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• All sentences are unit equations (∀ is implicit).
• Problem is usually to show that two terms are equal modulo equations. 
  Although this could be done using paramodulation ....
• To cut down the search space the equations are used in one direction only, 
called orienting  the equations.
• A more general problem is to find bindings for variables such that two terms 
are equal modulo equations.  (See later.)

1. x+0 => x               2. x+s(y) => s(x+y)

Term Rewriting Systems

EXAMPLES using oriented equations

s(0)+s(s(0)) => s(s(0)+s(0)) (by 2) => s(s(s(0)+0)) (by 2) => s(s(s(0))) (by 1)

ie s(0)+s(s(0)) and s(s(s(0))) are equal modulo the equations 1 and 2.

Also:
s(z)+s(s(0)) => s(s(z)+s(0)) (by 2) => s(s(s(z)+0)) (by 2) => s(s(s(z))) (by 1)

Notice that bindings can be applied to the rules (1 and 2) but not the terms;

We can't rewrite s(u+v) using 1 or 2 (L=>R) since v is not known to be 0 or s(?)
We can't rewrite s(u+v) using 1 or 2 (R=>L) as arrow goes in other direction

14aii

•  A rewrite rule  is an oriented equation l => r, s.t. all variables in r occur in l.
•  An expression e[s]  rewrites  to e[rθ] (e[s]=>e[rθ]) by  l => r  if s = lθ
Note: if an expression  contains no variables, none are introduced by rewriting;    
i.e. ground terms remain ground.
• s =>*t denotes s rewrites to t using none or more steps
•  A term is irreducible (canonical) w.r.t. a rewrite system if no rule applies to it.

Some Terminology of Rewrite Systems

• A term may be rewritten in more than 1 way by a set of rules:
Example:
4. 0+x => x                   5. -x+x =>0                    6. (x+y)+z => x+(y+z)

0+((-1+-1)+1) => (-1+-1)+1 => -1+(-1+1) => -1+0
0+((-1+-1)+1) => 0+(-1+(-1+1)) => 0+(-1+0) => -1+0

But sometimes different orders may yield different results:
(--1+-1)+1 => 0+1 => 1
(--1+-1)+1 => --1+(-1+1) => --1+0

The aim of the Knuth Bendix Procedure is to eliminate this

• A term may rewrite forever:            Given: 3. x+y => y+x
                      a+b => b+a => a+b => b+a => ....

14aiii

If  the data consists only of equations there are special techniques that can be applied to show 
a given goal. A set of equations can be used as a term rewriting system. This requires that (i) 
the equations are orientated and used in paramodulation steps in one direction only,  (ii) they 
are not used to paramodulate into each other, and (iii) variables in the term being 
paramodulated into are not bound by the step. We will consider these things again later.

With the restrictions (i), (ii) and (iii), the proofs can be written down in a simpler way, when 
they are called rewrite proofs . There are two kinds of rewriting steps - simple rewriting, 
when the paramodulation step is restricted so that the term being paramodulated into is not 
instantiated by the step, and narrowing, when there is no such restriction. (See slide 14av.)

Some simple examples show that limiting the use of equations to a single direction and 
restricting their use can prevent some true goals from being derived. For example, consider 
a=>b and a=>c, which we know should entail b=c. However, if we are only allowed to 
substitute for a, then the negated goal ¬(b=c) cannot be refuted. We need the additional 
equation b=>c, from which we can derive the goal ¬(c=c) and hence [ ].

To avoid this limitation, the rewriting equations should satisfy the Church-Rosser property, 
or equivalently, confluence. The Church-Rosser property guarantees that if two terms can be 
shown to be equal (eg by refuting ¬(a=b) by paramodulation and reflexivity), then they can 
be rewritten into a common term by the orientated equations. In the above example, the 
rewriting equations do not have this property, as clearly b=c, yet  b and c do not rewrite into a 
common term. 

The Knuth-Bendix Completion procedure will attempt to find, from a given set of equations, 
a new set of (equivalent) rewrite rules that possess the Church-Rosser property.



