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17aiOriented Paramodulation 
•  We can use the idea of ordering an equation to control paramodulation steps:
•  Restrict paramodulation by requiring the replacing term to be definitely  not 
greater than the one being replaced.
•   In case an equation can be orientated (ie every instance satisfies LHS>RHS) 
then the restriction allows to order the equation LHS ==> RHS. 

Oriented Paramodulation:  l= r ∨ C paramodulates into s[u], u not a variable 
                       if        lθ =uθ   and   ¬ (lθ ≤ rθ ), where
≤ is a stable monotonic simplification ordering (eg rpo, kbo).

(Method due to Hsiang and Rusinowitch CADE 8, 1986)

Example:
n(x,x)=n(M,x) and the kbo: n(x,x)<n(M,x) if x is bound to t<M;
                                           n(x,x)>n(M,x) if x is bound to s>M;
Can apply oriented paramodulation into P(n(u,v)):
          use  L to R to give: P(n(M,v)) or R to L to give: P(n(v,v)) 
Thus θθθθ    may be u==v and must check ¬(n(v,v) ≤≤≤≤ n(M,v)) (OK)
Or θθθθ    may be u==M and must check ¬(n(M,v) ≤≤≤≤ n(v,v))   (OK)

17aii

Example:  1.  x=a ∨ x=b    2.  ¬ g(x) = g(y) ∨ x=y    3.  ¬ (g(g(a)) = a)    4. g(a) =>b
Choose  a < b < g and ≥rpo ( so a<b <g(a) < g(b) < g(g(a)) , …   )  
5   g(g(a))=a ∨ ¬b=a   [P (1+3) ]  (put x=g(g(a)), and check   ¬(g(g(a)) ≤ b)   
                                                             use x=b for paramodulation)
6  ¬ b=a                      [R (3+5)  ]  
7  ¬ g(b) = g(a)           [R (6+ 2) ]
8  ¬ g(b) = a                [P  (4+3) ]          (OK  g(a) >b )
9    g(b) => b               [R  (1 + 8) ]
10   ¬ b = g(a)             [P (9+7) ]           (OK g(b) >b )
11 []                           [R  (10+ 4) ]       (use symmetry)

Oriented Paramodulation (2) 
•   In case an equation can be orientated (ie every instance satisfies LHS>RHS) 
then the restriction allows to order the equation LHS ==> RHS. 
•   l= r ∨ C paramodulates into s[u] (u not a variable) if   lθ =uθ  and  ¬(lθ ≤ rθ )

Notes : 
(i) can replace u=v by u=>v if u>v for every instance of u,v
   – so g(a)=b becomes g(a)=>b and g(b)=b becomes g(b)=>b
(ii) ¬(lθ ≤ rθ) means “it is not true that for every ground substitution σ, lθσ ≤ rθσ”
    i.e. “there is some ground substiution σ, lθσ > rθσ”
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•  Oriented paramodulation can be combined with an ordering on predicate 
symbols (note the largest  predicate symbol has highest priority here):
•  ≤ is extended to literals as well as terms such that "=" ≤ all predicates

Example:  the Aunt Agatha problem

1.  K(d,a),    2.  d=a ∨ d=b ∨ d=c,    3.  H(b,d),    4.  x=b ∨ H(b,x),     5. ¬a =b   
6.  ¬K(x,y) ∨ H(x,y),         7. ¬H(c,x) ∨ x=b,       8.  ¬K(a,a),    9.  ¬H(x,f(x))

Order functors as f>d>a>b>c and predicates K>H>'=' (K has highest priority).

