AUTOMATED REASONING

SLIDES 15:

TERMINATION OF REWRITE SYSTEMS
Properties for termination
Stable orderings
Ordering multi-sets
Useful partial orders: kbo, lpo, rpo

Three Useful Facts about a rewrite ruleset $\mathbf{R} \quad$ 15ai

(Fact D) If < is well-founded on the set of ground terms, then R will be terminating if for ground terms s and t, if $s=>^{*} t$ then $s>t$.
(Fact E) If there exists a monotonic and well-founded ordering > such that lo $>$ ro for each rule and each ground substitution σ, then R will be terminating
(Fact F) Even if not monotonic, Fact E can be relaxed: R will be terminating if $s=>^{*} t$ and $s>t$ implies $f($...s..) $>f(\ldots t . .$.$) , (and the other$ properties) - i.e. R is monotonic at least on terms that rewrite to each other

Example: | $(1) f(e, x)=>x$ | $(2) f(i(x), x)=>e \quad s>t$ if \#(s) $>\#(t)$ |
| :--- | :--- |
| (We'll use Fact $E):$ | |
| Notice this is not a total order since $\neg(f(e, i(e))>f(i(e), e)), \neg(f(i(e), e)>f(e, i(e)))$ | |
| For each ground substitution for x, clearly LHS $(2)>R H S(2)$ | |
| Also LHS $(1)>R H S(1): \# f(e, x)=2+\# x>\# x \quad(\# x$ means number symbols in $x)$ | |
| The order is monotonic: if $s<t$ then $f(s, z)<f(t, z), f(z, s)<f(z, t), i(s)<i(t)$ (for any $z)$ | |
| The order is well-founded as \#s is ≥ 0. | |

(based on Dershowitz JSC 3, 87)

Some basic properties relevant for termination: (note: $s \geq t$ means $s>t$ or $s=t$)

- Monotonicity: if $t>u$ then $f(\ldots \mathrm{t} . .)>.\mathrm{f}(\ldots \mathrm{u} . .$.$) .$
.e. reducing a subterm reduces any superterm of it.
.g. would like to be sure that if $\mathrm{a}<\mathrm{b}$ then $\mathrm{g}(\mathrm{h}(\mathrm{a}))<\mathrm{g}(\mathrm{h}(\mathrm{b}))$
- Simplification: A monotonic ordering > is called a simplification ordering if for all ground terms $t, f(\ldots t \ldots)>t$.
Most standard orders used to prove termination are simplification orderings.
- Stability: if $\mathrm{t}>\mathrm{u}$ then $\mathrm{t} \sigma>\mathrm{u} \sigma$ for all ground substitutions σ. i.e. enables $>$ to be applied between non-ground terms.

$$
\begin{array}{ll}
\text { Example: } \quad s>t \text { if } \#(s)>\#(t) \quad \begin{array}{c}
\text { - for ground term } s \#(s) \text { is the number of } \\
\text { symbols (constants or functions) in } s
\end{array}
\end{array}
$$

Monotonic? - yes: if s has more symbols than t, then
$f(\ldots, s, \ldots)$ has more symbols than $f(\ldots, t, \ldots)$
Simplification? - yes: $f(\ldots, s, \ldots)$ has more symbols than s
Stable? - depends:
eg we can say $f(x, x)>g(x)$ - whatever ground term x is \#f(x,x)>\#g(x)
but not $f(x, y)>h(x, x)$ - if x is bound to a longer term than $y, \# f(x, y)<\# h(x, x)$

More Examples		15aiii
1. $g(g(f(x)))=>f(g(x))$ Again can count terms.		
Check that LHS > RHS for all ground substitu It is monotonic: if $\mathrm{s}<\mathrm{t}$ then $\mathrm{g}(\mathrm{s})<\mathrm{g}(\mathrm{t})$ and $\mathrm{f}(\mathrm{s})$	for x (obvious!) $f(t)$	
2. (for you to try): $f(f(x))=>f(g(f(x)))$? Use Fact F here. Find a well-founded order (not necessarily m LHS>RHS for all x Show the order is monotonic on terms that r 3. (for you as well): $\mathrm{f}(\mathrm{g}(\mathrm{x}))=>\mathrm{g}(\mathrm{g}(\mathrm{f}(\mathrm{x})))$ Again use Fact F.	fgfggfa => ? onic) and show to each other. Try fgfggfa =>?	