- -a+0 <= (5)
    by instance -a+a==>0
- -a+(-a+a)<= (6)
(- -a+ -a)+a => (5) 
0+a => (4) 
a

If (4)-(6) are treated as 
rewrite rules can transform 
--a+0 into a only if rules 
can be used in both 
directions; i.e. it is not a 
rewrite proof. <=  means 
rule is used in reverse

14aiv

Example :  (4)  0+x => x      (5)   -x + x => 0      (6)  (x+y)+z => x+ (y+z)

If (4) - (6) are treated as equations, from ¬(--a+0=a) derive [ ] by paramodulation: 
 ¬(--a+0=a) ==>(5) ¬( - -a+(-x1+x1) = a) ==>(6)  ¬((- -a+ -x1)+x1 = a) 
==>(5) (and x1/a) ¬(0+a = a) ==>(4) ¬(a=a) ==>  [ ]  (resolve using reflexivity)

Hence --a+0 =* a

- -a+(-a+a)

- -a+0

(- -a+ -a)+a 

0+a

a

Rewriting and Paramodulation (1)
In general, given some equations, to show s=t by paramodulation, start from ¬(s=t) 
and try to use equations to turn both s and t into some z, deriving ¬(z=z) and then 
resolve with x=x. i.e. ¬(s=t) + equations  ==>*[ ]

We'll write s =*t to denote that both s and t can be reduced to z by paramodulation 

If rewrite rules may be used in both directions and then s and t both rewrite 
to z  we write s <=>* t.         Hence --a+0 <=>* a

•  An expression e[s] is narrowed  by  l => r  if sθ = lθ and (e[s])θ=> (e[r])θ.
•  If no bindings are made to vars in the terms being rewritten, it is called rewriting.
•  If bindings are made to vars in the terms being rewritten it is called narrowing.

14avParamodulation and Narrowing

¬(0+s(0)=s(0)+0)  ==>(p2)
 ¬ (s(0+0)=s(0)+0)==>(p1)
 ¬(s(0+0)=s(0)) ==>(p1)
 ¬(s(0) = s(0))==> 
[ ]   (r3)

¬(s(0)+s(s(0)) = x) ==>(p2)
 ¬(s(s(0)+s(0)) = x)  ==>(p2)
 ¬(s(s(s(0)+0)) = x)  ==>(p1)
 ¬ (s(s(s(0))) = x)  ==> 
[ ]   (r3  if x==s(s(s(0))) 

¬( s(0)+x = s(s(0))) 
    ==> (p2  if x==s(y1) )
 ¬(s(s(0) + y1) = s(s(0)))
    ===> (p1  if y1 ==0 ) 
¬(s(s(0))) = s(s(0)))  
    ==> [ ]   (r3)

ie: to show ∃x(t1=t2), derive [ ] from the negated goal
We'll return to Narrowing at the end of the course.

Example:           1. x+0 => x              2. x+s(y) => s(x+y)              3. y=y
s(0)+v narrows to s(s(0)+y1)  by 2, if v==s(y1) and narrows to s(s(0)) if y1==0

• Narrowing corresponds to using paramodulation with oriented  equations
• Rewriting corresponds to using restricted paramodulation with oriented  equations

These examples use oriented  paramodulation – they use equations in direction of =>

14aviSummary of Rewriting So Far
Given a set of rewrite rules:
•  To show s=*t:
either: rewrite s into t, (s =>*t), or rewrite t into s, (t =>* s)
or rewrite s into r and rewrite t into r (s =>* r and t =>* r)
– all steps in the direction of =>

• This is essentially using paramodulation in direction of =>, 
to derive [] from ¬(s=t) (needs additionally one resolution step using x=x)

•
tt1 t2

A rewrite proof
Uses directions of =>

•

•

t1

•

•
t

•

t2

A non-rewrite proof

Does not always use 
directions of =>

14biCompletion – Informal Overview (Specific case)

A non-rewrite proof

A rewrite proof

Example:   Want to show:  --a + 0 =* a but using all rules in => direction
 
Given     (1)    0+x => x         (2)   -x + x => 0    (3)   (x+y)+z => x+(y+z)

(- - a + -a) + a

- - a+0 a

- - a +(-a+a) 0+a

(3) (2)

(1)(2)

- - a+0 a

- - a +(-a+a)
(4)

- - a+0

a(5)

Suppose could derive   (5)  - -z+0 => z

Suppose could derive  (4)  -x1+(x1+z) => z  

Still not a rewrite proof

The Knuth Bendix Procedure tells us how to derive (4) and (5) from (1) - (3)
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Want to derive some new 
rewrite rules to enable a 
'tunnelling' effect.Then t1 and t2 
can be rewritten to the  same 
irreducible term t. (See 4)

The crucial terms are those at 
the top of the peaks which can 
be rewritten in more than one 
way, say into s and r.

s and r can be obtained from 
the rewrite rules and used to 
form another rewrite rule that 
reduces the size of the peaks.

