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Some Notations for Clauses
A clause has the form A1 ∨ A2 ∨... ∨An,  where each  Ai  is a literal.
A literal is either an atom or a negated atom.
All variables in a clause are implicitly universally quantified.
  e.g. P(x,f(x)) ∨ ¬ R(x) ≡ ∀x(P(x,f(x)) ∨ ¬R(x) )  ≡ ∀x(R(x) → P(x,f(x)))
(Variables will start x,y,..,z; other terms are constants. e.g. a,b, f(...), etc.)

A clause with no literals is called the empty clause and often denoted [] .
The empty clause is always false. (e.g. it is derived from A and ¬A.)

(Clauses will sometimes be represented as sets 
e.g. {A,C, B} ≡  A  ∨ C ∨ B or more simply as ACB)

Resolution is a clausal refutation system (it tries to derive False from Givens:)

Resolution is "Modus Ponens" or ( →→→→E) generalised to first order logic:
e.g.  without variables first (ie propositional logic)
       A, A → B ==> B                               A, ¬A ∨ B  ==> B           
       ¬B,  A → B ==> ¬A                          ¬B, ¬A ∨ B ==> ¬A  
        A → B,  B →C ==> A →C               ¬A ∨ B, ¬B ∨ C ==> ¬A ∨ C
        A ∧ D → B, B→ C ∨ E ==> A ∧ D → C∨  E,       
                            ¬A ∨ ¬D ∨ B, ¬B ∨ C∨  E ==> ¬A∨  ¬D ∨ C ∨ E

Resolution

3aiiResolution:

These slides detail the Resolution rule, which was proposed  by Alan Robinson in 
1963. Resolution is the backbone of the Otter family of theorem provers and many 
others besides. It is also, in a restricted form, the principal rule used in Prolog.   In 
order to form a resolvent, it is necessary to be able to unify two (or more) literals. 
The unification algorithm is shown on 3aiii and is used in Prolog, so you should 
already be familiar with it.

Resolution can be thought of as a generalisation of the transitivity property of  →.  
That is, from A → B and B → C derive A→ C.

The rule on slide 3aiv is called Binary Resolution. Robinson actually proposed a 
more flexible version, which  allowed several literals to be unified within each of the 
two clauses to give the literals ¬G and E, before forming the binary resolvent. This 
initial step of unifying literals is called factoring, and is more usually performed as a 
separate step in theorem provers. See Slide 3cii for the factoring rule.

Resolution requires the data to be clauses, and in slides 3dii you’ll see how to achieve 
clausal form from arbitrary first order sentences using a process called 
Skolemisation.

Given clauses C1 = ¬G ∨ H and C2 =  E ∨ F, 
where  E and G are literals and H and F are clauses or literals.

Example:
(1)  P(x, f(x)) ∨ ¬ R(x)      (or  R(x) → P(x, f(x))   Use u-z for variables)
(2)  ¬P(a, y) ∨ S(g(y))      (or   P(a,y) → S(g(y))  Use a...m for constants)

3aiii

FIRST "match" a positive and negative literal by unifying them,  
NEXT apply the substitution to the other literals, 
THEN remove the complementary literals and take disjunction of rest.

Binary Resolution :

(1) and (2) resolve to give      ¬R(a) ∨ S(g(f(a)))  

•    Unify  (a,y) with (x,f(x)) to give  {x == a , y == f(a)} (or {x/a, y/f(a)}
•    Instantiate (1) giving ¬R(a) ∨ P(a, f(a))              (or R(a)→ P(a,f(a)) )
•    Instantiate (2) giving ¬P(a, f(a)) ∨ S(g(f(a)))      (or P(a,f(a))→ S(g(f(a))) )
•    Derive  ¬R(a) ∨ S(g(f(a)))      (or R(a) → S(g(f(a)))  by  transitivity of →)

The binary  resolvent   of C1 and C2 (R(C1,C2)) is (H ∨ F)θ,  where 
θ=mgu(E,G);  ie θ makes E and G identical and is computed by unification.



To unify  P(a1,...,an) and ¬ P(b1,...,bn):  (i.e. find the mgu (most general unifier))

first  equate corresponding arguments to give equations E (a1=b1, ..., an=bn)

Either reduce equations (eventually to the form var = term) by:

a) remove var = var;
b) mark var = term (or term = var) as the unifier var == term and 
replace all occurrences of var in equations and RHS of unifiers by term;
c) replace f(args1) = f(args2) by equations equating corresponding argument 
terms;

or fail if:
d) term1 = term2 and functors are different; (eg f(...)=g(...) or a=b)
e) var = term and var occurs in term; (eg x=f(x) or x=h(gx)) – called occurs check)

Repeat until there are no equations left (success)  
or d) or e) applies (failure).

