AUTOMATED REASONING

SLIDES 2-6 Proofs and Things
(Appendix 1)

Proof of Soundness of Resolution

Proof of Skolemisation Theorem
About Substitutions and Unifiers

KB - AR - 09

Some Useful Proofs Ala

The slides Appendix1 (Al) contain various proofs about resolution and a little
background information on unifiers. The theorems in Alb and Alc are important a
give the basis for the soundness of the resolution principle. The Skolemisation the
on Alci means that it is sound to consider the clausal form representation of a prc
rather than the general first order representation when using refutation as a proof
technique to show (un)satisfiability. (This was called (**) on 4di.) The theorem on,
means that when proving theorems about resolution it is allowed to restrict them ti
Herbrand interpretations and models as opposed to arbitrary models and interprel
This is usually much easier. (This was called Useful theorem (*) on 4bii.) There is
proof of the property Subfree introduced in Slides 6.

The information on unifiers should be familtaryou from Prolog. But notice that Prol
doesnot test for theoccurs check condition: the check, for equation xi=ti, that xi is nc
ti. This is done for efficiency, but it can lead to unsoundness (of Prolog). The tradil
counterexample to this unsoundness is succeeding to show that

OxCyP(X,y) |: OyOxP(x,y) (which isincorrect). The (Skolemised) clausal form of the
Data+negated conclusion (iBxCyP(x,y) anddy[x-P(x,y)) is the two clauses P(x,f(>
and -P(g(y),y). (Remember that ed¢huantifier must give rise to different Skolem
functions.) These two literals do not unify as the occurs check fails. The unificatior
algorithm first gives x=g(y) and f(x)=y, and then x==g(y) and f(g(y))=y, but the latte
fails the occurs check. However, if you try the Prolog query P(g(y),y), with the dat:
P(x,f(x)) it succeeds. If you try to write the answer - well, try it!

Soundness of Resolution (a single step)

Recall from Slides 4 that the Soundness proof of resolution requires only to conside
Herbrand models and to show that clauses1B(€1,C2), where C1 and C2 are in S an

R(C1,C2) is their resolvent. i.e. if M is an H-model of S then M is an H-model of

S+R(C1,C2). (Note that R(C1,C2) does not introduce any terms not already occurrir

the language of S.)

That this suffices to show Soundness relies on the followlsgful Theorem (*) (If
interested, you can find a proof in the Chapter 1 of notes on my website.)

Useful Theorem (*)
Corresponding to any model of S there is a Herbrand model of S.
or equivalently, If S has no Hmodels then S has no models.
So when showing S has no models, it is sufficient to show S has no H-models.

(Note also: If S has no models it clearly has no Hmodels, so with the above theorerr

have the property that S has no models iff S has no Hmodels.)

To show that S=>*] implies that S has no models (Soundness) uses induction on the

of the refutation of S.

Base Case: k=0. S must contain the empty clause and is clearly unsatisfiable.
Case k>0. Assume as (IH) that the property holds for refutations of length k-1.
Such a refutation has the form (for some C1 and C2 in S) S=>S+R(C1,C2)=>*]].
By (IH) S+R(C1,C2) has no models ==> S+R(C1,C2) has no H-models

==> S has no H-models (by Albii) ==> S has no models (by (*)).

Albi

clauses.

Theorem: Let C1 =0[GH], C2=0[-EOF], R =0O[(HOF)8] and @ =EB and
mgu(G,E) =6. (Here, G and E are atoms, F and H are clauses afaditidécates
universal quantification over variables in the clause.) Then,

if M is a H-model of GH and -ETF, then M is a H-model of (BF)0
(universal quantification is assumed implicit).

Pr oof:

(i.e. have no variables in common).
» The implicit universal quantifiers can be drawn out into a prefix to yield

O[c10c2]Fo[c1e 0CM] () = O(GOH)60 (- E OF)
= [0(-H - G)8I(E- F)8]= O[(-HO - GB)(ES — FO)]
[Fou-He - Fe) =0[(HOF)]

of the step then it only uses terms from Sig(C1,C2). (DIY!).