Eventually all peaks will be 
removed and a simple rewrite 
proof can be found.

Completion – Informal Overview (General case)

•

•

t1

•

•
t

•

t2

1
A non-rewrite proof

t1 •
t

t2

•

3
Nearly a rewrite proof

t1 •
t

t24
A rewrite proof

•

t1

•

•
t

•

t2

2
s r

14biiiCritical Terms (i)

In general, a rewrite proof to show terms t1 and t2 are equal will rewrite t1 and t2 to a 
common term t. However, sometimes this can only be carried out if some of the steps 
are made in the wrong direction (i.e. using the rewriting equations from right to left 
instead of from left to right.) In this case the "proof" would have one or more peaks.  
The example on 14bi is like this.  The term at the apex of the peak is
 (--a +-a)+a, which can either be rewritten into --a +(-a +a) by  (6) and then  into --a+0 
by  (5), or into 0 +a by (5) and then into a by (4).

If there is a peak in the proof, then at the apex there is a term p  that can be rewritten in 
two different ways.  Such terms as p, called critical terms, play a crucial role in the 
Knuth-Bendix procedure and can be rewritten (in 1 or more steps) into two different 
terms s  and r. (If s and r could be rewritten to a common term, then there would be no 
need to go to the top of the peak and back.)   The Knuth Bendix procedure finds cases of 
most general critical terms which rewrite to a critical pair of (different) terms s and r 
from which a rewrite rule can be derived, either s => r  or r => s; this rule can be used 
to flatten out the peak. It allows a kind of tunnelling effect to avoid the apex. 

In the example above the critical term (--a + -a) +a is an instance of the critical term 
(-x+x) +z. A new rule is found from the result of rewriting this in two ways, namely 
-x+(x+z) => z.  This new rule will allow a shorter way to show --a +0=a: 
--a+0 <=--a+(-a+a) => a. It might be quite useful for other rewrite proofs (in this 
domain) as well. The Knuth Bendix procedure gives a way of finding these new rules.

Critical Terms (ii)

Finding critical terms is quite easy. Given two rules r1 and r2, if the LHS of r1 can be 
unified with the LHS of r2 or with a subterm of the LHS of r2, then the "common" 
instance can be rewritten by both r1 and r2. By applying rewrite rules to both results of 
this rewriting as far as possible, two terms will be derived that are either the same (no 
problem), or not. When they are not the same the two different terms yield a new rule. 
This overlapping and matching is called superposition. Actually, it is also 
paramodulation of one rule into another. 

For example, suppose there are two rules r1: f(x,x)=>x and r2: f(a,u)=>b. 
The common instance (and the critical term), found by superposition, is f(a,a) and it 
can be rewritten to both a (by r1) and to b (by r2). The new rule would be (say) b=>a. 
This can be found by paramodulation too:paramodulate f(a,u)=b into f(x,x)=x to give 
b=a (bind u/a and x/a). This new rule is needed to show by rewriting that f(b,a) =>* b, 
which would not otherwise be possible by r1 and r2 alone, even though we can show 
f(b,a) <=>* b: f(b,a) <= f(f(a,a),a) => f(a,a) => b (using r1 and r2 only).
Using  new rule and r1: f(b,a) => f(a,a) => a and b=> a.

The equivalent oriented paramodulation derivation would be: ¬(f(b,a)=b) ==>(2) 
¬(f(f(a,u1),a)=b) ==>(1) (and u1/a) ¬(f(a,a)=b) ==>(2) ¬b=b ==>[] (by resolution with 
x=x).  With the new rule we can go directly from ¬f(b,a)=b to ¬f(a,a)=b.

Paramodulation is therefore used in two ways in finding critical pairs: first in 
superposition and then in rewriting. In rewriting a restricted form is used.