3aivThe Unification Algorithm

Unify:     1.    M(x,f(x)) ,  M(a,y)          2.   M(y,y,b) ,    M(f(x), z, z)
              3.    M(y,y) ,  M(g(z) , z)       4.  M(f(x), h(z), z) ,    M(f(g(u)), h(b), u) 

(On this Slide variables are x,y,z,etc, constants are a,b,c, etc.}
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Resolve:      1.     P(a,b) ∨Q(c),    ¬ P(a,b)  ∨ R(d)  ∨ E(a,b)
                    2.     P(x,y) ∨ Q(y,x) ,    ¬P(a,b) 
                    3.      P(x,x)∨Q(f(x) ) ,    ¬P(u,v)∨R(u) 
                    4.      P(f(u), g(u))  ∨ Q(u) ,    ¬ P(x,y)  ∨ R(y,x) 
                    5.      P(u,u,c) ∨  P(d,u,v) ,    ¬ P(a,x,y)  ∨ ¬ P(x,x,b) 

To Resolve  two clauses C and D: 
FIRST "match" a literal in C with a literal in D of opposite sign, 
NEXT apply the substitution to all other literals in C and D,
THEN form the resolvent R = C+D-{matched literals}.

UNIFICATION PRACTICE

RESOLUTION PRACTICE

Refutation by Resolution

3aviLogical Basis of Resolution
What should we do with (1)  P(x,f(x)) ∨Q(x)   and   (2)   ¬P(f(x),y)?

 (1)  ≡  ∀x[P(x,f(x)) ∨Q(x)] 
 (2)  ≡  ∀x∀y[¬P(x,f(y))  ≡  ∀z∀v[¬P(z,f(v)] 
Resolving ....
z==x, v==x and resolvent is Q(x)   ≡  ∀x[Q(x)]

In general, variables in two clauses should be standardized apart – i.e. 
the variables are renamed so they are distinct between the two clauses

1.  The aim of a resolution proof is to use resolution to derive from given 
clauses C the empty clause [ ], which represents False (ie show the clauses 
C are contradictory).  The derivation is called a refutation. 

2. The empty clause is derived by resolving two unit clauses of opposite sign 
- eg P(x,a) and ¬P(b,y). 

Informally, P(x,a) is true for every x and P(b,y) is false for every y, 
so P(b,a) is true and P(b,a) is false - a contradiction. 

3biConstructing Resolution Proofs:

Now that you know what resolution is, you may ask “how is a resolution proof 
constructed?”  In fact, the Completeness Property of resolution says that for a set of 
unsatisfiable clauses a refuation does exist. (See Slides 4 for more on unsatisfiability for 
first order clauses.) So perhaps it is enough just to form resolvents as you fancy, and hope 
you eventually get the empty clause. This isn’t very systematic and so it isn’t guaranteed 
that  you’ll eventually find a refutation, even if one exists. 

e.g. if S={P(f(x) ∨ ¬P(x), P(a), ¬P(a)}, then the sequence of resolvents P(f(a)), 
P(f(f(a))),... formed by continually resolving with the first clause won’t lead to [] , even 
though resolving clauses 2 and 3 gives it immediately.

A systematic approach is obtained if the given clauses are first resolved with each other 
in all possible ways and then the resolvents are resolved in all possible ways with 
themselves and with the original clauses. Resolvents from this second stage are then 
resolved with each other and with all clauses, either given or derived as previous 
resolvents. This continues until the empty clause is generated, or no more clauses can be  
generated, or until one wishes to give up!

For example, a limit may be imposed on the number of clauses to be generated, on the 
size of clauses to be generated, on the number of stages completed, etc. 



3biiSaturation Search:

The method outlined on Slide 3biii is called saturation search. See Slide 3biv for an 
example. In this approach, we can say that the resolvents are generated in groups. The 
first group, S0 say, is the given clauses (for which a refutation is sought). The second 
group, S1, is the set of all resolvents that can be derived using clauses from S0. In 
general,  

S0         = {C: C is a given clause}
Si (i>0) = {R: R is a resolvent formed from clauses in Sj, j<i, 
                       and which uses at least one clause from Si -1}.  
Continue until some Sj is reached containing the empty clause.

There is a wonderful theorem prover called OTTER (and its successor called Prover9) 
that you will use soon. This prover has a very basic strategy that employs the above 
saturation search. 

