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2aiModel Generation Method
The Model Generation (MG) method  is an easy method for humans to apply, but it 
has not been so widely implemented as DP.

Similar to DP, MG returns True if given clauses are satisfiable .

MG constructs a tree in which each branch tries to maintain a partial model of the 
initial clauses (but in a different and more constrained way to DP).

Branches of MG trees contain only atoms: the atoms in a branch give a partial 
model. Branches that cannot  be extended to a full model are called closed.

Branches that are not yet closed are called open.
A branch is completed if  all initial clauses have been considered by the branch.

eg Given a branch with atoms A and B and clauses ¬A∨C, ¬A∨¬B

We could extend the branch with atom C, since any model that makes A true will be 
forced to make C true because of  ¬A∨C

However, better we can close the branch since no model that makes A and B true 
can make ¬A∨¬B true.

MG is related to the tableau method, which we study later.

(Note : Can assume there are no tautologies or subsumed clauses at the 
start and that all identical literals have been merged.)

2aiiModel Generation Procedure
procedure MG(S,B): boolean  
%S are clauses still to make true and B is the branch (model) so far  
1. If no clause in S contains a  negative literal then return true. 
    (B is a partial model of the initial clauses - see Note 1 to make B a model)
2. If S contains a clause C with ≥1 positive literals and is such that all 
negative literals  ¬L in C (if any) satisfy L occurs in B, then return the 
disjunction of MG(S(A),B+A) , for each positive literal A in C, 
    where S(A) =  S-{X|X in S and X is made true by the assignments in B+A}
    (See Note 2)
3. If S contains a clause C with only negative literals and and all literals  ¬L 
in C satisfy L occurs in B, then return false. 
    (B makes C false - see Note 3)
4. If none of 1, 2 or 3 occurs then return true. 
    (Every remaining clause has ≥1 unassigned negative literal) – See note 4)

MG is initially called with S=given clauses and B= [ ].

2aiiiModel Generation Example as a tree

Given clauses: LK,  ¬L¬K,  ¬LM,  ¬MK,  MR  (ie L∨K etc.) 
No tautologies or subsumed clauses; not step 1
                                 MG(S,{ }) (ie the branch is empty)

Choose LK  (step 2)

 MG([¬L¬K,  ¬LM,  ¬MK,  MR],{L})
Choose ¬LM  (step 2)

MG([¬L¬K,  ¬MK],{L,M})
Choose ¬MK  (step 2)

MG([¬L¬K],{L,M,K})
choose ¬L¬K

return False (step 3)

 MG([¬L¬K,  ¬LM,   MR],{K})
Choose MR  (step 2)

MG([¬L¬K],{K,M})
return true (step 4)
Model={K,M,¬L}
(Must make L False
as K already True)

MG(([¬L¬K, ¬LM],{K,R})
return True (step 4)
Model={K,R,¬L}

Return (False or True or True)=True
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procedure MG(S,B): boolean  
1. If no clause in S contains a  negative literal return true.
Note1:  B satisfies all clauses so far removed from the original argument S. B  
can be made into a model of the remaining clauses by assigning true to any 
atoms not yet assigned, since they either occur positively in S, or do not 
occur at all.

2. If C=L∨D (L positive) is in S and for all negative literals  ¬L in D  L is in B, 
then return the disjunction of MG(S(A),B+A) , for each positive literal A in C
Note2:  The branches of the form B+A extending B are the only ways to make 
C true. Can remove any clauses in S also made true by B+A

3. If C in S has only negative literals and for all literals  ¬L in C  L is in B, then 
return false. 
Note3:  B cannot be extended to make C true as it already makes C false.

4. If none of 1, 2 or 3 occurs then return true.
Note4:  Every remaining clause in S has ≥1 unassigned negative literal ¬L. 
Assign false to all such L to make the remaining clauses true. Can assign 
either true or false to any remaining atoms in the language not yet assigned.