14biv

c

t1 t2

if c can be rewritten in two ways it is called a critical term 
t1 and t2 are called a critical pair

(1)       f(x,x) =>e
(2)       f(g(u),v) =>g(f(u,v))

Obtain a new rule:

(3) g(f(x,g(x))) => e

14bv

Most general critical terms are found by overlapping 
L.H.S. of rules in a process called Superposition.

ie an instance of a L.H.S. can be rewritten in more than 
one way. Find instance by unifying LHS of (1) and (2).

Critical terms and Critical Pairs (1)

f(g(u),g(u))

e g(f(u,g(u)))=

(by 1) (by 2)
Superpositions using (3): remember: either  
overlap LHSs of 2 rules, or LHS or one rule with 
a subformula in another rule

Unify  f(x,g(x)) in (3) with f(g(u),v), or
Unify g(u) in (2) with g(f(x,g(x))), or
There's one more - can you find it?
Hnt: consider 2 copies of (3)

Here it's f(g(u),g(u)) which will rewrite by (1) and (2):
f(g(u),g(u))=>e (1) and =>g(f(u,g(u)) (2)



(1)       f(x,x) =>e
(2)       f(g(u),v) =>g(f(u,v))
(3)       g(f(x,g(x))) => e

(4)      g(g(f(u,g(g(u))))) => e
(5)      g(f(f(x,g(x)),v)) => f(e,v)

14bviCritical Terms and Critical Pairs (2)

g(f(g(u),g(g(u)))

e g(g(f(u,g(g(u)))))

(by 3) (by 2)

(3)

(2)

f(g(f(x,g(x))),v)

f(e,v)g(f(f(x,g(x)),v))

(by 3)(by 2)
(3)

(2)

g(f(f(x,g(x)),g(f(x,g(x)))))

eg(f(f(x,g(x)),e))

(by 3)(by 3)
(3)

(3)

Superposition and forming critical pairs is also paramodulation:

(1)       f(x,x) = e        (2)       f(g(u),v) = g(f(u,v))        (3)       g(f(x,g(x))) = e

Use (1): unify  f(x,x) with f(g(u),v)  
giving f(g(u),g(u)) = e and f(g(u),g(u)) = g(f(u,g(u)))
to obtain e = g(f(u,g(u))) (or vice versa) by paramodulation.

14bviiSuperposition and Paramodulation

Generally:

L1 = R1  and L2[L3] = R2   (meaning L3 occurs in context L2) and L1θ = L3θ 

gives L2 [ R1θ] θ = R2θ (ie replace L3θ   = L1θ  by R1θ)

In the example:

L1 is f(x,x) and L3 is f(g(u),v);  the context L2 is empty; θ is  {x/g(u), v/g(u)}
R1 is e and R2 is g(f(u,v)); R1θ =e and R2θ = g(f(u),g(u))
yielding:
L2[e] = e = g(f(u,g(u)))    

We saw already that rewriting is a restricted form of paramodulation

14bviiiSuperposition:

Example 1. On slide 14bv/14bvi rule (3) and rule (2) can be superposed in two different 
ways: the first way yields a critical term g(f(g(u), g(g(u)))), which rewrites by (2) into 
g(g(f(u,g(g(u))))) and by (3) into e giving new rule g(g(f(u,g(g(u))))) =>e. The second way 
yields a critical term f(g(f(x,g(x))),v), which can be rewritten by (2) into g(f(f(x,g(x)),v)) 
and by (3) into f(e,v). This gives another new rule g(f(f(x,g(x)),v))=>f(e,v). Rule (3) can 
be superposed onto a copy of itself:

g(f(x,g(x))) matches with g(x1) in the copy g(f(x1,g(x1)), rewriting to g(f(f(x,g(x)),e)) and 
also to e, giving the rule g(f(f(x,g(x)),e)) ==>e.

Note also that  g(f(u,g(u)) on slide 14bvi cannot be further rewritten by (1) or (2); it can 
only be narrowed.

Example 2. Applying superposition to the example of 14bix, the first attempt at a new 
rule yields nothing. Although a term that matches (0+y)+z can be rewritten in two 
different ways, the result is the same eventually. But the second attempt, using rules (2) 
and (3), in which (x+y) in (3) is matched with -x1+x1 from (2), gives a new rule -
x1+(x1+z)=>z. In the example, this allows - -a+(-a+a) to be rewritten into a, so the rewrite 
proof using this rule in addition to rules (1-3) is - -a+0 <= - -a+(-a+a)=>a (see slide 14bx). 
This has a smaller peak than before (and has a new critical term). The last step gives 
another new rule which allows - -a+0 to be rewritten directly into a.