Solutions to Examples

$\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{x})))$.
Count \#pairs of adjacent fs. It is clear that for each substitution for x the number of adjacent pairs of f is reduced by 1 . As counts are ≥ 0 the ordering is well-founded.
The ordering is not monotonic though: $\mathrm{g}(\mathrm{f}(\mathrm{f}(\mathrm{a}))$) has 1 pair of adjacent f and $\mathrm{f}(\mathrm{a})$ has none. So $g(f(f(a)))>f(a)$. But $f(g(f(f(a))))$ is not $>f(f(a))$ as both have 1 pair of adjacent f However, $g(f(f(\mathrm{f}))$) does not rewrite to $\mathrm{f}(\mathrm{a})$, so we can apply FACT F.
$\mathrm{f}(\mathrm{g}(\mathrm{x}))=>\mathrm{g}(\mathrm{g}(\mathrm{f}(\mathrm{x})))$
Count \#gs to right of each f. Note \#fs remains fixed for rewriting a given term - let \#fs = n . Let (ai) be the number of g s to right of i 'th f from the left.
Define (a1, a2, ..., an) > (b1, b2, ... bn) iff ai $>$ bi and $\forall j: i+1 \leq j \leq n . a j=b j$
ie i is first position from right at which ai $\neq b i$
e.g. fgfggfa $=>$ fgggfgfa and the counts are $(3,2,0)$ and $(4,1,0)$

Check > is well-founded and LHS>RHS for all substitutions of x
Well founded: minimal counts $=(0 \ldots 0)$ ($\mathrm{n} \times 0$ for n fs). eg count $(\mathrm{g} . . . \mathrm{gfffa})=(0,0,0)$ Suppose $\mathrm{f}\left(\mathrm{g}(\mathrm{x})\right.$) has k occurrences of f with count $=\left(\mathrm{c}_{\mathrm{k}}, \ldots, \mathrm{c} 1\right)$.
Then $\mathrm{g}(\mathrm{g}(\mathrm{f}(\mathrm{x})))$ has count $=\left(\mathrm{c}_{\mathrm{k}}-1, \ldots, \mathrm{c} 2, \mathrm{c} 1\right)$ which is $\left\langle\left(\mathrm{c}_{\mathrm{k}}, \ldots, \mathrm{c} 1\right)\right.$)
Also, check that if $s=>* t$ and $s>t$ then $f(s)>f(t)$ and $g(s)>g(t)($ do this in a similar way to
above - notice $\mathrm{g}(\mathrm{s})$ has the same count value as s$)$. Then use Fact F .

Well-founded Ordering

An order < is a well-founded ordering on a set of terms if there is no infinite descending sequence of terms $\mathrm{s} 0>\mathrm{s} 1>\mathrm{s} 2>\ldots$. eg $<$ is well-founded on $\{$ integers $>\mathrm{k}\}$ for any particular choice of k , but not on the set of integers. For our purposes we assume the s_{i} are derived by rewriting:
s.t. $\mathrm{s} 0=>\mathrm{s} 1, \ldots, \mathrm{~s}_{\mathrm{i}}=>\mathrm{s}_{\mathrm{i}}+1$

Proof of Fact D :

Let < be well-founded and $s=>t$ imply $s>t$ for all terms s and t. (*). Suppose first that $s 0=>s 1=>$ $\ldots \mathrm{sn} \ldots$ is a non-terminating, ground rewrite sequence using R , then, by $(*), \mathrm{s} 0>\mathrm{s} 1>\ldots>\mathrm{sn}>\ldots$ But as > is well-founded the sequence cannot continue forever. So the original rewrites cannot do so either. This is a contradiction, so the original assumption is false.
For the general case, notice that no variables other than those in s0 may appear in any si Suppose s 0 is not ground and there is a non-terminating sequence $\mathrm{s} 0 \Rightarrow \mathrm{~s} 1=>\ldots \mathrm{sn} \ldots$ Consider some ground instance $s 0 \theta$ of $s 0$ and hence of $\{s i\}$ ($\{s i \theta\}$). It is still the case that $s 0 \theta$ $\Rightarrow \mathrm{s} 1 \theta \Rightarrow>\ldots$ and hence $\mathrm{s} 0 \theta>\mathrm{s} 1 \theta>\ldots>$ and this sequence must terminate at some $\mathrm{sk} \theta$ as is well-founded. Hence sk θ does not rewrite to $\mathrm{sk}+1 \theta$. But then sk could not rewrite to $\mathrm{sk}+1$ either, a contradiction. So the original rewrite sequence must terminate.

