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6aiControlling Resolution:

In this group of slides we’ll look at some basic ways to control resolution. It is easy to 
make resolution steps, but for even a medium sized problem the number of resolvents 
increases very quickly, so some method is needed to control their generation.

In Slides 3 we introduced saturation search and considered factoring. Here we’ll look 
in more detail at subsumption and its relation to factoring. In Slides 7 and 8 we’ll 
consider other ways of restricting the resolvents. 

A number of difficulties for theorem provers have been presented by Wos and are 
repeated at the end of these slides. Larry Wos led the group at Argonne that produced 
Otter – a wonderful theorem prover that you will use soon. The successor is Prover9, 
but Otter is easier for beginners. This prover  uses a saturation search as its basic 
strategy, but with many additional ways of restricting resolvents. The important thing 
is that the strategy is systematic. 

You already saw that unrestricted resolution generates many redundant clauses. There 
are some very simple restrictions that are almost universally imposed in theorem 
provers, called Tautology deletion, safe factoring and subsumption. We consider these 
next.

Some of the material in the notes sections of these Slides (mainly  proofs) is presented 
for information only, as we will not have time to cover it all in detail in class.

6bi

Example:  Px ∨ Qx subsumes Pa ∨ Qa (and θsubsumes it)
                 Pxa ∨ Pyx  θsubsumes Paa but not strictly
                 Pf(x) ∨ ¬Px subsumes Pf(f(y)) ∨ ¬ Py but does not θsubsume it.
Exercise 
Say whether first clause θsubsumes the second and if so, whether strictly.

Qxx ∨ Qxy ∨ Qyz  and Qaa                   Qaa and Qxx ∨ Qxy ∨ Qyz
Qax ∨ ¬Rxa and Qab ∨ Qac                  Qzy and Quv
Qxx and Quv                                         Quv and Qxx
Sf(x)x and Sug(u))                                 Sf(x)y and Sug(u))

Subsumption

A clause C  strictly  θθθθsubsumes  D if C θsubsumes D without necessary 
factoring in Cθ. Each literal in Cθ matches a different literal in D.

A clause C θθθθ    subsumes  clause D if Cθ ⊆ D for some θ
A clause C subsumes  clause D if ∀C |= ∀D, where ∀C means that all 
variables in clause C are explicitly unversally quantified. Equivalently, 
C subsumes D if {C+¬D} has no H-models (or if C+¬D==>* [ ]).

Note:  Identical literals in a clause are always merged, so Pa ∨ Pa is always Pa 
and Px ∨ Px is always Px. They both strictly subsume Pa ∨ Qa.  If C θsubsumes 
D, but not strictly, can first factor C to C’ which strictly θsubsumes D.

There are two species of subsumption:

Forward subsumption: a resolvent is subsumed (no need to generate it).
Backward subsumption: a resolvent subsumes (can remove other clauses).

6bii

In a saturation search  

•   forward subsumption can occur either: 
(i) as soon as a subsumed resolvent is generated, or (ii) after each stage

•   backwards subsumed clauses can be removed either:
(i) when a subsuming resolvent is generated, or (ii) at the end of each stage.

Exercise:
2.   ¬Dxy ∨ Cxy     3.   ¬Tx ∨ ¬Cxb      4.   Tc      5.   ¬Dcz           
8.  (1,5)   Dcb                  9.  (2,3)   ¬Dxb ∨  ¬Tx     10. (3,4)   ¬Ccb       

Subsumption in Use

Compare:
a) for forwards subsumption removal of a subsumed clause immediately or at 
the end of a stage
b) for backwards subsumption removal of a subsumed clause immediately or 
at the end of a stage
What do you recommend as a good strategy?
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Example
1.   Pxy ∨ ¬Qx ∨ ¬Ry         2.   ¬Puv        3.   Qa         4.   Rc        5.   Qb

6.  (1,2)   ¬Qx ∨ ¬Ry  causes 1 to be removed
7.  (6,3)   ¬Ry   causes 6 to be removed                          8.  (4,7) [] 
There are no other proofs even if 8 is not used to remove all other clauses. 
Without backward subsumption there is another derivation using (6).

An Important Property of Subsumption:
Subsumed clauses  can be removed from S without affecting satisfiability:

If C , D in S and C subsumes D then S is unsatisfiable iff S-D is unsatisfiable
                          Hence S ⇒* []   iff S- {D} ⇒* []

But note that the sets of derivations using S and using S-D are not the same
eg Backwards subsumption can mean some  "proofs" are lost.

Relation between θθθθsubsumption and full subsumption:

θsubsumption  implies subsumption 
(but not the converse - find a counter example involving a recursive clause).
(Usually checks are made for strict θsubsumption only.)

