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•  Monotonicity:  if t>u then f(…t…) > f(…u…).   
i.e. reducing a subterm reduces any superterm of it.
e.g. would like to be sure that if a<b then g(h(a))<g(h(b)).

•  Simplification:  A monotonic  ordering > is called a simplification  ordering 
if for all ground terms t,  f(… t …) > t.   
Most standard orders used to prove termination are simplification orderings.

•  Stability: if t>u then tσ > uσ  for all ground substitutions σ.  
i.e. enables > to be applied between non-ground terms. 

Termination of Rewrite Systems (I)
(based on Dershowitz, JSC, 3, 87)

Some  basic  properties  relevant for termination: (note: s ≥t means s>t or s=t)

Example:      s > t if #(s) > #(t)           – for ground term s #(s) is the number of 
                                                             symbols (constants or functions) in s
Monotonic? – yes:  if s has more symbols than t, then                  

      f(...,s,...) has more symbols than f(...,t,...)
Simplification? – yes:  f(...,s,...) has more symbols than s

Stable? – depends:  
eg   we can say f(x,x)>g(x) – whatever ground term x is #f(x,x)>#g(x)
       but not f(x,y) > h(x,x) – if x is bound to a longer term than y, #f(x,y)<#h(x,x)

(Fact D)  If < is well-founded on the set of ground terms, then R will be 
terminating if for ground terms s and t, if s =>*t then s>t.

(Fact E)  If there exists a monotonic and well-founded ordering > such that lσ 
> rσ for each rule and each ground substitution σ, then R will be terminating 

(Fact F)    Even if not monotonic, Fact E can be relaxed: R will be 
terminating if  s =>*t and s>t implies f(...s..)>f(...t...), (and the other 
properties) – i.e. R is monotonic at least on terms that rewrite to each other.  
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(We’ll use Fact E) :
Notice this is not a total order since  ¬(f(e,i(e)) > f(i(e),e)), ¬(f(i(e),e) > f(e,i(e)))

For each ground substitution for x, clearly LHS(2) > RHS(2)
Also LHS(1)>RHS(1):  #f(e,x) =2+#x  > #x     (#x means number symbols in x)                

Three Useful Facts about a rewrite ruleset R

Example:    (1) f(e,x) => x      (2) f(i(x),x) => e            s > t if #( s) ># (t)       

The order is monotonic: if s<t then f(s,z)<f(t,z), f(z,s)<f(z,t), i(s)<i(t) (for any z)
The order is well-founded as #s is ≥0.     
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1.  g(g(f(x)))  => f(g(x))  Again can count terms.

Check that LHS > RHS for all ground substitutions for x (obvious!)
It is monotonic:    if s < t then g(s) < g(t) and f(s) < f(t)

2.  (for you to try):    f(f(x)) => f(g(f(x)))  ?   (try  ffgfggfa => ?  
Use Fact F here.  
Find a well-founded order (not necessarily monotonic) and show 
LHS>RHS for all x
Show the order is monotonic on terms that rewrite to each other.

3.  (for you as well):  f(g(x)) => g(g(f(x)))              Try fgfggfa =>?     
Again use Fact F.

More Examples
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f(g(x)) => g(g(f(x))). 
Count #gs to right of each f. Note  #fs remains fixed  for rewriting a given term – let #fs = n. 
Let (ai) be the number of gs to right of i’th f from the left.
Define (a1, a2, …, an) > (b1, b2, … bn) iff  ai > bi and ∀j :  i+1 ≤ j ≤ n . aj = bj
ie i is first position from right at which ai ≠≠≠≠ bi
e.g. fgfggfa => fgggfgfa and the counts are (3,2,0) and (4,1,0)

Check  > is  well-founded and LHS>RHS for all substitutions of x 
Well founded: minimal counts =(0...0) (n × 0 for n fs). eg count(g...gfffa)=(0,0,0) 
Suppose f(g(x)) has k occurrences of f with count =(ck,...,c1).
Then g(g(f(x))) has count = (ck-1,...,c2,c1) which is <(ck,...,c1).