If the example on 14bix is continued, after some more superpositions it will eventually 
terminate, there being no new rules produced. But the example on 14bvi  does not 
terminate - there are always new (and more and more complex) rules that  can be derived. 

Example:   Want to show:       --a + 0 => a
 
Given   (1)    0+x => x         (2)   -x + x => 0    (3)   (x+y)+z => x+(y+z)

14bix

(0+y)+z

(y+z)

(I) Superpose 1 on 3:

0+(y+z) (y+z)

3 1

(II) Superpose 2 on 3:
gives -x1+(x1+z) =>z  (4))

(-x1+x1)+z

0+z

z

-x1+(x1+z)

2 3

(III) Superpose 2 on 4:
gives - - z+0 => z  (5)

- -z+(-z+z)

- -z+0 z

2 4

(IV) Now, using (5) can 
rewrite - - a + 0 into a

Exercise:
Find some more rules that will 
allow to rewrite --a into a.
Hint: Try (3) + (5) to give (6) and 
then use (6) to derive z+0=>z 



Example:   Want to show:  --a + 0 => a
 
Given     (1)    0+x => x         (2)   -x + x => 0    (3)   (x+y)+z => x+(y+z)
Derived  (4)  -x1+(x1+z) => z  and (5)  - -z+0 => z

14bx

Example:

1   0+y =>y    
2   s(x) +y => s(x+y)

No possibilities here for overlapping  LHSs except 
overlapping on a variable - only  ever lead to 
equations of the form t1=t1, so no extra rules.  eg 
overlap 0+y1 on x in (2). Effect is to bind x==0+y1

(- - a + -a) + a

- - a+0 a

- - a +(-a+a) 0+a

(3) (2)

(1)(2)

(- - a + -a) + a

- - a+0 a

- - a +(-a+a) 0+a
(4)

(- - a + -a) + a

- - a+0

a

- - a +(-a+a) 0+a

(5)

s(0+y1)+y =>(1) s(y1)+y and =>(2) s(y1+y), OR 
s(0+y1)+y =>(2) s((0+y1)+y) and =>(1) s(y1+y) 

PROPERTIES OF REWRITE SYSTEMS  (2) 14ci

•   Would like a rewrite system R to be complete 
                       If s =* t  then ∃u[s=>*u and t =>*u]   
i.e. when two terms are equal want to prove that they are by rewriting.
This is called the Church Rosser property. 

•   and sound      If ∃u[s =>*u and t =>*u]  then s =*t 
i.e ¬(s=t) ==>* [ ]  by paramodulation
i.e. two terms proved equal by rewriting are so.

To be useful, a rewrite system should also terminate - 
           else how could you use it to conclude  ¬(s =* t )?

• A rewrite system is called Noetherian (terminating) if there is no infinite 
sequence of rewrites of the form   s0 => s1 => … => sn =>...   
(eg f(x,y) => f(y,x) is not terminating)

Proving Soundness  is quite easy:
Recall that rewrite rules are also equations and rewriting is restricted 
paramodulation;

PROPERTIES OF REWRITE SYSTEMS  (3) 14cii

Soundness: If ∃u[s =>*u and t =>*u]  then s =*t   

Hence
s =>* u and t =>* u implies s =* u and t =*u; 
by paramodulation ¬(s=u) ==>* ¬(u=u) (1) and ¬(t=u)==>* ¬(u=u)  (2)  
        (all by EQAX)
Now, given ¬(s=t) first apply steps of (1) to s to derive ¬(u=t), 
then apply steps of (2) to to derive ¬(u=u), 
and then use EQAX1 and resolution.

Some Useful Facts (Proofs later)

(Fact A )  R is Church-Rosser iff R is Confluent   

(Fact B )  If R is confluent and terminating then every term has a unique 
               normal (irreducible) form. We say R is canonical .  

(Fact C )  If R is locally confluent and terminating then R is confluent.  

PROPERTIES OF REWRITE SYSTEMS  (4) 14ciii

•   Church-Rosser  property:  
     if s=*t then ∃u[s=>*u and t=>*u ]
 i.e. equal terms rewrite to the same term.