It is easy to make resolution steps, but for a large problem (either many clauses or extra 
large clauses) the number of resolvents will increase rapidly. Therefore,  some method is 
needed to decide which ones to generate, which ones not to generate, which ones to keep 
and which ones to throw away.  There are many variations on the basic idea of Saturation 
search to address this issue, in which not all possible resolvents are found at each stage, 
but some are left out. It is then necessary to prove that this does not compromise being 
able to find a refutation. We’ll look at these things a bit later.

3biii

How is a resolution proof made?

The simplest strategy is called a SATURATION refinement.  All resolvents that 
can be formed from initial set of clauses S0 are formed giving S1, then all 
clauses that can be formed from S0 and S1 together are formed giving S2, etc.

A Simple Strategy – Saturation Search

Other possibilities (considered later) include :

Generate resolvents using the previous resolvent as one of the two clauses 
involved. This is called a LINEAR strategy.

Impose syntactic restrictions to control which resolvents are allowed and 
which are prohibited, or to indicate a preference for certain resolvents. 
e.g. a preference for generating facts (clauses with a single literal).

Saturation refinement :

1) state S0 = given clauses S ;
2) to generate state Si (i ≥1) : 
           generate all resolvents involving at least one clause from  Si-1;  
3) increment i and repeat step 2 until a state contains [], or is empty. 

3bivExample of Saturation Search                                                                                 

State S1 (resolvents formed from given clauses)

6   (1,2)  Cca ∨ Dcb         7  (1,2)   Ccb ∨ Dca                       
8   (1,5)   Dcb                  9  (2,3)   ¬Dxb ∨ ¬Tx     
10 (3,4)   ¬Ccb               11 (1,5)   Dca

State S2 (resolvents formed from clauses in S1 with clauses in S0 or S1)

12   (8,2)   Ccb                13   (8,9)   ¬Tc         14   (8,5), (11,5) []                            
15   (9,4)     ¬Dcb            16   (10,2)  ¬Dcb      17. (11,2)  Cca                                                         

There are some more possible resolvents in State S2. Which are they?

Notice that some resolvents subsume earlier clauses. 
eg clause 8 subsumes 6 and 1

State S0 (given clauses)

1   Dca ∨ Dcb        2   ¬Dxy ∨ Cxy     3   ¬Tx ∨ ¬Cxb      4   Tc      5.   ¬Dcz

3bvWe can also present a resolution refutation as a tree

Dca ∨ Dcb  ¬Dxy ∨ Cxy

Ccb ∨ Dca

Tc ¬Tx ∨ ¬Cxb

¬Ccb

Dca ¬Dcz

[ ]

Each step is indicated by two parent clauses joined to the resolvent.
If an initial clause is used twice it is usually included in the tree twice, once in 
each place it is used.

The order in which the steps in a refutation are made does not matter, 
though of course a clause must be derived before it can be used!



3ciIt’s clear we need to restrict things a little.......

• Recall: at the ground level (no variables) we have a merge operation that 
removes duplicate literals from a clause.            
                                  eg p ∨ ¬q ∨ p  ∨ ¬q  ≡ p ∨ ¬q
In other words it simplifies a clause by removing redundant literals.

• The analogous and more general operation is called Factoring
• Unlike merge, factoring does not always preserve equivalence.

For any but the smallest sets of clauses the number of resolution steps can be huge
So what can we do to reduce redundancy?

eg  given  P(x)  ∨ P(y)  and ¬P(a)  ∨ ¬P(v)
What resolvents can you form?    (Remember to rename variables apart)

• Logically we can derive the empty clause:
 P(x)  ∨ P(y) means ∀x∀y[P(x)  ∨ P(y)] from which we can derive ∀z.P(z) 
and ¬P(a)  ∨ ¬P(v) means ∀v[¬P(a)  ∨ ¬P(v)] from which we can derive ¬P(a)
We factor by applying a binding to enable literals to be merged.

• We introduce factoring here since resolution on its own is not always sufficient to 
derive [ ] even when the given clauses are contradictory.

Example :
P(x,a) ∨ P(b,y) factors to P(b,a) 
 P(x) ∨ P(a) factors to P(a)
Q(a,b) ∨ Q(a,b) factors to Q(a,b) (factoring identical literals is called merging)
P(x,x) ∨  P(a,y) factors to P(a,a)
P(x,y)  ∨ P(x,x) ∨  P(y,z) factors to P(x,x) ∨  P(x,z) and also to  P(x,x)

To Factor a clause C: 
FIRST "match" two (or more) same sign literals in C, 
NEXT apply the substitution to all other literals, 
THEN merge the matched literals.

