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As shown in Slides 4 the construction has two parts:

(i)  find a ground resolution refutation for some finite subset        
       of the ground instances of the given clauses, and then 

(ii) transform this ground refutation to a general refutation (called Lifting).

5ai

We will show by construction: 
If  clauses S have no models then there is a resolution proof of [ ] from S .

Completeness of Resolution

Assume S has no models; then

(a) find the appropriate ground instances: 
      construct a finite closed semantic tree for ground instances G of clauses in S;

(b)  find a ground refutation: 
       construct a ground resolution refutation from the closed semantic tree for G;

(c)  find a general refutation:
       construct a resolution refutation for S from the ground refutation.

This works because of the relation between ground and general refutations:

Example of the relationship between a refutation of ground instances 
of clauses S and a resolution refutation of S  (used for Step (c))

1.   Dca ∨ Dcb      2.   ¬Dxy ∨ Cxy      3.   ¬Tu ∨ ¬Cub     4.   Tc     5.   ¬Dcz

Ground instances:  {u == c, x == c, y == b, z == a}
Dca ∨ Dcb        ¬Dcb ∨ Ccb            ¬Tc ∨ ¬Ccb      Tc         ¬Dca
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Each clause in the 
ground proof is an 
instance of a 
corrsponding 
clause in the 
resolution proof.

¬Dcb ∨ Ccb ¬Ccb ∨ ¬Tc

¬Dcb ∨ ¬Tc Tc

¬Dcb

Dcb ∨ Dca
¬Dca

Dcb

Ground proof

[ ]

¬Dxy ∨ Cxy ¬Cub ∨ ¬Tu

¬Dxb ∨ ¬Tx Tc

¬Dcb

Dcb ∨ Dca
¬Dza

Dcb

Resolution proof

[ ]
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A Semantic Tree for S  is an enumeration of all HIs over Sig(L), where S uses 
language L.  Each branch  represents a H-interpretation (HI) over Sig(L).  

Pa=T Pa=F

Sa=T Sa=F
Sa=T

Sa=F

Ra=T Ra=F

Ra=T
Ra=F

*
*

¬ Sz ∨ ¬ Rz is false since 
¬Sa ∨¬Ra is false

Sa is false
*

Semantic Tree

Example:  Let Sig(L) = < {P,Q, R, S}, {f}, {a, b} > and 
Given Px ∨ Ry ∨ ¬Qxy , ¬Sz ∨ ¬Rz,   Pu ∨ Qf(v)v,  Sa,   Sb ,   ¬Pf(a) ∨  ¬Pf(b)

Each finite portion of a branch of a semantic tree gives a partial Herbrand 
Interpretation of S.  A branch is terminated (marked *) if it cannot be a model for S.

eg   the leftmost branch falsifies ¬Sa  ∨ ¬Ra, instance of ¬Sz ∨ ¬Rz.  
Which other branches falsify a given clause?
Any interpretation that uses the assignments in a terminated branch is impossible 
as a model of S.

If every branch in a semantic tree for clauses in S is closed then S is unsatisfiable.



• If S has no Hmodels then each H-interpretation must falsify a clause in S;
• To make a clause C false it is sufficient to make 1 ground instance of C false.
• Since clauses in S are finite, the falsifying part of the interpretation is found 
after consideration of a  finite number of atoms.

BUT: Can we be sure there are a finite number of ground instances of S 
sufficient to be falsified by all the H-interpretations over the signature of S?
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We can show:  If S is unsatisfiable 
then there is a finite closed semantic 
tree for S  (Called compactness.)

•
•

•
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•
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•

•
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The “Umbrella” Property says we can!
Each dot is an H-interpretation
Each circle is a ground instance of S 
(one of the finite number) falsified by  
a number of H-interpretations

Assume S has no models:
• If the Semantic tree for S were 
infinite, then there would be an infinite 
branch. (Konig’s Lemma)

• We claim such an infinite branch 
would yield a model because: 

   • Assume for contradiction the    
   branch did not give a model.

   • Then  the branch could have 
   been finite (by above observations)

The “Umbrella” Property 5biii

Any interpretation that assigns T 
to a1 and a3 will falsify instance 
C3'. Thus all branches of the 
tree  through node A (called a 
closure node) can be terminated 
at A.

Node B is called a Failure Node.
Notice that the two children are 
both closure nodes and that the 
ground instances C2’ and C1’ 
resolve with each other.

Let the Herbrand Base be  {a1,a2,a3,a4,a5,...}
Let Givens include clauses C1, C2, C3, ....which have as instances 
C3’= ¬a1 ∨ ¬a3, C2’=a1 ∨ ¬a3, C1’ = a1 ∨ a3, ....
The semantic tree yields an unsatisfiable finite set of ground instances of S.