Proof of Fact E:

Let < be a well-founded monotonic order and l $\sigma>$ r σ for each rule and each ground substitution σ. Suppose that $\mathrm{s} 0=>\mathrm{s} 1=>\ldots \mathrm{sn} \ldots$ is a non-terminating ground rewrite sequence using R , then, by assumption $\mathrm{s} 0>\mathrm{s} 1>\ldots>\mathrm{sn}>\ldots$ (since each rewrite uses a rule and $<$ is monotonic). But as $>$ is well-founded the sequence cannot continue forever, so the original rewrites cannot do so either. This is a contradiction, so the original assumption is false.
In case the rewrite sequence includes variables, instantiate to obtain a non-terminating ground rewrite sequence and use the above.

Some notation:

A standard partial order $<$ is irreflexive and transitive (and $s<t$ implies $\neg(\mathrm{t}<\mathrm{s})$).
The relation \leq is defined by $\mathrm{s} \leq \mathrm{t}$ iff $\mathrm{s}<\mathrm{t}$ or $\mathrm{s}=\mathrm{t}$. ($\mathrm{s}<\mathrm{t}$ is the same as $\mathrm{t}>\mathrm{s}$) $\mathrm{f}<$ is a standard partial order, then \leq is reflexive, transitive, anti-symmetric
(i.e. $s \leq t$ and $t \leq s$ implies $s=t$

A quasi-partial order $<\approx$ is reflexive and transitive but need not be antisymmetric.

$$
\text { i.e. } s<\approx t \text { and } t<\approx s \text { does not force } s=t \text {. }
$$

Instead, for a quasi-order, if $s<\approx t$ and $t<\approx s$, then we say $s \approx t$. For a quasi-order $<\approx$, we define $s<t$ iff $s<\approx t$ and not $(t<\approx s$).

The orders $\leq \mathrm{kbo}$ and \leq rpo etc. defined on slides $15 \mathrm{ci}-15 \mathrm{civ}$ are all quasiorderings. They are also simplification orderings.

Quasi-orderings can be simplification orderings, monotonic, stable, etc. The definitions of those things are adjusted by using the quasi-order $<\approx$ in place of the standard partial order <.

To show termination of R using a simplification quasi-order $<\approx$, show each rule in R satisfies $l \sigma>$ ro for all substitutions σ.

Knuth - Bendix ordering (kbo)

$s=\left(f\left(s 1_{1} \ldots s m\right)\right) \geq_{k b o} t(=g(t 1 \ldots t n))$

- if $s>t$ (where $>\approx$ is a simplification quasi-ordering on ground terms) - or $\mathrm{s} \approx \mathrm{t}$ and $\mathrm{f}>1 \mathrm{~g} \quad(>1$ applies to functors here) (definitely $>$) - or $s \approx t, f=g$ and $(s 1 \ldots s m) \geq^{*}(t 1 \ldots t n)$
\geq^{*} is the lexicographic ordering induced by $\geq_{k b o}$

To use kbo to show termination of R :

show each rule in R satisfies $I>r$ for all substitutions σ.

1. $0+X=>x$
2. $(-x)+x=>0$
3. $(x+y)+z=>x+(y+z)$

S $<\approx$ t
\# occurrences of +/- in s \leq \# occurrences of +/- in t;

1. is ok since \#+/- in LHS > \#+/- in RHS
2. is ok since \#+/- in LHS $\geq 2>\#+$ - in RHS $=0$.
3. is ok since \#+/- in LHS = \#+/- in RHS, both terms have outer +, and $((\mathrm{x}+\mathrm{y}), \mathrm{z}) \geq^{*} k b o(\mathrm{x},(\mathrm{y}+\mathrm{z}))$ as \#+/- in $\mathrm{x}+\mathrm{y}>\mathrm{\#}+/-\mathrm{in} \mathrm{x}$;
(i.e. lexicographic order based on kbo)

Also, $<\approx$ is a simplification ordering: eg $x<y==>-x<-y$ and $-x>x$.