2aivNotes about MG Example: {LK, ¬L¬K, ¬LM, ¬MK, MR}  (also shown in tree form on 2aiii)

(Step 2) Choose MR (could also have chosen LK instead as on Slide 2aiii). 
Return MG([LK,¬L¬K, ¬MK], {M}) or MG([LK,¬L¬K, ¬LM, ¬MK], {R});
i.e. start a tree with two branches.
Consider the first disjunct and (Step 2), clause ¬MK. 
Return MG([¬L¬K], {M,K}).
ie still to make ¬L∨K true

(Step 4) return true - assign false to L.
Check that {M,K,¬L} is a (partial) model for the initial clauses.

If the second disjunct had been chosen, 
then apply (Step 2) and clause L∨K and return  
MG([¬L¬K, ¬LM, ¬MK], {R,L}) or MG([¬L¬K, ¬LM], {R,K});
i.e. extend the second branch of the tree by two branches.

The first disjunct will eventually return false (show this yourself) 
and the second will return the model {R,K,¬L}.
Check that {R,K,¬L} is a (partial) model for the initial clauses.

2av

You can also try the "three little girls" problem as an exercise.
The MG procedure can be generalised to first order clauses with care. 
e.g.  use (2) in place of (2a)-(2c). See exercise sheet.

Model Generation Procedure (MG):

Another  procedure appropriate for propositional clauses is model generation (MG), which is a 
special case of the tableau method ( to be covered in detail later in the course). Although the MG 
method can be generalised to arbitrary propositional sentences, it then loses some of its simplicity. 
MG is very easy for humans to use as it is more restricted than DP.

The MG procedure attempts to build partial models. It constructs a tree in which each branch tries 
to maintain a partial model of the initial sentences (but in a different way to DP). 

The tree built by the MG procedure for an initial set of clauses S consists of nodes each labelled 
by an atom. There are 2 kinds of branches, called open and closed. The atoms in each open branch 
B give a model of the set of clauses processed in B; when all of S have been processed in an open 
branch B then the branch is called completed and the nodes in B give rise to a (partial) model of S. 
A closed branch B is also called completed and indicates that the atoms in B cannot be extended to 
be a model of S (i.e. they make some clause in S false).

Let closed branches be labelled by false and completed open branches be labelled by true. Then 
the given clauses S have no model if the disjunction of all labels in a tree in which all branches are 
completed is false. There is a model if the disjunction is true, as at least one branch must then have 
been completed and open.

2avi

Another simple normalisation procedure for ground clauses is the method of OBDDs (Ordered 
Binary Decision Diagrams). A related extension is used in model checking programs to obtain 
neat representations for propositional sentences. In essence it reduce a sentence to an if-then-else 
normal form, from which a model can easily be obtained. If the normal form reduces to false then 
there is no model. See slides 2d.    

2biWhy does MG Work (1)? (An illustration)
Assume clauses S, and a branch B containing positive atoms

The termination cases (1,3,4):

NOTE: 
In Cases 1 and 4 may have 
to extend model to cover all 
atoms in language. Can do 
so arbitrarily.

Case 1

All clauses in S have 
only positive literals

Already processed 
(ie removed) clauses 
that are true using 
atoms in B

Remaining clauses 
will be true by above 
assignments

Model is:
B + remaining
atoms in clauses

S includes ¬B1∨ ... ∨ ¬Bn
where B1, ..., Bn all in B

Case 3

S cannot be made 
true given B Otherwise would be in 

Cases 1,2 or 3

All clauses include
some ¬Ci, where
Ci is not in B
eg ¬Ci ∨ ... 

Case 4

Model is:
Atoms in B true
Each Ci is false



2biiWhy does MG Work (2)? 
Assume clauses S, and a branch B containing positive atoms

Non-terminating case 2

S includes   
C = ¬B1 ∨ ¬B2 ∨ A1 ∨ A2
and B1, B2  in B 

Case 2

A1 A2

B

In the branch extended by A1 
all clauses in S also including A1
are true and can be removed

C is made true in each of the new 
branches by extending B

2biiiProof that the Model Generation procedure is correct.

We show that, if no atom in B occurs positively in S, then the call MG(S,B) returns true 
iff B can be extended to give a model of S (**). 

Then, since the initial call MG(S,∅) clearly satisfies the assumption of (**) (there are no 
atoms in B=∅), we can conclude that the MG procedure returns true iff S has a model.