Illustrating Compactness in a Semantic Tree

a1=T
a1=F

a2=T a2=F

a3=T

a3=F

falsifies
instance
C2' (say)
C2'=
a1 ∨ ¬a3

falsifies 
C1
because
falsifies
instance 
C1'
=a1 ∨ a3

a3=T

(Node A)
falsifies
instance
C3' =¬a1 ∨ ¬a3

(Node B)
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R=F

Q=F

S=F

P=F
P=T

eg falsifies
P ∨ Q ∨ R eg falsifies ¬P ∨ S

makes P true
and S false
Note2 :
the false clause 
must include ¬P

falsifies 
resolvent
Q ∨ R ∨ S

called a failure 
node

Note1 :
the false clause
must include P

How to find a resolvent from a semantic tree.

The two children of a failure node 
will resolve by Nodes 1 and 2.

If atom A is tested, then the 
clause falsified by the A=F 
branch will contain A and the 
clause falsified by the A=T 
branch will contain ¬A.

The resolvent willl be false at the 
failure node. WHY?

Therefore, the resolvent cannot 
be a tautology. Why?

The resolvent can be added to 
the falsifying ground instances 
and will allow a smaller tree to be 
obtained, since the failure node 
will now become a closure node.

How to obtain a ground refutation from a  completed semantic tree.
1.  Dca ∨∨∨∨ Dcb        2.   ¬ Dxy ∨∨∨∨ Cxy     3.   ¬Tx ∨∨∨∨ ¬ Cxb      4. Tc    5.  ¬ Dcz

A semantic tree:
Resolution steps -
 process nodes in order.

(1):  (left) 5g; (right) 1g; 
        => Dcb (6g and is false)
(2):  (left) 2g; (right) 6g
         =>  Ccb (7g and is false)
(3):  (left) 3g; (right) 7g
         => ¬ Tc (8g and is false)
(4):  (left) 8g; (right) 4g
        => []

Check that at each failure node to be processed false clauses can be 
resolved and that  if atom A is tested, then left clause contains ¬A  and right 
clause contains A.  (Assumes left branch of test makes A=T, right branch 
makes A = F.)  Also check that the resolvent is false at the processed node.
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Tc = F

x 4

Tc =T

Ccb =F
Ccb = T

x 3 Dcb = FDcb = T

Dca= T Dca = F

x 1
x 5

x 2 (1)

(2)

(3)

(4)

i.e. falsifies 
clause 1

Ground instances found from tree:
1g. Dca ∨∨∨∨ Dcb      2g. ¬ Dcb ∨∨∨∨ Ccb     3g.  ¬Tc ∨∨∨∨ ¬ Ccb    4g. Tc    5g. ¬ Dca



Suppose a fully closed semantic tree has been generated using 
clauses in T. Let T' be the used ground instances 
(i.e. the ground instances falsified at the leaves).

If the resolvent, eg QRS (ie Q∨R∨S) of Slide 5biv,  is added by 
resolution to T' then T can be contracted since QRS is falsified 
at the failure node, which is higher than the two parent clauses. 
This gives rise to a new closure node which can be used to 
derive a resolvent and hence a smaller semantic tree. 
Eventually , since there were only a finite number of closure 
nodes at the start and each step removes at least one, a tree of 
the form on the right is derived, from which [] is deduced.

P=T P=F

falsifies ¬P

falsifies P

falsifies [] 
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Sometimes a resolvent 
falsifies a node higher than  
the failure node at which it 
was formed - enables the tree 
to contract more quickly.

P=T P=F

Q=T Q=F

falsifies ¬Q falsifies Q

resolvent (Q,¬Q) =[]
which is falsified at A

A

Properties of the Semantic Tree method (1):

5cii

•   Each tree gives rise to a ground resolution proof (refutation) using instances of 
the given clauses.
•   Can derive a full resolution refutation from a semantic tree proof by LIFTING (see 
below and slide 5cv) because of the following invariant property:

• Each failed clause instance is either an instance of a given clause, or an instance 
of the resolvent of the involved clauses at the leaves (ie the closure nodes).

Properties of the Semantic Tree method (2):

Rb=T Rb=F

¬Rb ∨ ¬Sb is an instance of
¬Rz ∨ ¬Sz =C1

Pf(b) ∨ Rb ∨ ¬Qf(b)b is an instance 
of Px ∨ Ry ∨ ¬Qxy = C2

Resolve instances of C1 and C2 to give
¬Sb ∨ Pf(b) ∨ ¬Qf(b)b which is an instance of
 ¬Sz ∨ Px ∨ ¬Qxz, the resolvent of C1 and C2

LIFTING LEMMA

(Example)
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Sometimes a factoring step is required:
It’s indicated if the ground instance has fewer  literals than the general clause.