Recursive Path Ordering (rpo)
15cii

- or $f>1 \mathrm{~g}$ and $\mathrm{s}>$ rpo tj for all $\mathrm{j}=1 \ldots \mathrm{n}$
(>1 orders functors)
(definitely $>$)
- or $f=g$ and $\{s 1 \ldots s m\} \gg\{t 1 \ldots \mathrm{tn}\}$ (>> is a multi-set ordering)

Multi-set Ordering

- A multi-set over a set of terms E with order $>$ is a mapping m from E to N. e.g. $S=\{3,3,4,0\}=\{3->2,4->1,0->1\} \quad$ or $S(3)=2, S(4)=1, S(0)=1$.
- If S is a multi-set then $d(S)=\{$ elements in S (as a set) $\}=$ domain of S
- If e in E and not(e in $d(S))$ then $S(e)=0$
- $\quad S \gg T$ iff $\forall e: e$ in $d(T)[S(e) \geq T(e) \vee \exists g[g$ in $d(S) \wedge g>e \wedge S(g)>T(g)]]$
$\{3,3,4,0\} \gg\{3,3,2,2,1,1\}$ if $\{4,0\} \gg\{2,2,1,1$) (remove occurrences of = elements)
$\{4,0\} \gg\{2,2,1,1\}$ if each element in $\{2,2,1,1\}$ is dominated by an element in $\{4,0\}$
(Here 4 dominates all of $2,2,1,1$.)
$\{3,3,4,0\} \gg\{3,3,3\}$ if $\{4,0\} \gg\{3\}$. (4 dominates 3 so OK)
$\{4,3,3\} \gg\{4,3\}$ if $\{3\} \gg \varnothing$.
(OK)
$\{4,1,1\} \gg\{4,1,2\}$ if $\{1,1\} \gg\{2\}$. (Not OK as 1 doesn't dominate 2)

$$
1 \neg \neg x=>x
$$

$2 \neg(x \wedge y)=>\neg x \vee \neg y$
$3 \neg(x \vee y)=>\neg x \wedge \neg y$
$4 x \wedge(y \vee z)=>(x \wedge y) \vee(x \wedge z)$
$5(y \vee z) \wedge x=>(y \wedge x) \vee(z \wedge x)$

- $1 \neg \neg x \geq$ rpo $x\{x$ is a subterm $\}$
(use $n(x)$ for $\neg x$ if you prefer)
- $2 \neg(x \wedge y) \geq$ rpo $\neg x \vee \neg y$ if $\neg(x \wedge y)>$ rpo $\neg x$ and $>$ rpo $\neg y$ (choose $\neg>1 \vee$)
i.e. if $\{x \wedge y\} \gg\{x\}$ (and $\gg\{y\}$) which it is as x / y are subterms of $x \wedge y$ (use $a(x, y)$ for $x \wedge y$, and $o(x, y)$ for $x \vee y$ if you prefer)
- 3 similar
- $4 \mathrm{x} \wedge(\mathrm{y} \vee \mathrm{z}) \geq$ rpo $(\mathrm{x} \wedge \mathrm{y}) \vee(\mathrm{x} \wedge \mathrm{z})$ if $\mathrm{x} \wedge(\mathrm{y} \vee \mathrm{z})>$ rpo $\mathrm{X} \wedge \mathrm{y}$ and $>$ rpo $\mathrm{X} \wedge \mathrm{Z}$ (choose $\wedge>1 \vee$)
i.e. if $\{x,(y \vee z)\} \gg\{x, y\}$ and $\gg\{x, z\}$ which they are.
- 5 similar

Lexicographic path ordering (Ipo)

- $s i \geq$ lpo t for some $i=1 \ldots \mathrm{~m}$, or
- $f>1 \mathrm{~g}$ and $\mathrm{s}>$ ipo tj for all $\mathrm{j}=1 \ldots \mathrm{n}$, or
- $f=g$ and $(s 1 \ldots s m) \geq^{*}$ ipo ($\mathrm{t} 1 \ldots \mathrm{tn}$) and $\mathrm{s}>$ ipo tj for all $\mathrm{j}=2 \ldots \mathrm{n}$,
where \geq^{*} ipo is the lexicographic ordering induced by \geq ipo