To show (**) we use induction on n,  the number of clauses in  the argument S.  
Case n=0.  Step 1 applies and since S is empty and result = true, then (**) will be true 
whatever B is.

Case n>0. 
Assume as Ind. Hyp. (IH) that for any call MG(S,B), where S has fewer than n clauses 
and such that no atom in B occurs positively in S, that MG(S,B) returns true iff the set of 
atoms in  B can be extended to give a model of the clauses in S. 

If Step 1 applies,  then can make clauses in S true by assigning true to one atom from  
each clause in S. This is an extension of B and so the result returned (true) is correct.

If Step 3 applies, then some clause C in S contains only negative literals ¬X, where X is 
in B. Clearly B cannot be extended to be a model of S, so the result (false) is correct.

2bivCorrectness of MG continued:
If Step 4 applies, then every clause in S contains some negative literal ¬X, where X is not in 
B. B can be extended to be a model of S by making such atoms X false and hence the 
returned result (true) is correct.

If Step 2 applies for clause C, then MG(S,B)=disjunction of MG(S(A),A+B), for each atom 
(positive literal) A in C. Note that S(A) satisfies the conditions of  (IH) -
(i) it has <n clauses, 
(ii) by construction there are no positive occurrences of A in S(A), and 
(iii) there are no positive occurrences of atoms in B in S(A) since there were none in S by 
assumption.

Therefore, by (IH), MG(S(A),A+B) returns the correct result for S(A).  

Next we show that this is the correct result for S as well. If, for some A, MG(S(A), A+B) 
returns true, then MG(S,B) will return true. This is correct, for B can be extended (by 
assigning true to A) to be a model of all S(A) by assumption, and of all clauses in S but not 
in S(A), which are clauses containing A. If, for every A, MG(S(A), A+B) returns false, then 
MG(S,B) will return false. This is also correct since B cannot be extended to make S true. 
To make S true, C must be true, which requires at least one of the atoms A to be true. By 
assumption, if the atoms A+B are all true, then the subset S(A) of S cannot be made true. So 
S cannot be made true by extending B.  Therefore, by induction we can conclude (**).

The data

(1)  C(d) ∨ C(e) ∨ C(f)    One of the threee girls was the culprit
(2)   C(x) → H(x)            { C(d) → H(d), C(e) → H(e), C(f) → H(f)  }     
                                       To convert into propsitional form  
(3)  ¬(C(d) ^ C(e))
(4)  ¬(C(d) ^ C(f))
(5)  ¬(C(f) ^ C(e))
                                       Only one of the three girls was the culprit
(6)  C(d) ∨ H(d)  ∨ ¬C(e)                              (Dolly's statement negated)
(7)  C(e) ∨ C(f) ∨ ¬(C(e) → (C(d)  ∨  H(d)))    (Ellen's  negated)
(8)  C(f)  ∨ ¬H(d)  ∨ ¬((H(d) ^ C(d)) →C(e))   (Frances's negated)

 "The three little girls"  problem again! 2ci

This time we’ll try to find a model and return True (and we hope the model 
will make C(f) true).

So there is no need to include (9) ¬C(f).

We convert to clauses and can remove any tautologies or subsumed clauses 
at the start. Also merge identical literals



(1)   C(d) ∨ C(e) ∨ C(f)        (2a)  ¬C(d) ∨ H(d)               (2b)   ¬C(e) ∨ H(e)            
(2c)  ¬C(f) ∨ H(f)                  (3)   ¬ C(d) ∨ ¬C(e)             (4)    ¬ C(d) ∨  ¬C(f)
(5)   ¬ C(e) ∨ ¬C(f)              (6) C(d) ∨ H(d) ∨ ¬C(e)        (7a)  C(e) ∨ C(f) ∨ C(e)      
(7b)  C(e) ∨ C(f) ∨ ¬C(d)     (7c)  C(e) ∨ C(f) ∨ ¬ H(d)     (8a) C(f) ∨ ¬H(d) ∨ H(d)    
(8b) C(f) ∨ ¬H(d) ∨ C(d)      (8c)  C(f) ∨ ¬H(d) ∨ ¬C(e)    