10. (1+2, P)     K(a,a) ∨ d=b∨ d=c                  15. (13+14, R)   d=c                     
11. (10+8, R)   d=b ∨ d=c                              16. (1+6, R)       H(d,a)
12. (4+9, R)     f(b) =b                                    17. (16+15, P )  H(c,a)
13. (12+9, P)   ¬H(b,b)                                  18. (7+17, R)    a=b
14. (11+3, P)   H(b,b) ∨ d=c                          19. (18+5, R)    []  

Oriented Paramodulation and Predicate Ordering

•  C1: s=t ∨ D1 can paramodulate by oriented paramodulation into literal with 
largest predicate in C2 if D1 consists of predicates equal in the order to “=”
•  C1:  E1∨ D1  and C2: ¬E2 ∨ D2 can be resolved if E1σ and E2σ are unifiable 
and no predicate in D1 is > E1 and  no predicate in D2 is > E2.
            i.e. E1/E2 use the largest predicates in C1/C2



17aivCombining Oriented Paramodulation and Predicate Ordering:

Oriented  Paramodulation allows to control the  use of paramodulation. It can also be 
combined with predicate ordering if we treat predicates as functors for the purpose of 
ordering. It is easiest to make the greatest predicate have the highest priority (in 
contrast to what we did in Slides 7, but like Otter does), and to give the = predicate 
lowest priority. In case paramodulation is explicitly simulated by resolution, this 
behaves similarly to locking the equality axioms as we suggested in Slides 12. We can 
extend the use of quasi-orderings to other refinements, even if paramodulation is not 
involved, such as atom ordering and hyper-resolution.  Some examples of using these 
ideas are given on Slide 17av.

An example of an ordering of terms that’s combined with a predicate ordering was 
given in slides 7 (the lexicographic ordering). However, once orderings are combined 
also with paramodulation steps, we require that the order be a simplification order. For 
instance, kbo or rpo. If < is such an order, then we can compare two atoms thus:
s=P(s1,...,sn)>t=Q(t1,...,tm) if (i) P>Q in the predicate order, or (ii) P=Q, P is not “=” 
and [s1,...,sn]>*[t1,...,tm], where >* is the lexicographic order based on <. or (iii) 
P=Q, P is “=” and {s1,s1}>>{t1,t2} (multi-set order because = is symmetric).

Note about Oriented Paramodulation: Since ≤ is stable, ¬(lθ ≤ rθ) means that “it is 
not the case that lθσ ≤ rθσ for every substitution σ”. Hence ¬(lθ ≤ rθ) →  lθσ > rθσ 
for some ground substitution σ. Hence it is possible to have both ¬(lθ1 ≤ rθ1) and 
¬(rθ2 ≤ lθ2) (for different substitutions θ1 and θ2) and the equation l=r  could be used 
in both directions but at different times.

Completeness of the method is shown in Hsiang and Rusinowitch, CADE- 8.

17avFurther Examples:  (Extension to atom ordering)

1)  P(0)     2)  ¬P(x) ∨ P(s(x))

P(s(x)) > P(x) because s(x) > x (using any simplification ordering)
so P(s(x)) is the literal that must be selected in (2).
There are then no ordered resolvents between these clauses.

Group Theory problem :

1.     f(a,b) = c        2.   ¬f(b,a) = c        3.    f(x,x) = e       4.  f(x,e) = x        
5.     f(e,x) = x        6.       f(f(x,y),z)  = f(x, f(y,z))

Use kbo based on length of terms.

7.  (1+6, P)        f(a, f(b,z)) = f(c,z)         10. (9+6, P)         f(a, f(c,z)) = f(b,z)
8.  (3+6+5, P)    f(x,f(x,z)) = z                11. (10+ 3+4, P)   f(b,c) = a
9.  (1+8, P)        f(a,c) = b                      12. (8+11, P)        f(b,a) = c
                                                              13. (2+12, R)        [ ]

The Knuth Bendix procedure fails  if an equation cannot be orientated

•   eg    x+y = y+x,      or   f(x, g(z)) = f(g(z), x) 
            leads to circular rewriting as in   2+3 => 3+2 => 2+3 ... 
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•  One way to avoid failure is to allow superposition to/from either side of an 
non-orientable equation and use the ideas of oriented paramodulation.  
• eg  x +0 = 0+x  can be oriented if 0 is smallest element and x ≠ 0