It is not difficult to extend the proofs to include factoring.
ie S|F, where Cisin S and F is a factor of C, and

Next we show that the resolvent between two clauses is logicallly implied by tha

* Variables in C1 andC2 can be renamed so that C1 and C2 are "standardised ¢

The step (*) is the crucial one. It says that if M is a H-modél[6fL (0C2] then M is
also a H-model ofl[C16 0OC26]. This follows easily from the fact thatéfis the mgu

if S=>*[] by derivations using resolution and factoring then S has no model81bii

Skolemisation Theorem
The Skolemisation part of conversion to clausal form can be implemented |
function Sk1 below. Then we can show (see below) that
0V Sk1(E,V) has a model iffilvV E has a model, for free variables V in &)

Skolem(A) = SK1(AJ])
Sk1(A,V)= A, if Ais a literal
Sk1(A op B,V) = Sk1(A,V) op Sk1(B,V), where "op"is/ O
SK1(Ox.A, V) = Ox.SKk1(AV 0{x})
Sk1(X.A,V) = [X.Sk1(A[X/f(VI],V),
where fis a unique functio}V', V' occur in A
Other cases are unnecessary as negations are adjacent to atoms.
Want to show: Skolem(E) has a model iff E has a model.
Since E has no free variables, the property (*) will yield the result immediate
We prove the property (*) by induction on the structure of E.

CaseEisaliteral:
M is a model of 1V .Sk1(E,V) iff M is a model of}V.E (defn. of Sk1)

CaseEisAopB:
M is a model of1V .Sk1(A op B,V)

iff M is a model of 0V [Sk1(A,V) op Sk1(B,V)] (defn. of Sk1)

iff M is a model of 0V [Sk1(A,V)] ‘op’ M is a model of 0V [Sk1(B,V)
iff M is a model of 0V A ‘op’ M is a model of 0V B (Ind. Hyp.)

iff M is a model of 0V [A op B]

Alci

Miscellaneous Properties of Unifiers Ald

A substitution A in a language L is a set of equations {xi == ti} such that each X
unique, xi#z ti and xi does not occur in ti. (xi == ti is sometimes written as xi/ti (
replaced by ti), or ti/xi (ti replaces xi).

A substitutionA can be applied to P, where P may be a clause, literal or term; th
application is written asX’Pand means that the substitutions indicated hye made
to variables in P.

UsuallyA will be idempotent (A is fully evaluated); i.e. no xi occurs in any tj. Th
(XA)A = XA for any X.

If PA = QA and P and Q are both literals or both terms, Mismaunifier of P and Q
PA is called aground instance of P if it has no variables.

The unification algorithm for X,Y producesaost general unifier (mgu) of X,Y.
A mguB of X and Y is a unifier of X and Y, such that, for any other unKief X
and Y, o (XB) 0 = XA =Y A. i.e. you can find to apply to X0 that yields 2.

CaseEis [X.A:
M is a model ofJV.SK1([Ox.A,V) iff M is a model of0V,x.Sk1(A,VO{x}) (defn. Sk1)
iff M is a model of 00V, x.A (Ind. Hyp.) iff M is a model of1V.(0Ox. A) (Equiv.)

CaseEis[X. A

M is a model ofIV.Sk1(x.A,V) iff M is a model of OV.SK1(AIx/(f(V")],V) (defn. Sk1)
iff M is a model of OV.A[X/f(V")] (Ind. Hyp.) iff M is a model of 0V.[X.A (below)

The very last step is the one that does the Skolemisation and it is proved next.
The notation x/f(V') means x is replaced by f(V").

Suppose M is a model dfiV.[x .A. To give a model foflV. A[x/f(V")], we need to
extend M so it includes an interpretation for f.

For each vector D', of elements from the domain ofM,A[V'/D',x] is true (since
OV.Ik .A), so interpret f by : f(D') = some z: A[V'/D', x/z] is true.
Then A[V'/D', x/f[D")] is true in M and M is a model &fV. A[x/f(V")]

Suppose now that M is a modell0¥. A[x/f(V")].

Then for each vector D' of elements from the domain of M, A[V'/D’, x/f(D")] is true.
Hencelx .A [V'/D'] is true and s@JVIX .A is true too.

The details of the other parts are easier and are left as an exercise.