Solution to "The three little girls" by MG 2cii

Merge literals in (7a)  to obtain C(e) ∨ C(f) and remove (8a) (tautology);
(7a) subsumes (7b), (7c), (1);   

call MG( [2a, 2b, 2c, 3, 4, 5, 6, 7a, 8b, 8c], [] );
Apply (Step 2) on 7a (C(e) ∨ C(f)); evaluate
MG([2a, 2b, 2c, 3, 4, 5, 6, 8b,8c], [C(e)] ) (i) or  MG([2a,2b,2c,3,4,5,6 ], [C(f)] ) (ii);

In (i): apply (Step 2) to 2b and call MG([2a,2c,3,4, 5, 6,8b, 8c], [H(e), C(e)] );
Apply (Step 2) to 6 and evaluate
MG([2a,2c,3,4, 5,8c], [C(d), H(e), C(e)] ) or  MG([2c,3,4,5,8b, 8c], [H(d),H(e), C(e)] );
Both eventually return false.

In (ii): apply (Step 2) to (2c) and call MG([2a, 2b, 3, 4, 5,  6 ], [H(f), C(f)] );
Apply (Step 4) to return true; get the partial model [H(f), C(f), ¬C(d), ¬C(e)]. 
H(e) and H(d) can be either true or false.

2ciii

MG(S,B) halts with true if S+B has a model and it returns a partial model 
which includes  B (ie makes atoms in B true). 

This partial model can be extended to a complete model for S+B (see 
procedure).  

MG(S,B) halts with false if S +B has no models.

Correctness Theorem for MG 

Questions: 

Can you think of possible “tricks” to enable MG to be implemented efficiently?

How could MG be extended to use general propositional sentences?

What can you do with pure literals in clauses?

What about first order clauses?

2di

•  The Davis Putnam method processes the given clauses  top - down ;
•  The initial set of clauses is gradually simplified, until  either the set  becomes 
empty or  contains the empty clause.
•  This allows simplifying steps (e.g. subsumption) to be performed on the whole set.

• A different approach is to process the given set of  sentences  bottom - up.
• Each sub-sentence is turned into an IF-THEN-ELSE triple and triples are  combined.

OBDDs are based on the If –Then – Else connective:
•    A ∧ B   ≡ If A Then B Else false            •  A ∨ B  ≡  If A Then true Else B
•    A          ≡ If A Then true Else false         •    ¬ A    ≡  If A Then false Else true
•    A → B ≡ If A Then B Else true              •  A ↔B  ≡  If A Then B Else (¬B)

OBDDs are ordered  – the test literals always occur in some order (using a single total 
ordering, for all sub-sentences in some OBDD).   Combining two OBDDs :

If A Then X Else Y ∧/∨ If A Then W Else Z ≡ If A Then X ∧/∨ W Else Y ∧/∨ Z
If A Then X Else Y ∧ B (A not tested in B) ≡ If A Then X ∧/∨ B Else Y ∧/∨ B,   etc.
If A Then X Else X ≡  X          (A simplification step)

You can work out the combinations for -> and <-> yourself.
By storing OBDDs  in a table, duplications can be obtained by lookup.

Ordered Binary Decision Diagrams (OBDDs)  
e.g.  OBDD for X ∧∧∧∧ (Y ∨∨∨∨ ¬ Z):

X ∧ (Y ∨ ¬ Z) = 

If X Then (true and  If Y …) 
        Else (false and If Y … ) =

If X Then  (If Y Then true   
                           Else (If Z Then false Else true)) 
        Else false 

X

Y

true

Z

false

1

0

1
0

0 1

See Moore, JAR, 1994
Also, E. Clark, Bryant.
Ed Clark recently won  
the Turing Award

2dii

Y ∨ ¬Z=  (If Y Then  true Else false ) ∨  (If Z Then false Else true) = 

If Y Then (true  ∨  (If Z Then false Else true) ) Else (false or (If Z Then false .... ) = 

If Y Then true Else (If Z Then false Else true)  



OBDD Example:         [LK, ¬L¬K, ¬LM, ¬MK, MR]
  (All clauses anded together;  t is true, f is False;
   atoms tested alphabetically;  If X Then Y Else Z represented as if(X,Y,Z) )