When Knuth Bendix Completion Fails

•  Can superpose l = r and s => t as long as ¬(lθ ≤ rθ);  
                 (θ is either mgu of l and a subterm of s, or of s and a subterm of l.)
                  i.e. there are some instances for which  lθ > rθ  (else  lθ ≤ rθ).
•  > must be total on ground terms;
•  when rewriting  using l = r, must have lθ >rθ.  (Ideas due to Bachmair)

• eg  j(f(x),y) = j(y,g(x))  and j(v,v) => v, using kbo based on counting terms
Can superpose  j(v,v) and j(f(x),y) if ¬(j(f(x),f(x)) ≤≤≤≤ j(f(x),g(x)))
In fact, j(f(x)),f(x)) > j(f(x),g(x)) exactly if f>g giving j(f(x),g(x)) => f(x)
Can superpose  j(v,v) and j(y,g(x)) if ¬(j(g(x),g(x)) ≤≤≤≤ j(f(x),g(x)))
In fact, if f>g then j(f(x),g(x)) > j(g(x),g(x)).

(4)  x+ -x => 0                 (5)  x + 0 => x                     (6)  u+v = v+u

Use kbo:  s >≈ t iff # functors in s ≤ # functors in t, and 0 <1 all other terms.

(5)+(6) give 0+x => x;   
check OK:   ¬(x+0 ≤0+x)  since for some x (i.e. x≠0) x+0>0+x 
(4)+(6) give -x+x =>0; not OK since  ¬(x+-x≤-x+x) is false

17biiWhen Knuth Bendix Completion Fails (2)

This method works because the transformation steps applied to any ground 
proof (using equations) to turn it into a rewrite proof by critical pair formation 
can be lifted to the general level.  The lifted proof will not have been excluded 
by the restrictions:

• if lθ ≤ rθ (i.e. an excluded step) then all instances of it would lead to excluded 
steps too; these excluded steps could not have been part of the transformation 
process of the original ground derivation, a contradiction.

•  Can superpose l = r and s => t as long as ¬(lθ ≤ rθ);  
                 (θ is either mgu of l and a subterm of s, or of s and a subterm of l.)
                  i.e. there are some instances for which  lθ > rθ  (else  lθ ≤ rθ).
•  > must be total on ground terms;
•  when rewriting  using l = r, must have lθ >rθ.  (Ideas due to Bachmair)



17biii

Form critical pair – unify LHS of 1 with LHS 2
Check:   ¬(n(g(u,v),g(u,v)) ≤n(M,g(u,v)))
In fact, n(g(u,v),g(u,v)) > n(M,g(u,v)) (so OK)

gives new rule   
n(u,n(v,g(u,v))) => n(M,g(u,v))

n(g(u,v),g(u,v))

n(M,g(u,v)) n(u,n(v,g(u,v)))

(1) (2)

(1) n(x,x) = n(M,x)                  (2) n(g(u,v),x) => n(u,n(v,x))

Use kbo:  s ≥kbo t if #symbols in s ≥ #symbols in t.

Cannot order (1): x>M==>n(x,x)>n(M,x)     and        x<M ==>n(M,x)>n(x,x)

Examples using  the orientation restriction 17biv

For a commutative and associative operator (eg +, or set union),  there is a 
special unification algorithm called AC-unification, which takes these properties 
into account during superposition. The result is always a finite number of unifiers 
(possibly none). (See Bundy.)

Commutativity and associativity can also be included when rewriting

eg x+-x =>0  together with commutativity of + allows -(b+a)+(a+b) => 0:

-(b+a)+(a+b) can be unified with x+-x  with substitution x==(b+a) or x==(a+b)
      by using commutativity (twice)  => 0  (by the rule)

(Note that adding x+y=y+x explicitly will not necessarily allow to derive -x+x=>0 
from x+-x =>0 by oriented paramodulation because of the oriented restriction:
-x+x ≥ x+-x is likely the case; eg if kbo is used.)