Alcii

Substitutionss and® can becomposed: X(o A) is defined as (¥) A. Aldii
If o ={xi==ti} and A = {yi == si}, then oA = {xi ==tiA, yi == si}, where Xxi# tiA,
xi does not occur inXi, and yi# any xj. i.e. only those y any Xxj are retained.)

eg. 0={x==1(y), z==f (y)} unifies P(z,z) and P(x,f(y))
A = {z == f(y), x == z} does not unify P(z,z) and P(x,f(y)) and is not idempote
another unifer i& = {x==f(a), z==f(a), y==a} andA =0 {y == a}

To.combine two substitutionsA anda just apply the unification algorithm to the
unifiers A ando treated as equations.

e.g. 0 ={x==f(y)} and A ={x==f(a)} combine to give {x ==f(a), y==a}
butoA = {x==f(y)} and Ao = {x==f(a)}.

Combination is symmetric: combifd) = combine¢A).
Note that combination and composition are not always the same:

eg. if o={y==a}andA = {x ==1(y), z ==f(y)}

combinefo) = combine¢}) = {x ==f (a), z ==f(a), y ==a }

Ao ={x==1(a), z==1(a), y == a}, butoh ={x==1(y),y ==a, z ==1f(y)}
but they are often the same: for instance,

when varsf) n varsE) =0 and no variable in vars) occurs in any RHS of
(vars() denotes the vars on LHS, then combinegf)) =oA .

About Subsumption: Alei

Slides 6 discussed how using subsumed clauses leads to redundancy in a proof and int
the Property Subfree (repeated below). Here we show th&rtbperty SubFree holds for
refutations formed using saturation search. The proof uses the notiesi ofum depth of a
refutation, which is the stage in the generation of resolvents in a refutation by saturation
at which the empty clause is formed. A resolvent &issed in a refutation at depth k if k is
the stage in the saturation search at which R is derived.

Throughout this section assume that any factoring is combined with the resolution step 1
the factor. i.e. if LIL20IC is resolved with -LBD, where L1,L2,L3 unify with mg® and C
and D are clauses, then the resolvent iQB, as if first is made a factor step between L1
L2 and then a resolution step using —L3. This simplifies the proof. Also assume that by
subsumption is always medgubsumption.

Property SubFree:
Let S be aset of unsatisfiable clauses such that none subsumes any other in S. Then, th

refutation R from S such that for each clause Ck at dexfitakd used in R, Ck is not
subsumed by any different clause that is in S or derived from S atgepth

The proof of Property SubFree uses this fact: if C subsumes D and a step in a refutatior
(resolving with K) to derive R, then either C subsumes R, or resolving C and K leads to
resolvent R' that subsumes R. The proof of this fact is not difficult and is left as an exer

Proof of Property SubFree: Let S be a set of unsatisfiable clauses such that all subsun
clauses have been removed and let R be some refutation using clauses in Slveitbps If R
already possesses Property SubFree there is nothing to prove. Otherwise, let the first vi
of Property SubFree occur in R at stefdn The proof uses induction on m-n.

Case m-n=0The clause at step n (=m) is the empty clause. It is formed by resolving tv
facts D1 and D2. If a clause C subsumes D1 then C will resolve with D2 also to form t
empty clause. Similarly if C subsumes D2. Hence D1 (D2) can be removed from its us
step m of the refutation. R will then possess Property SubFree as there are no more \
in R.

Induction step (m-n>0). Let R1 at step n<m be derived from clauses D1 and D2 such
clause C subsumes D1, where D1, D2 and C are all derived (or given) before step n.
Induction Hypothesis (IH) states that for any refutation of clauses from S of length m1
such that the first violation of Property SubFree occurs at step k, where m1-k<m-n, a
corresponding refutation satisfying Property SubFree can be found.

By the aforementioned fact either C subsumes R1 or C resolves with D1 to form R1’' v
subsumes R1. A new refutation of m steps or less is constructed from R as follows. C
in R at step <n remain the same. Clause R1 is replaced by C if C subsumes R1, othe
is replaced by the resolvent R1’ of C with D1. In both cases the replacement clause
subsumes R1. After repeating such replacements for all clauses derived in step n, the
resulting refutation R’ has the same number of steps as R, albeit with some possible
duplication of clauses. Moreover, the first violation of Property S is at step >n. Hence
induction hypothesis a refutation can be found from R’ that does not violate Property
SubFree. In effect, the application of the induction hypothesis allows for new subsum;j
by R1’ to be propagated through the remainder of the refutation R’. In applying the
hypothesis, some clauses may be made redundant (if they are no longer used), and ¢
clauses are removed.

You are encouraged to try to construct an example of a refutation that violates the Pr¢
and then to follow the construction to obtain a refutation that does satisfy it. Aleii