3cii

Find factors of     1. P(u,u,c) ∨  P(d,u,v) 
                            2. P(x,y)  ∨ P(z,x)
                            3.  P(x,y)  ∨ ¬P(x,x) ∨  P(y,z)
 Why are there no factors of   4.  P(x) ∨ ¬P(f(x))?

FACTORING PRACTICE

FACTORING
Given a clause C = E1 ∨  E2∨ ... ∨ En ∨H, where Ei are literals of the same sign,
F is a factor  of C if F=(E ∨H)θ , where θ=mgu{Ei} and E= Eiθ (for every i)

BUT:
• What if the given data is not a set of clauses? 
   Suppose you are given some Data and a conclusion in normal predicate logic?

• We know to show Data |= Conclusion, we can instead derive a contradiction 
from Data + ¬ Conclusion.
• So we need somehow to convert Data + ¬ Conclusion to clauses.

A Typical refutation  has the form

C0 = Initial clauses ⇒ C0+intermediate  resolvent or factor (C1)  
      ⇒ C0 +C1 +C2  ⇒  ...           ⇒ C0+C1+ … +  Cn (= [] )
Each Ci can use clauses in C0 and {Cj : j<i} to form resolvents or a factor.

 (See Slides 4 for a more formal account.)

3diSo Far ...

3dii

Conversion to clauses uses 6 basic steps:

1.   Eliminate →: A → B ⇒ ¬ A ∨ B,  A ↔B  ⇒  (A → B) ∧ (B → A).
      ¬ (A ∧ B) ⇒ ¬A ∨ ¬B  (and similar rewrites to push ¬ inwards).
2.   Rename quantified variables to be distinct.
3.   Skolemise - remove existential-type quantifiers and replace  bound 
variable occurrences of x in ∃xS by Skolem constants or Skolem functions. 
The latter are dependent on  universal variables in whose scope they lie and 
which also occur in S. (See 3diii)
4.   Move universal quantifiers into a prefix:
          A op ∀x P[x]  ⇒  ∀x[ A op P[x] ] , etc.
5.   Convert to CNF(conjunctive normal form) - conjunctions of disjunctions
using distributivity: A∨ (B ∧ C) ⇒ (A ∨ B) ∧ (B ∨ A), etc.
6.   Re-distribute universal quantifiers across ∧.

Skolemisation is  a process that gives a name to something "that exists". 

eg1: We may be told that “there’s someone who lives in NY and has 2 children 
and a dog and ....”. We can refer to this individual as “a” for short.

eg2: Given ∃x∃y[person(x)∧ place(y)∧ lives(x,y)], we can introduce the new 
names “a” and “t” and write person(a)∧ place(t)∧ lives(a,t).

Conversion to Clausal Form



3diii

Skolemisation can seem mysterious, but it is not really so.

For instance: given ∀x∃y.lives(x,y) (meaning everyone lives in some place), 
we may have ∃y.lives(kb, y), ∃y.lives(ar, y), ∃y.lives(pp, y), etc.

Skolemisation is a process that gives a name to something "that exists". 
It is important that the given name is NEW and not previously mentioned.

eg  ∃y.P(x) Skolemises to P(a), where “a” is a new name called a Skolem 
constant which is not already in the signature.

Skolemising each of ∃y.lives(kb, y), ∃y.lives(ar, y), ∃y.lives(pp, y), etc.
we might get lives(kb,pkb), lives(ar,par), lives(pp,ppp), etc.

These can be captured more uniformly as ∀x.lives(x, plc(x)), 
where plc(x) is a new Skolem function that names the place where x lives. 

So we get lives(kb,plc(kb)), lives(ar,plc(ar)), lives(pp,plc(pp)), etc.

More on Skolemisation

All the conversion steps except Step 3 (Skolemisation) maintain equivalence, 
so we don’t have S ≡ converted(S).  What we want is that
converted (S) are contradictory if and only if (iff) S are contradictory.
And this property  is  true. (See Slides Appendix 1  for details.)

NOTE: there are many ways to Skolemise; in step 3 on 3dii the Skolem
function is made to be dependent only on those universal variables in whose 
scope it lies.  eg ∀x [ P(x) ∨ ∃y Q(y) ] Skolemises to  ∀x [ P(x) ∨ Q(a)]   with the 
rules here, as x doesn’t occur in ∃y Q(y),  not to ∀x [ P(x) ∨Q(f(x)) ].