•   Confluence:
     if s =>*u and s =>* v then ∃t[u=>*t and v =>*t]
i.e. if a term rewrites to 2 other terms then those terms rewrite to a common term.

•   Local  confluence:
     if s=>u and s=>v  then   ∃t[u=>*t and v=>*t].



14civ

Given : R, a confluent and terminating rewrite system and two terms s and t.

(i)   Since R is confluent it is sound and complete.
(ii)  Apply R to s and t; since R is terminating the rewriting will stop.
(iii) Suppose s =>* w and t =>*z and w and z are identical.
(iv) Then s =* t  (by soundness).
(v)  Suppose s =>* w and t =>*z and w and z are not identical. Then s =*t is false:

USING A REWRITE SYSTEM to SHOW s=t

s

w

t

z

If w and z are identical 
then s =*t 

If w and z are different 
then ¬(s =*t) 

∗∗∗∗ ∗∗∗∗

s t

w

x

z

∗∗∗∗
∗∗∗∗

∗∗∗∗
∗∗∗∗

y

∗∗∗∗
∗∗∗∗ ∗∗∗∗

Proof of (v):  Suppose s =*t were true; by completeness ∃x[s =>*x and t =>*x] and 
by Fact B x rewrites to a unique irreducible term y (say). Hence s and t also 
rewrite to y uniquely, contradicting that w and z are not identical. (See left below)

If R is not locally confluent, then the dotted part  in the 
diagram cannot be completed;  so add rule u1 => v1 (or 
v1 => u1). The two terms u and v  then  rewrite to a 
common term, namely v1 (or u1). 
This is the basis of the Knuth Bendix procedure.

•  Using the facts A, B and C, and given a rewrite system R, to 
show R is complete you need to:

•  show R has the Church-Rosser property;
•  i.e. show R is confluent (by Fact A);
•  i.e. show R is locally confluent and terminating ( by Fact C).

Knuth Bendix relies on rewriting sequences being terminating. 
Informally, "Termination" will occur if each term in a rewriting sequence is 
"smaller" than the previous one and no infinite descending chains of such 
sequences can exist.

If (i) for all rewrite rules the RHS is "smaller" than the LHS, and 
  (ii)  reducing a subterm of a term also reduces the term,  
then sequences of rewrites will lead to smaller and smaller terms. 
As long as the ordering chosen is well-founded, termination will always occur.

14cvBasis of the KNUTH-BENDIX procedure

s

u v

t

u1 v1

∗∗∗∗ ∗∗∗∗

14di

Church-Rosser →→→→ confluence : 
Suppose s =>* u and s =>*v:
then u =* v (turn around steps from s to u)
hence by assumption the rules have the Church-Rosser 
property and  ∃t[u =>*t and v =>*t].

Confluence →→→→ Church-Rosser   
Suppose u =* v • •

u
•

• • v

t1
t2

t3
Base– P(0): Either:     u =>*v  or v =>*u                           
or u =>* t' and v =>* t'    (i.e. no peaks)
Clearly  ∃t[u =>*t and v =>*t]  is true in all cases.

Ind. Step – let n>0 and assume as IH that P(n-1). We show P(n):
Suppose confluence and a rewrite proof using n peaks.

Then t1 exists by confluence and t1=* v ; there are  n-1  peaks in the proof 
to show t1=* v;  hence (by IH)  ∃t3 [t1 =>*t3 and v =>*t3].
Since u =>*t1,  ∃t3 [u =>*t3 and v =>*t3] and so P(n) holds.

s

u v

t

* *

**

Proof of FACT A

Let P(n)  be "Confluence +  a rewrite proof 
using n peaks => ∃t[u =>*t and v =>*t] ".