(1)  LK = if( K, t, IF( L , t ,  f))    
(2)  ¬L¬K = if( K,  IF( L ,  f , t) , t)
(3)  ¬LM = if(L, IF( M ,t, f) , t)    
(4)  ¬MK = if( K , t , IF( M ,f ,t))
(5)  MR = if(M , t , IF( R, t , f))

(1) ∧  (2):     if(K, IF(L, f, t), IF(L, t, f))

∧ (4): if(K, if(L, f, t), if(L, t, f)  ∧ if(M, f, t)) = if(K, if(L, f, t), if(L,  if(M, f, t), f)) 

∧ (3):  if(K, if(L, f,t)  ∧ (3),  if(L, if(M, f, t) ∧ if(M, t, f), f)) 
         = if(K, if(L, f, t) ,  if(L, if(M, f, f), f)) 
         = if(K, if(L, f, t) ,  if(L, f, f)) = if(K, if(L, f, t) ,  f)

∧ (5): if(K, if(L, f, t) ∧ if(M, t, if(R, t, f)) , f)
           = if(K, if(L, f, if(M, t, if(R, t, f))), f)

Gives models [K, ¬ L, M] or [K, ¬L, ¬M, R]  
Can you see how to read off the model from the final expression?

Exercise: Draw the graphical form of the final result (Answer on next slide).
2diii

2divCorrectness Theorem for  OBDD

OBDD(S)  ≡ S

hence if OBDD(S) = f (no arcs enter True) then S has no models;

otherwise OBDD(S) ≠f and S has a model that can be read from the tree. 
(Simply follow the decisions from the root to the True node – if there are 
several paths then there are several models);
 
if OBDD(S)=t then S is a tautology.

Graphical form of   if(K, if(L, f, if(M, t, if(R, t, f))), f)

K

1

0

L 0

1

M 1

0
R

true

false

1
0

2ei

1. A second method for testing satisfiability of propositional clauses was 
described; the Model Generation (MG) procedure is good for humans, but less 
well investigated in optimised implementations.

2. MG returns True (and a partial model)  for given clauses S  if there is one. It 
returns False if there are no models of S. The returned model (if any) can be 
extended to all atoms by assigning T or F to unasigned atoms.

3.  MG can be extended to first order clauses (see later).

4. The state of MG can be represented as a tree, in which each node N is 
labelled by the current set of clauses S (those still to be made True in the branch 
B ending at N). The arcs of the tree are labelled by atoms and the atoms labelling 
arcs in B are a partial assignment that satisfy those clauses in the initial set which 
are not still in S (for branch B). This property is maintained as an invariant.

5.  MG was used to solve the “Three Little Girls” problem.

6. The correctness property of MG  is proved by induction. The induction is on the  
number of clauses in the current clause set.

Summary of Slides 2 2eii
7. The OBDD (Ordered Binary Decision Tree) was introduced.

8. An informal method for generating the OBDD form of a proposition using 
simplification rules was given.

9.  An OBDD can be represented as a tree, in which each node is labelled by an 
atom, the one “decided” at that node. A given order of atoms is used in any 
particular problem. The arcs in a branch are labelled by T or F. Two special 
nodes are True and False. 

For a given proposition S:
 -  if no arcs in the OBDD(S) enter False then S is equivalent to true (i.e. is a 
tautology);
 - if at least one arc in OBDD(S) enters True then S has a model that can be read 
from the tree;  
 - if no arcs in the OBDD(S) enter True then S is equivalent to false and has no 
models.

10. The correctness property of OBDD relies on the preservation of equivalence 
by the simplication rules. Various optimisations are possible.



Some more questions 2eiii

Question to think about for next week

The “3 girls” problem is not propositional, but we used DP to solve it, as the 
set of ground instances of the given clauses was not too large.

Suppose the set of ground instances is large (or even very large - infinite!)

One approach is to hope the data is Horn clauses, as you can then use 
Prolog (perhaps). But if the data is not Horn clauses?

Any ideas?

Write a prolog program to generate OBDDs (bottom up).
Represent them by a triple (test literal, true case, false case)

Where is the best place in the literal order to consider pure literals?