3div

Convert to clausal form:          1.  ∀x [ ∃yS(x,y) ↔ ¬ P(x) ]  done below
                                                2.  ∀z [ P(z) → R(z) ] → Q(a)
                                                3.  ∀x [ P(x)  ∨  R(x) → ∃y∀w [ Q(y,w,x) ] ]

∀x [ ∃yS(x,y) ↔ ¬ P(x) ]
  

(convert ↔)  ∀x [(∃yS(x,y) → ¬ P(x)) ∧ ( ¬ P(x) → ∃yS(x,y))]   
  

(convert →)  ∀x [(¬∃yS(x,y) ∨¬ P(x)) ∧ (¬ ¬P(x) ∨ ∃yS(x,y) )] 
  

(move ¬)      ∀x [(∀y¬S(x,y) ∨¬ P(x) )∧ (P(x) ∨ ∃yS(x,y)) ]     
  

(rename quantifiers)  ∀x [(∀z¬S(x,z) ∨¬ P(x) ) ∧ (P(x) ∨ ∃yS(x,y)) ]      
  

(Skolemise ∃yS(x,y)) ∀x [(∀z¬S(x,z) ∨¬ P(x)) ∧ (P(x) ∨   S(x,f(x))) ]    
  

(Pull out quantifiers)  ∀x∀z[ (¬S(x,z) ∨¬ P(x) ) ∧ (P(x) ∨  S(x,f(x)) )]        
 

(Redistribute ∀x ∀z)  ∀x∀z[ ¬S(x,z) ∨¬ P(x) ] ∧ ∀x[P(x) ∨  S(x,f(x)) ]   

PRACTICE IN CONVERSION TO CLAUSAL FORM 

3dv

∀z [ P(z) → R(z) ] → Q(a) ⇒ ¬(∀z[P(z) → R(z)])∨Q(a) ⇒
   

∃z[¬(P(z) → R(z))]∨Q(a) ⇒ ∃z[P(z) ∧ ¬R(z)]∨Q(a)   
               (all by step 1)  (no need for step 2,  1 bound variable)   
   

⇒(P(c) ∧ ¬R(c))∨Q(a) (by step 3, c is a new constant) (no need for step 4)
   

⇒(P(c)∨Q(a)) ∧ (¬R(c) ∨Q(a)) (by step 5) (no need for step 6)

∀x[P(x) ∨ R(x) → ∃y∀w [Q(y,w,x)]] ⇒ ∀x[¬(P(x) ∨ R(x)) ∨ ∃y∀w [Q(y,w,x)]]
   

⇒ ∀x[(¬P(x) ∧ ¬R(x)) ∨ ∃y∀w [Q(y,w,x)]]
     (by step 1)  (no need for step 2, all bound variables different)
   

⇒ ∀x[(¬P(x) ∧ ¬R(x)) ∨ ∀w[Q(f(x),w,x)]] 
     (by step 3, f is new functor, y replaced by f(x) as y in scope of x)
   

⇒∀x∀w[(¬P(x) ∧ ¬R(x)) ∨ Q(f(x),w,x)] (step 4)
   

⇒∀x∀w[(¬P(x)∨ Q(f(x),w,x)) ∧ (¬R(x)) ∨ Q(f(x),w,x))] (step 5)
   

⇒∀x∀w[¬P(x)∨ Q(f(x),w,x)] ∧ ∀x∀w[¬R(x)) ∨ Q(f(x),w,x)] (step 6)

More SKOLEMISATION Examples
3eiSummary of Slides 3:

1. Resolution is an inference rule between 2 clauses. It unifies two complementary  
literals and derives the resolvent clause consisting of the remaining literals in the 
two parent clauses.

2. Factoring is a related inference rule using a single clause. It unifies one or more 
literals in the clause that are of the same sign and results in the instance obtained 
by applying the unifier to the parent clause.

3. Conversion to clausal form is a 6 step process, that uses Skolemisation to 
eliminate existential quantifiers.

4.  The unification algorithm applied to two literals produces the most general 
unifier (mgu) of the two literals.

5. Resolution derivations are usually constructed using a systematic search 
process called saturation search, in which resolvents and factors are produced in 
stages, all steps possible at each stage being made before moving to the next 
stage. This procedure prevents the same step from being taken more than once 
(but does not necessarily prevent the same clause from being derived in different 
ways). 

6. More restrictions are needed on which resolvents and factors to generate.

7. Resolution derivations can be depicted as a tree.


