,vi: P(a)) (v,vii:Q(b))

In both cases, the theory is used to derive new 
atoms (indicated in brackets) which close a branch.
c.f. with earlier method of incorporating EQAX.

{P(u), Q(u)}
¬P(a)
¬Q(b)

Theory T2 (from 13di)

P(u1) Q(u1)  

• Let B be a tableau branch, Th be a theory and  K1,…,Km be ground literals in B  

• Suppose Th + K1,…,Km |= R1 ∨ … ∨ Rn then add clause (R1 ∨ … ∨ Rn) to B  
• Equivalent to Th + K1,...,Km, ¬R1,...,¬Rn |= ⊥
      i.e. find literals to close B and add the disjunction of their complements
• Often, n is restricted to be =0 or 1
• If n=0, can close B if Th+K1,…,Km are inconsistent
• If n=1 just add a single literal to B

13diiTheory Tableaux - How does it work?

eg   On 13di consider branch with P(c), ¬P(a) and  c≤a and x≤y ∧P(x) → P(y) in Th 
Either: let K1=P(c) and derive R1=P(a),
Or: let K1=P(c), K2=¬P(a) and close branch

More generally:

¬P(a)
P(u1)
c≤a
x≤y ∧P(x) → P(y)

Either:
K1=P(u1) and Th + K1θ |= R1=P(a)
           where θ = {u1==c}

Or:
K1=P(u1), K2= ¬P(a) and
Th +P(u1)θ + ¬P(a) closes branch

For general clauses (here for case n≤≤≤≤1 only):

•  If  literals K1,…,Km occur in a branch
and Th |= ∀[(K1∧…∧Km → R1)θ],
where ∀ closure is over free variables in {R1θ,Kiθ},
and θ is minimal substitution to achieve this, 
then (i) add (R1)θ to branch, 
and (ii) propagate θ to remaining open branches

• The main property is equivalent to 
Th + ∀[(K1 ∧… ∧ Km)θ + ¬R1θ] is inconsistent

•  As a special case:
If Th + ∀[(K1 ∧… ∧ Km)θ] is inconsistent,
then close branch and propagate θ to remaining 
open branches.  
θ  is minimal substitution to achieve this.

13diii

Theory T3: 
(i) z≤a    
(ii) c≤b
(iii) x≤y ∧ P(x) → P(y)
(iv) x≤y ∧ Q(x) → Q(y)

General Case of Theory Reasoning
P(u) ∨ Q(u)

¬P(a)
¬Q(b)

P(u1) Q(u1) 

(i,iii: P(a)) (ii,iv:Q(b))

u1==c

T3 |= ∀u1(P(u1) → P(a)),
or T3 +∀u1.P(u1) |= P(a) 

And for θ  = {u1==c}
T3 |=(P(u1) → P(a))θ,
or T3 + P(u1)θ + ¬P(a)
   is inconsistent 



Given clauses:  L1 ∨ s=t     L2 ∨ P[r]        Theory is EQAX
Suppose also, that  rθ = sθ, so we expect the result P[t]θ ∨ L2θ ∨ L1θ

Paramodulation is Theory Reasoning (!): 13div

Using criterion on 13diii, find θ s.t.
Theory  |= ∀ [(s=t ∧ P[r]) → P[t]) θ ] 

Or equivalently: Theory + (s=t ∧ P[r])θ  |= P[t]θ
where θ  is minimal substitution for free variables 
in s, t and r to satisfy the criterion

(also equivalently: 
Theory+ (s=t ∧ P[r] ∧ ¬P[t])θ closes branch)

This is exactly what paramodulation achieves.

(Remember, θ is applied to whole of tableau and 
leaf literals in open branches are the resolvent, 
or in this case paramodulant.)

s=t⇒(s=t)θ L1θ

L2θ
P[r]⇒P[r]θ

(P[t]θ )

K1, K2 are s=t, P[r]
R1 is P[t]

13dvExample:
¬ x has-child y   ∨ ¬ woman(y)
man(y)∧nosons(x) → ¬ x has-child y
nosons(ann) ∨ nosons(bill)
bill has-child pat
ann has-child ursula

(Type) Theory:
¬(man(x) ∧woman(x))
man(x) → person(x)
woman(x) → person(x)
x has-child y →person(x)
x has-child y → person(y)
person(pat)
person(bill)
person(ann)
person(ursula)
person(x) →
man(x) ∨ woman(x)

¬woman(y1) =>¬x1 has-child y1

bill has-child pat

¬woman(pat)  

(man(pat))

¬man(pat) ¬nosons(x2)

¬x2 has-child pat

nosons(bill) nosons(ann)

              =>
¬ bill has-child pat

¬man(y2)
¬nosons(x3)
      x3/ann

¬ x3 has-child y2 ==>
¬ann has-child y2 ==>
¬ann has-child ursula(woman(y2)) 

¬woman(y2)

¬x4 has-child y2

¬ann has-child ursula  (x4/ann, y2/ursula)

13eiSummary of Slides 13
1.  Equality reasoning can be incorporated into tableau, either standard tableau 
or free variable tableau or ME tableau.

2. In standard tableau the equality rule allows to derive new ground literals using 
equality substitution; in free variable tableau it allows to derive new literals, 
possibly applying a unifying substitution (also called paramodulation).

3. Use of the equality axioms can be simulated within ME tableau, by using 
equality axioms explicitly.

4. Closure in a branch with equality literals can be (i) between complementary 
literals, or (ii) by deriving from equality atoms new equality atoms that will enable 
two literals to become complementary  by substitution. This is done by matching 
the potentially complementary literals  and trying to show the required equations 
using the equality atoms in the branch. 

5. Usually,  a tableau is developed to some depth, closing branches normally if 
possible, and then attempting to close remaining branches as in 5.

6. Most methods using equality in tableau are quite difficult for humans and lead 
to large seach spaces.

13eii

6. An alternative approach can be employed in ME tableau: equality atoms in a 
branch are used to make two literals complementary.  In case a leaf literal L is not 
an equality, then equality atoms (either in the branch or from new instances of 
input clauses) are used to derive ¬L. If L is an equality atom then L must be used 
in the derivation, and the two complementary literals may be from the branch or 
from new instances of input clauses. The depth of a tableau would normally be 
limited, including the extra depth to derive the complementary literal(s).

8. Paramodulation is a special case of Theory Reasoning. Theory reasoning can 
be useful for other theories, such as some theory of ordering, or theories of 
subsets, or lists, for example. Reasoning with theories is easier using tableau, 
which is the only method described, though it was originally proposed as a 
resolution refinement (Stickel).

13eiiiQuestion for next week
When simplifying an equation you are using equality reasoning.

How can the task of simplifying (1+ x) - 4 = 2 to give a binding for x, namely x==5 
be recast as a paramodulation problem. 

What reasoning steps do you use to solve the equation?
(Hint: there are more than you think, perhaps)