A Solution to Aunt Agatha's Burglary

Note: (x and y are  implicitly universally quantified)

(1)  s(m,a)      (someone stole from Agatha)
(2)  x=a  ∨ x=b  ∨ x=j         (The only people are Agatha, James and the butler)                  
(3)  s(x,y) → (d(x,y) ^ ¬ r(x,y))     
                                          (thieves dislike, and are not richer than, their victims)
(4)  d(a,x) → ¬d(j,x)          (James dislikes no-one whom Agatha dislikes)
(5)  ¬ x= b  → d(a,x)           (Agatha dislikes all but the butler)
(6)  ¬r(x,a) → d(b,x)          (butler dislikes anyone not richer than Agatha)
(7)  d(a,x) → d(b,x)            (and also anyone Agatha dislikes)
(8)  ¬(∀z d(x,z))                (No-one dislikes everyone)
(9)  ¬ a=b
(10) Conclusion: s(a,a)      (Agatha burgled herself)

First simplify (8) to ∃z ¬d(x,z) and then to ¬d(x, f(x)). 
                  (For each x, f(x) is a person x doesn't dislike)

Put x as m in (2); m=b and m=j will lead to contradictions forcing m=a.

2fi

(See slides  further in the course for other approaches.)

m=j: s(j,a) (by equality substitution in (1)) and hence d(j,a) and ¬r(j,a) from (3); 
From (5) and (9) d(a,a) hence ¬d(j,a) by (4);
Contradiction so m≠j.

m=b: ¬d(b,f(b)) (*) (put x as b in (8) );
hence ¬d(a,f(b)) by (7) and  ¬ ¬ f(b)=b by (5);
Therefore f(b) = b and ¬d(b,b) from (*);
s(b,a) (by equality substitution in (1)) and hence d(b,a) and ¬r(b,a) from (3); 
Hence d(b,b) from (6);
Contradiction so m≠b;

Therefore m=a;
s(a,a) (by equality  substitution in (1)) which is the conclusion.

2fii A (Natural) Solution to the "three little girls"
(1)  C(d) ∨ C(e) ∨ C(f)    
(2)   C(x) → H(x)                           (x is  implicitly universally quantified)
(3)   ¬(C(d) ^ C(e))
(4)   ¬(C(d) ^ C(f))
(5)   ¬(C(f) ^ C(e))
(6)  C(d) ∨ H(d) ∨ ¬C(e)             (Dolly's statement negated)
(7)  C(e) ∨ C(f) ∨ ¬(C(e) → (C(d) ∨ H(d)))      (Ellen's  negated)
(8)  C(f) ∨ ¬H(d) or   ¬((H(d) ^ C(d)) → C(e))  (Frances's negated)

Case 1:  C(d).   (Suppose Dolly did it.)
              (7) cannot then be true as all 3 parts lead to a contradiction. 
             So Dolly is not the culprit.

( ¬(X → Y) true means X true and Y false.)
Case 2:  C(e) Suppose Ellen did it.  Then H(d) follows from(6) 
                                                        (remember ¬C(d) from Case 1);
              then (8) leads to contradiction.
              So Ellen is not the culprit.
Hence Frances was the culprit.  (See slides for other approaches.)

By (1) it must have been C(d), C(e) or C(f).

2fiii



A Solution to the Mathematical problem
(1)  a ο b = c
(2)  ο is an associative operator:x ο (y ο z) = (x ο y) ο z
(3)  x ο x = e
(4) x ο e = e ο x = x     (e is the identity of ο)

Show b ο a = c

(See slides  near the end of the course for other approaches.)

x  o (a o b) =   (x  o a) o b           (put y as a and z as b in (2))
x  o c = (x o a) o b                       (use a o b = c)
c o c = (c o a) o b                        (put x as c)
e = (c o a) o b                              (use (3) c o c = e)
e o b = e o b                               (property of =)
e o b = ((c o a) o b) o b               (use e = (c o a) o b)
b = ((c o a) o b) o b                    (use (4) e  o b = b)
b = (c o a) o (b o b)                    (use (2))
b = (c o a) o e                            ( use (3) b o b = e)
b = c o a                                     (use (4) (c o a) o e = c o a)

2fiv