Solutions to Examples

Also, check that if s=>*t and s>t then f(s)>f(t) and g(s)>g(t) (do this in a similar way to 
above – notice g(s) has the same count value as s). Then use Fact F.

f(f(x)) => f(g(f(x))). 
Count #pairs of adjacent fs. It is clear that for each substitution for x the number of adjacent 
pairs of f is reduced by 1. As counts are ≥0 the ordering is well-founded.
The ordering is not monotonic though: g(f(f(a))) has 1 pair of adjacent f and f(a) has none. 
So g(f(f(a)))>f(a). But f(g(f(f(a)))) is not > f(f(a)) as both have 1 pair of adjacent f. 
However, g(f(f(a))) does not rewrite to f(a), so we can apply FACT F.
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A standard partial order  <  is irreflexive and transitive (and s<t implies ¬(t<s)).

The relation ≤ is defined by s ≤ t iff s < t or s = t.  (s < t is the same as t > s)
If < is a standard partial order, then ≤ is reflexive, transitive, anti-symmetric
                                                                            (i.e. s≤t and t≤s implies s=t)

A quasi-partial order  <≈ is reflexive and transitive but need not be anti-
symmetric.              i.e. s <≈t and t <≈s does not force s=t. 

Instead,  for a quasi-order, if s <≈t and t <≈ s, then we say  s ≈  t.
For a quasi-order <≈, we define s < t  iff s <≈ t and not (t <≈ s).

The orders ≤kbo and ≤rpo etc. defined on slides 15ci - 15civ are all quasi-
orderings. They are also simplification orderings.

Quasi-orderings can be simplification orderings, monotonic, stable, etc.
The definitions of those things are adjusted by using the quasi-order <≈ in 
place of the standard partial order <.

To show termination of R using a simplification quasi-order <≈≈≈≈, show 
each rule in R satisfies  lσσσσ > rσσσσ for all substitutions σσσσ.

Some notation:

Proof  of Fact D: 
Let < be well-founded and s=>t imply s>t for all terms s and t. (*). Suppose first that s0 => s1 => 
… sn ... is a non-terminating,  ground rewrite sequence using R,  then, by (*), s0>s1>…>sn> ... .  
But as > is well-founded  the sequence cannot continue forever. So the original rewrites cannot 
do so either. This is a contradiction, so the original assumption is false.

For the general case, notice that no variables other than those in s0 may appear in any si.  
Suppose s0 is not ground and there is a non-terminating sequence s0 => s1 => … sn ... .  
Consider some ground instance s0θ of s0 and hence  of {si} ({siθ}). It is still the case that s0θ  
=>s1θ  => … =>  and hence s0θ > s1θ > … >  and this sequence must terminate at some skθ as < 
is well-founded. Hence skθ  does not rewrite to sk+1θ. But then sk could not rewrite to sk+1 
either, a contradiction. So the original rewrite sequence must terminate.
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Proof  of Fact E: 
Let < be a well-founded monotonic order  and lσ > rσ for each rule and each ground substitution 
σ. Suppose  that s0 => s1 => … sn ... is a non-terminating  ground rewrite sequence using R,  
then, by assumption  s0>s1>…>sn> ...  (since each rewrite uses a rule and < is monotonic). But 
as > is well-founded  the sequence cannot continue forever, so the original rewrites cannot do so 
either. This is a contradiction, so the original assumption is false.

In case the rewrite sequence includes variables, instantiate to obtain a non-terminating ground 
rewrite sequence and use the above. 

Well-founded Ordering:
An order < is a well-founded ordering on a set of terms if there is no infinite descending 
sequence of terms s0>s1>s2>... . eg < is well-founded on {integers>k} for any particular choice 
of k, but not on the set of integers. For our purposes we assume the si are derived by rewriting: 
s.t. s0 =>s1, ..., si=>si+1

To use  kbo to show termination of R:
                       show each rule in R satisfies l > r for all substitutions σ.