Recall that at ground level, factoring is just merging of identical literals, whereas in 
general it requires a substitution to make 2 or more literals identical.

• In slide 5civ  at (Z) the new ground clause {¬ Sb, Pf(b)} is obtained:  
• by resolution of ¬Sb ∨ Pf(b) ∨ ¬Qf(b)b and Pf(b) ∨ Qf(b)b to give ¬Sb ∨ Pf(b) ∨ Pf(b)
• then by merging to give ¬Sb ∨  Pf(b)

•    The general resolvent clause is formed from ¬Sz ∨ Px ∨  ¬Qxz  and Pu ∨ Qf(v)v,  
      giving ¬Sz ∨ Pf(z) ∨ Pu which factors to ¬Sz ∨ Pf(z) with binding {u==f(z)}.

Q.  What is the problem with using the semantic tree method for showing 
unsatisfiability?  What feature of resolution makes resolution better?

(The proof of the Lifting Lemma outlined on Slide 5cv also covers the case when the 
ground resolvent has a merge applied and the general resolvent factors. As an 
exercise you might like to see why this is so.)

Properties of the Semantic Tree method (3): S = Px ∨ Ry ∨ ¬Qxy,   ¬Sz ∨ ¬Rz,    Pu ∨ Qf(v)v,   Sa,    Sb ,   ¬Pf(a) ∨ ¬Pf(b)
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¬Pf(a) ∨ ¬Pf(b)

Pf(a)=F
Pf(a)=T

Pf(b)=T
Pf(b)=F

Sb=FSb=T

Sb

Pf(b) ∨ Qf(b)b

Qf(b)b=F
Qf(b)b=T

Rb=T Rb=F
   Pf(b) ∨ Rb ∨ ¬Qf(b)b
             ?¬Rb ∨ ¬Sb

¬ Rz ∨ ¬Sz

¬Sb ∨ Pf(b) ∨ ¬Qf(b)b ¬Sz ∨ Px ∨ ¬Qxz

Pu ∨ Qf(v)v

¬Sz ∨ Pf(z)(Z):  ¬Sb ∨ Pf(b)

? ?

? ?

Exercise :
Fill in the 
missing 
ground 
clauses  and 
resolvents at 
places 
marked ?.



σ and λ apply to different variables so are unaffected when combined (or 
composed) in σλ.    Eσλ= Fσλ = Eσ = Fλ so σλ unifies E and F (so θ exists).
So (D∨G)θρ =(D∨G)σλ (defn of mgu ) for some substitution ρ 
and R' is a ground instance of (D ∨G)θ.

C1 = E∨D,  
C2 = ¬ F∨G
D and G clauses
E,  F unify, 
θ=mgu(E,F)

5cv

C1'=C1σ = (E∨D)σ 
C2'=C2λ =(¬F∨G)λ, 
Eσ = Fλ

C1,C2

resolve and
maybe factortake ground

instances

resolve

R=(D∨G}θ

R' = Dσ ∨ Gλ = (D∨G)σλ

take ground  
instance

You can follow the diagram in two different ways:
C1,C2 have ground instances C1', C2' that resolve to R' (used by semantic tree)
C1, C2 resolve to R that has ground instance R' (used by resolution)

The Lifting Lemma (General Case)

Given C1 and C2 that resolve to give R and C1’, C2’, instances of C1 and C2, 
that resolve to give R’, then R’ is an instance of R (or of a factor  of R).

The Lifting Lemma:

The lifting lemma, illustrated on Slide 5civ and proved in outline on 5cv, shows how the ground 
resolution obtained by the semantic tree method can be transformed into a full resolution proof. 
Each  ground resolution step, working up the tree, yields a general resolution step. An illustration 
of such a step is  shown on 5cii. The property, also illustrated in general, is that:

if C1 and C2 resolve (possibly after factoring) to give resolvent R, and ground instances C1' and 
C2', respectively, of C1 and C2, resolve to give resolvent R', then R' is a ground instance of R (or 
of a factor of R).

This property is then used to guarantee the fact, given on 5cii, that each clause labelling a failure 
node is an instance of a given clause or of a resolvent derived from the given clauses. Each step of 
the ground resolution proof (deriving R' from C1' and C2' by resolution and/or factoring) gives 
rise to a step between C1 and C2 deriving R and such that R' is a ground instance of R (or of a 
factor of R).