Example of using lexicographic path ordering

$(x+y)+z \geq$ lpo $x+(y+z):$ main functor $=+$ in both cases so case 3

- $\left((x+y, z) \geq^{*}\right.$ po $(x,(y+z))$ since $(x+y) \geq{ }_{\text {po }} x$
(because x is a subterm of $x+y$), and
$\cdot(\mathrm{x}+\mathrm{y})+\mathrm{z} \geq$ lpo $(\mathrm{y}+\mathrm{z})$: main functor $=+$ in both, so case 3
- $((x+y, z) \geq *$ ıpo (y, z) since $(x+y) \geq$ lpo y, and
$\cdot(x+y)+z \geq$ lpo z (because z is a subterm)

The three orderings kb0, tpo and lpo

The Knuth Bendix Ordering (on 15 ci) is the easiest to use. To apply it you need an order on functors that you choose and a simplification order $<\approx$ on ground terms. A standard choice for $<\approx$ is the number of symbols, but others are possible. You just need to show your choice is a simplification order (ie if $x<\approx y$ then $f(\ldots x .)<.\approx f(\ldots y . .$.$) for all functors f.) In Case 3$ the lex ordering is a dictionary ordering based on the underlying kbo. That is, to compare two lists of terms, compare the lists as you would compare words in a dictionary
The Recursive Path Ordering (on 15 cii) is next easiest. There are 3 cases. To show $\mathrm{s} \geq$ roo t , Case 1 checks if an argument of $s \geq r$ roo t. This will be true, for example, if t occurs as a subterm of s, for you can recursively apply this case until you have extracted t as a subterm of s. If Case 1 doesn't hold, then look at the outer functors of s and t. Note that the second condition requires s to be definitely greater than t. In Case 3 a multi-set ordering is used. Despite the complicated definition it is easy to check. First strike out equal terms from the two lists. Next, take each element e left in t and check there is an element left in s that is larger than e. (Exercise: Show this satisfies the given definition of >>.)
The Lexicographic Path Ordering (on 15civ) is similar to rpo, except for Case 3. In Case 3 you must first check the arguments of s and t are pairwise lexicographically ordered (as in kbo) and then recursively check s is definitely $>_{\text {lpo }}$ than each argument of t (other than the first). You can check that if the first lexicographic condition finds (say) argument 2 of $s>_{\text {lpo }}$ argument 2 of t , then the second condition can start at argument 3 , since Case 1 would hold for $\mathrm{s}>_{\text {lpo }}$ argument 2 . For example, to compare $f(x, b, y)$ and $f(x, a, y)$, where $b>a$, Case 3 says to compare $[\mathrm{x}, \mathrm{b}, \mathrm{y}]$ and $[\mathrm{x}, \mathrm{a}, \mathrm{y}]$ lexicographically, which holds as $\mathrm{b}>\mathrm{a}$. The second condition says to check $f(x, b, y)>_{\text {lpo }}$ a and $>_{\text {lpo }} y$. The first of these is known (Case 1) as we showed it when checking $f(x, b, y)$ and $f(x, a, y)$.

Summary of Slides 15

15di

1. Rewrite systems are most useful when they are terminating. There are several ad hoc methods to show termination, as stated in Facts D, E and F .
2. Important properties of term orderings are stability: if $\mathbf{s}<t$ then also $s \theta<t \theta$ monotonicity: if $\mathrm{s}<\mathrm{t}$ then $\mathrm{f}(. . \mathrm{s} . .)<.\mathrm{f}(. . \mathrm{t} . .$.$) ; and simplification: \mathrm{t}<\mathrm{f}(. . \mathrm{t} . .$.$) .$
3. $s \leq t$ is defined as $s<t$ or $s=t$ (for a partial order \leq).
4. The more useful orders are based on quasi-orderings, which are (partial) orders that are not anti-symmetric. That is, it is possible for two terms s and to satisfy $\mathrm{s}<\approx \mathrm{t}$ and $\mathrm{t}<\approx \mathrm{s}$ and yet for $\mathrm{s} \neq \mathrm{t}$. $\mathrm{s}<\mathrm{t}$ iff $\mathrm{s}<\approx \mathrm{t}$ and not $(\mathrm{t}<\approx \mathrm{s}$).
5. The three quasi-orderings considered here are knuth bendix ordering (kbo) recursive path ordering (rpo) and lexicographic ordering (lpo). All three orders depend also on an ordering of function symbols, which can be chosen by the user. The last two are very similar and only differ when the two terms to be compared have the same top level functor. The knuth bendix ordering depends also on a total order on ground terms that is also a simplification ordering. The recursive path ordering uses the concept of multi-set ordering.