Knuth - Bendix  ordering (kbo) 15ci

1.  is ok since #+/- in LHS  > #+/- in RHS.
2.  is ok since #+/- in LHS≥2 > #+/- in RHS = 0.
3.  is ok since #+/- in LHS = #+/- in RHS,   both terms have outer +,  and 
 ((x+y),z) ≥*kbo (x,(y+z)) as #+/- in x+y > #+/- in x;   
                                                     (i.e. lexicographic order based on kbo) 
Also, <≈ is a simplification ordering: eg x<y==>-x < -y and -x > x.

1.  0+x => x
2.  (-x) +x => 0
3.  (x+y) + z=> x + (y + z)

s <≈ t
if # occurrences of +/- in s ≤ 
   # occurrences of +/- in t;

s= ( f(s1 … sm) ) ≥kbo t (= g(t1 … tn) )
        •    if  s> t (where >≈ is a simplification quasi-ordering on ground terms)    
                                                                                                   (definitely >)
        •    or  s ≈ t  and f >1 g   (>1 applies to functors here)        (definitely >)
        •    or  s ≈ t,  f  = g  and (s1 … sm) ≥* (t1 … tn)

≥* is the lexicographic ordering induced by ≥kbo



15cii

{3,3,4,0}>>{3,3,2,2,1,1} if {4,0}>>{2,2,1,1) (remove occurrences of = elements)
{4,0}>>{2,2,1,1} if  each element in {2,2,1,1} is dominated by an element in {4,0}                          
                                                         (Here 4 dominates all of 2,2,1,1.)
{3,3,4,0}>> {3,3,3}  if  {4,0} >> {3}.      (4 dominates 3 so OK)
{4,3,3} >> {4,3}  if  {3} >> ∅.                 (OK)
{4,1,1} >> {4,1,2} if {1,1} >> {2}.          (Not OK as 1 doesn’t dominate 2)

Recursive Path Ordering  (rpo)

Multi-set Ordering
•     A multi-set  over a set of terms E with order > is a mapping m  from  E to N.  
e.g. S={3,3,4,0} = {3 -> 2, 4 -> 1, 0 -> 1}   or S(3) = 2,  S(4) = 1,  S(0) = 1.
•     If S is a multi-set then d(S) = {elements in S (as a set)} = domain of S
•     If e in E and not(e in d(S)) then S(e)=0
•     S>>T iff ∀e:e in d(T) [S(e) ≥ T(e) ∨ ∃g [g in d(S) ∧ g > e ∧ S(g)>T(g)]]

s (=f(s1 … sm)  ) ≥rpo  t  (=g(t1 … tn) )
         •   if         si ≥rpo t    for some i = 1… m      (definitely >)
         •   or       f >1  g and s >rpo tj   for all j =1…n
                          (>1 orders functors)                    (definitely >)

         •   or       f = g and {s1 … sm} >> {t1 … tn} (>> is a multi-set ordering)      

1  ¬¬x => x          
2  ¬(x ∧ y) => ¬x ∨ ¬ y          
3  ¬(x ∨  y) => ¬x ∧ ¬y
4  x ∧ (y∨ z) => (x ∧ y ) ∨ (x ∧ z)                 
5  (y ∨  z )∧x => (y ∧ x) ∨ (z ∧ x)

•  1   ¬¬x ≥rpo x  {x is a subterm}                       
                                  (use n(x) for ¬x  if you prefer)

•  2   ¬(x ∧ y) ≥rpo ¬x ∨¬y  if  ¬(x ∧ y)  >rpo ¬x  and >rpo  ¬y      
                                  (choose ¬ >1 ∨)           
        i.e. if {x ∧ y} >> {x} (and >> {y}) which it is as x/y are subterms of x ∧ y
                                  (use a(x,y) for x ∧ y,    and o(x,y) for x ∨ y if you prefer)

•  3  similar

•  4  x∧(y∨z) ≥rpo (x∧y)∨ (x∧ z)  if x∧(y∨z) >rpo x∧y  and  >rpo x∧z 
                                  (choose ∧ >1 ∨)
   i.e. if {x, (y∨z) } >> {x,y} and >> {x,z} which they are.