When carrying out the procedure by hand you can either: find the ground refutation and then 
obtain the general one by lifting, or add to the semantic tree the general resolvents and derive the 
refutation by resolving the clauses at each pair of leaf nodes. 

A different completeness proof for ground resolution (ie not using  semantic trees) uses 
induction on the number of different  atoms occurring in the given set of clauses. (As  identical 
literals in a clause are merged, each literal in a clause occurs only once.) You can assume also that 
there are no tautologies as such clauses can be removed without affecting satisfiability (or, as 
noted on Slide 5biv, no tautologies are needed), so all literals in a clause involve different atoms. 
The base case (for one atom A) is easy - all clauses must be unit clauses of the form A or ¬A. If S 
is unsatisfiable it must contain both kinds and a refutation can easily be found by resolving 
clauses such as A and ¬A. 
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The induction step (for k>0 atoms) assumes as Ind. Hyp. that a refutation can be 
obtained for an unsatisfiable set of ground clauses S with <k atoms. Now, there must be 
at least 1 atom (say B) that occurs both positively and negatively in different clauses (if 
not S can't be unsatisfiable - why?). Form two sets of unsatisfiable clauses, S' and S", as 
follows: First construct S1/S2 = {C | C in S and C does not contain B/¬B} and then 
delete any occurrences of ¬B/B from clauses in S1/S2 to give S'/S". (Exercise: show S' 
and S'' must be unsatisfiable - this is the crucial step.) Hence by the Ind. Hyp.  there is a 
resolution refutation of S' and of S'', as all occurrences of B have been removed from S' 
and S'', so they have <k atoms occurring. Now replace the removed literals ¬B/B into 
the refutations. That of S' will derive ¬B (or still be a refutation) and that of S'' will 
derive B or still be a refutation. In case both ¬B and B are derived a refutation can be 
found by resolving them.  In all cases a refutation is found for S.

e.g. for the ground clauses on slide 5bv, choose Dcb as B and form S1' =
{Ccb, ¬Ccb∨ ¬Tc, Tc, ¬Dca} and S1"= {Dca, ¬Ccb∨ ¬Tc, Tc, ¬Dca}. 
For S1', repeat the step (say choosing Ccb) and eventually you will obtain the refutation  
¬Ccb∨ ¬Tc + Tc ==> ¬Ccb, Ccb + ¬Ccb ==>[] .
S1" is obviously unsatisfiable, Dca+¬Dca ==>[] .
Putting back ¬Dcb into the first refutation will now yield ¬Dcb, and putting back Dcb 
into the second refutation gives Dcb. Then resolve these to give [] .
(e.g. Putting back Dcb into the second refutation gives Dca∨Dcb + ¬Dca ==> Dcb.)

Induction proofs are often used when resolution is restricted in some way - we will see 
some more examples later. 5cvii



5diSummary of Slides 5
1. Completeness of resolution can be shown in several ways. Most proofs 
demonstrate completeness using two steps. First a refutation is found using 
ground instances of the given clauses. This ground refuation is then lifted, to 
use the original clauses.

2. There is a close relationship between the ground refutation and the lifted 
refutation.

3. A Semantic Tree formed from a set of unsatisfiable clauses will be finite. 
Each branch in the tree will falsify some ground instance of one of the given 
clauses.

4. A failure node A in a semantic tree is a node such that both descendants of 
A, formed by considering some atom D=T or D=F, are leaves and the 
falsifying ground instance of the leaf which considered D=T contains the literal 
¬D and the falsifying instance for the other leaf contains the atom D. The 
resolvent of the two falsifying instances falsifies the branch ending at A.

5dii
5. A semantic tree can be used to obtain a ground refutation of ground 
instances of given clauses and also to find the corresponding 
refutation. 

6. The refutation obtained from a semantic tree indicates where 
factoring is needed. The refutation never derives a tautology.

7. Semantic Trees could be used to show unsatisfiability of a set of 
clauses S. But it is not a very practical method in general, since if a 
“bad” order of atoms is selected the tree could be very large. For this 
purpose, there is no need to form resolvents, of course, it is enough to 
know that every branch in the tree falsifies some ground instance of S.

8. Inductive proofs can also be used to show the completeness of 
ground resolution.

Question for next week:

5diii

Suppose resolvents are restricted, in that only certain literals in a clause
can be resolved upon.

Consider the restriction that forces literals in a clause to be selected in
alphabetical order. (e.g. R(...) would be resolved before S(...).)

How can the Semantic Tree proof be modified to show completeness 
for this case?