(-0 )+ 0

0

(1) (2)

-0

eg (1)   -x+x => 0       (2)   0+y => y   
yield the critical pair   -0 = 0.

x+-x = -x+x  (by commutativity)
then obtain substitutions x==0 and y==-0;

adding x+y=y+x  explicitly here allows to derive 
x +-x => 0, but not y +0=>y, since 0 +y ≤ y+0

Example of a special case    (this slide is not examinable)
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• Consider goals of the form ∃x[ t1[x] = t2[x] ]  and data restricted to equations.  
• The negated goal is ∀x[ ¬(t1[x]= t2[x]) ]  ==> ¬(t1[x1]=t2[x1]) (using free 
variable rule) and then the two sides can be narrowed  until a substitution is 
found that makes both sides equal;
•  The resulting inequation can then be resolved with x=x.
•  The Knuth Bendix procedure can also be applied incrementally to the rewrite 
rules and the constrained form (of Slides 17b) is applied to equations that 
cannot be oriented. This copes both with failure and divergence. 

Using Knuth Bendix Completion  as a Theorem Prover

Example:    (1)  g(a,b) => a              (2) g(g(x,y),y) => h(y,x)

Superposition yields g(g(a,b),b) =>* a (use (1) twice) and => h(b,a) (by (2)) 
giving (3)  h(b,a) => a 

Suppose the goal is ∃z[ g(a,z)= h(z,a) ]. Negated, this is ∀z [¬(g(a,z)=h(z,a))].

Using the rules (1) and (3) we get ¬(a = h(b,a)) (by (1) and binding z==b) 
   and then ¬(a = a) (by (3)),  which resolves with x=x.

Recall that narrowing is like rewriting except variables can be bound in the term  
that is to be rewritten.
• eg g(a,z) can be narrowed by g(a,b)=>c into c (bind z==b)

1  n(x,x) = n(M,x)                           3   n(z,z) ≠ z
2  n(g(u,v),x)=>n(u,n(v,x))              4  x= x

Use kbo:  s≥kbot if #symbols in s ≥ #symbols in t (similar to slide 17bii)

(5)  (1+3)   n(M,z) ≠ z                                                
                          (Check: ¬ (n(x,x) ≤ n(M,x)), True - if x>M then n(x,x)>n(M,x)

(6)  (1+2) n(u,n(v,g(u,v))) => n(M,g(u,v))        (see 17bii for details of this step)
                 
(7)  (5+6)   n(M,g(M,v1)) ≠ n(v1,g(M,v1))     ( u==M and z==n(v1,g(M,v1)) ) 

(8)  (7+4) (v1 ==M ) []                            {z== n(v1,g(M,v1)) == n(M,g(M,M)) }    

17ciiExample

Question: Are there any other solutions?
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Summary of Slides 17
1. The Knuth Bendix procedure normally has three outcomes: success (a confluent 
and terminating set of rules is produced), failure (some rule cannot be oriented) 
and divergence (there are an infinite number of rules). Oriented paramodulation 
gives ideas on how to deal with failure.

2. Oriented paramodulation restricts paramodulation according to some term 
ordering. It can be combined with resolution restricted by atom ordering. An 
equation l=r may be used for paramodulation from l to r as long as there are some 
instances such that lθ>rθ. Otherwise, r≥l and it must be used in that direction.

3. In the KB procedure similarly, superposition is allowed between l=r and s=>t if 
lθσ>rθσ is for some substitution σ, where θ is the unifying substitution of the 
superposition step.

4. There are special procedures for the particular case of an associative and 
commutative operator, eg +, in which the properties are built into the unification.

5.The Knuth Bendix procedure can be used as a theorem prover. The goal (often 
of the form ∃x[ t1[x] = t2[x] ]) is negated to give ∀x[ t1[x] ≠ t2[x] ]. Knuth Bendix is 
applied to generate rewrite rules and they are used in narrowing steps to reduce 
both sides of the inequality to a common term.  Resolution with x=x then gives [ ].
Even if the KB procedure diverges, interleaving of rule generation with narrowing 
can give a solution.