•  5  similar    

15ciiiExample of using  recursive path ordering

  

 (x+y)+z ≥lpo x+(y+z):   main functor = + in both cases so case 3

• ((x+y, z)  ≥*lpo (x,(y+z)) since (x+y) ≥lpo x 
                   (because x is a subterm of x+y), and
• (x+y)+z ≥lpo (y+z): main functor = + in both, so case 3
          • ((x+y, z)  ≥*lpo (y,z) since (x+y)≥lpo y, and
          • (x+y)+z ≥lpo z (because z is a subterm)

Lexicographic path ordering (lpo) 15civ

Example of using  lexicographic path ordering

s (= f(s1 … sm) ≥lpo t ( = g(t1 … tn) )     if   
            •  si ≥lpo t for some i = 1 … m, or
            •  f >1 g and s >lpo tj for all j = 1 … n, or                               

            •  f = g and (s1…sm) ≥*lpo (t1 … tn)  and s >lpo tj for all j = 2 … n,
                        where ≥*lpo is the lexicographic ordering induced by ≥lpo

15cvThe three orderings  kb0, tpo and lpo

The Knuth Bendix Ordering (on 15ci) is the easiest to use. To apply it you need an order on 
functors that you choose and a simplification order <≈   on ground terms. A standard choice for 
<≈ is the number of symbols, but others are possible. You just need to show your choice is a 
simplification order (ie if x <≈y then f(...x..)<≈f(...y...) for all functors f.) In Case 3 the lex 
ordering is  a dictionary ordering based on the underlying kbo. That is, to compare two lists of 
terms, compare the lists as you would compare words in a dictionary.

The Recursive Path Ordering (on 15cii) is next easiest. There are 3 cases. To show s≥rpo t, 
Case 1 checks if an argument of s≥rpo t. This will be true, for example, if t occurs as a subterm 
of s, for you can recursively apply this case until you have extracted t as a subterm of s. If Case 
1 doesn’t  hold, then look at the outer functors of s and t. Note that the second condition 
requires s to be definitely greater than t.   In Case 3 a multi-set ordering is used. Despite the 
complicated definition it is easy to check. First strike out equal terms from the two lists. Next, 
take each element e left in t and check there is an element left in s that is larger than e. 
(Exercise: Show this satisfies the given definition of >>.)

The Lexicographic Path Ordering (on 15civ) is similar to rpo, except for Case 3. In Case 3 
you must first check the arguments of s and t are pairwise lexicographically ordered (as in kbo) 
and then recursively  check s is definitely >lpo than each argument of t (other than the first). You 
can check that  if the first lexicographic condition finds (say) argument 2 of s >lpo argument 2 of 
t, then the second  condition can start at argument 3, since Case 1 would hold for s>lpo  
argument 2. For example, to compare f(x,b,y) and f(x,a,y), where b>a, Case 3 says to compare 
[x,b,y] and [x,a,y] lexicographically, which holds as b>a. The second condition says to check 
f(x,b,y)>lpo a and>lpo y. The first of these is known (Case 1) as we showed it when checking 
f(x,b,y) and f(x,a,y).



15diSummary of Slides 15
1. Rewrite systems are most useful when they are terminating. There are 
several ad hoc methods to show termination, as stated in Facts D, E and F.

2. Important properties of term orderings are stability: if s<t then also sθ <tθ; 
monotonicity: if s<t then f(...s...) < f(...t...); and simplification: t<f(..t...).

3. s≤t is defined as s<t or s=t (for a partial order ≤). 

4. The more useful orders are based on quasi-orderings, which are (partial) 
orders that are not anti-symmetric. That is, it is possible for two terms s and t 
to satisfy  s <≈ t and t <≈ s and yet for s≠t. s < t  iff s <≈ t and not (t <≈ s).

5. The three quasi-orderings considered here are knuth bendix ordering (kbo), 
recursive path ordering (rpo)  and lexicographic ordering (lpo). All three orders 
depend also on an ordering of function symbols, which can be chosen by the 
user. The last two are very similar and only differ when the two terms to be 
compared have the same top level functor. The knuth bendix ordering  
depends also on a total order on ground terms that is also a simplification 
ordering. The recursive path ordering uses the concept of multi-set ordering.