14dii
Confluent and terminating implies unique normal forms.
Suppose there were two different normal forms for s,   
namely u and v, u≠v.
By confluence u and v  rewrite to a common term, which 
contradicts irreducibility.  Termination ensures s does not 
rewrite for ever (so u,v exist).

s

u v

t

* *

**

PROOF OF FACT B:

Local Confluence + Termination →→→→ Confluence
• Assume Local confluence and termination. 
Termination ensures that there are a finite 
number of terms obtained by rewriting s. 
Let s be arbitrary and suppose s rewrites to 
two different terms u and v.
• Use structural induction over set of rewrites of s.
•  Ind Step : Assume that all terms obtained by 
rewriting s satisfy confluence;  i.e. u1,v1 and  rewritings 
of these.  Show that u and v rewrite to a common term.
•  Consider the first steps from s to u and to v, which 
reach u1 and v1. t1 exists by local confluence. By 
hypothesis, since u1,t1,v1 are rewritings of s, t2 and t3 exist, 
hence t exists.  Hence, u and v also rewrite to a common term.

s

u1 v1

u t1 v

t2 t3

t

* *

*
*

* *

*

* *

*

PROOF OF FACT C (BUNDY):
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Comments on Slides 14d:

In the proof of Fact A, the induction proof allows to conclude that P(n) holds for every 
n≥0. Since u =* v there must exist a rewrite proof, even if it uses some equations in the 
wrong direction. Remember that u and v are ground and the derivation by paramodulation 
to show ¬(u=v)==>[] can always be made into a ground derivation. This follows from the 
completeness of paramodulation. This rewrite proof must have n≥0 peaks and hence the 
property P(n) can be applied to derive the Church-Rosser property that ∃t3 [t1 =>* t3 and 
v=>* t3].

For Fact C: Let s  be an arbitrary term.  Structural induction over the set of all terms 
obtained by rewriting s is used to show that confluence holds for s.  Note that there is a 
finite number of such terms as R is terminating.

The Induction Hypothesis states that, for all terms t  obtained from s  by rewriting, t 
satisfies confluence. 
Let s  rewrite to two different terms u  and v  and let u1  and v1 , respectively, be the 
results of the first rewriting steps from s  to u  and to v .  

By local confluence t1  exists and hence, by the induction hypothesis, t2  and t3  exist. 
(See diagram on 14dii.)
Again by the induction hypothesis applied to t2  and t3 ,  t  exists. Hence confluence for s  
is shown. 

The Base Case is when s doesn't rewrite at all. Clearly, s satisfies local confluence.

14eiSummary of Slides 14
1. A rewrite rule is an ordered equation used in paramodulation in one direction 
only, from left to right. Variables on the rhs must also occur on the lhs.

2. A rewrite rule r=>s can be used to rewrite a term e[t], by matching t with rθ 
and then replacing it by sθ. Note no substitutions are applied to t. If r and t are 
unified, so a substitution is made also to t, then narrowing has occurred.

3. A term may often be rewritten in more than one way using rules in a rewrite 
system R. R is called canonical if, whatever rewrites are applied to a term t, 
there is only one outcome (i.e the rewrite system is confluent and terminating).

4. A rewrite System is called terminating if there is no infinite sequence of 
rewrites for any term in the language.

5. A rewrite system is  confluent  if, whenever t rewrites to t1 and t2, then t1 
and t2 rewrite to a common term s.

6. A rewrite system is Church Rosser if, whenever s=t (modulo rewrites taken 
as ordinary equations), then s and t rewrite to a common term.

7. At the heart of the Knuth Bendix procedure is the aim to make a rewrite 
system confluent.

14eii

8. The main operation in the Knuth Bendix procedure is the formation of 
critical pairs. All terms s that can be rewritten in 2 or more ways can be 
captured by superposition, in which the left hand sides of 2 rewrite rules (say 
rule 1 and rule 2) are matched, or overlapped. The resulting term is rewritten 
as far as possible starting in two different ways, first using rule 1 and then 
any of the other rules, and then using rule 2 and any of the other rules.

If the results are different, say s1 and s2, then s1 and s2 are called a critical 
pair.

9. The Knuth Bendix method relies on the fact that local confluence + 
termination imply confluence. A system is locally confluent  if, whenever s 
rewrites to 2 different terms s1 and s2 in one step, then s1 and s2 rewrite to 
a common term.

Note the difference with confluence, where s is assumed to rewrite to s1 and 
s2 in an arbitrary number of steps. Thus local confluence is weaker, hence 
the extra condition on termination is required in the Knuth Bendix procedure.

10. A confluent and terminating system can be used to show s=*t modulo a 
rewrite system: if s and t (eventually) rewrite to the same term then s=*t, and 
if s and t (eventually) rewrite to different terms then ¬(s=*t).