Using θsubsumed clauses leads to redundancy in proof construction in 2 ways.
Assume for simplicity that factoring is unnecessary for this slide and the next.
    

   If C  θsubsumes D, C≠D, and D resolves with E giving R1 then 
          either (i) C resolves with E to give R2 that θsubsumes R1,
          or      (ii) C  θsubsumes R1                                                       (*)
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e.g. Let C = Px, and D=Pa ∨ Q;  then C θsubsumes D.

Suppose D is resolved with {¬Q,R}, 
then the resolvent {Pa,R} is subsumed by Px (i.e. by C).      

C=Px subsumes  D = Pa ∨ Q ¬Q ∨ R

Pa ∨ R subsumed by C=Px

Using D in this case simply leads to further θsubsumed clauses.
Which of the two cases of (*) does this illlustrate?

A Constructive View of θθθθSubsumption Deletion

C=Px ¬Pu ∨ Du

Du ¬Da

[ ]

D=Pa ∨ Q ¬Pu ∨ Du

Da ∨ Q¬Da

Q

[ ]

Again let C = Px and D = Pa ∨ Q.
Suppose D is resolved with ¬Pu ∨ Du, then the resolvent Da ∨ Q is θsubsumed 
by the resolvent formed by resolving C with ¬Pu ∨ Du, i.e. by Du.

If C θθθθsubsumes D, 
then using C instead of D gives a shorter refutation.

6bvIf C θsubsumes D, C≠D, and D resolves with E giving R1 then 
          either (i) C resolves with E to give R2 that subsumes R1,
          or      (ii) C θsubsumes R1                                                   (*)

θsubsumed by

Using D like this yields clauses that can be θsubsumed if C is used instead.
Which of the two cases of (*) does this illustrate?
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¬Qa ∨ Ra ∨ Qa  
a tautology

Px ∨ Qx

Pa ∨ Ra ∨ Qa

Note: ¬ Qx ∨ Qy is not  a tautology but ¬ Qx ∨ Qx is.

Resolving a tautology  T with S leads to a resolvent R that is subsumed by S:
e.g. if T=¬Qa ∨ Ra ∨ Qa,  S=Px ∨ Q, then R=Pa ∨ Ra ∨ Qa is subsumed  by S

Question: Does Prolog have to worry about tautologies? Explain.

A clause is a tautology  if all its instances contain an atom and its negation.  

Important Property of Tautologies

If T is a tautology and T is in S, then S is satisfiable iff S-T is satisfiable.
i.e. T can be removed  S.

¬Qx ∨ Ra ∨ Qx  
a tautology

Pa ∨ Qa

Pa ∨ Ra ∨ Qa

All about Tautologies

Two Examples:



Examples     Px ∨ Py factors to Px       Qua ∨ Qvv factors to Qaa 
                      Qxy ∨ Qaz ∨ Rxy factors to Qaz ∨ Raz

Factoring is not easy to implement efficiently,  but sometimes it is necessary.
Earlier we saw that you cannot refute {Px ∨ Py , ¬Pa ∨ ¬Pb}  without factoring.

The above definition of a factor concentrates on one predicate symbol at a 
time. When applying θ it could be that other literals become identical and can 
be merged.

eg factor Px and Py in Qxx ∨ Qxy ∨ Px ∨ Py gives Qxx ∨ Px
factor Qxx and Qay in Qxx ∨ Qay ∨ Qxy gives Qaa

Or, a factor can be further factored:
eg factor Px,Py in Qxx ∨Qxy ∨Px ∨Py ∨Pa to give Qxx ∨Px ∨Pa

which can be further factored to Qaa ∨ Pa 

6ciiFactoring again
F is a factor of E1 ∨... ∨En ∨H if F=(E ∨ H)θ , where θ=mgu{Ei} and E=Eiθ.

We use “factor” to mean either a basic factor, as defined 
above, or the result of several steps of factoring

Exercise: Write down all the factors of Qxx ∨Qxy ∨Px ∨Py ∨Pa

Actually, only safe factoring (or reduction) is necessary:

If C subsumes D, then C |= D. If C is also  a factor of D then D |= C. (Why?)
Then C ≡ D and C can replace D. 

If C is a factor of D but does not subsume D then C cannot  replace D. 

e.g. Qaa doesn’t subsume Qua ∨ Qvv; the latter might be needed with some 
other substitutions for u and v ( e.g. Qba ∨ Qbb ) so it cannot be discarded.

Another characterisation of safe factor:

C safely factors if F iff for some G and H, C=G∨H, where G or H may be 
disjunctions of ≥1 literals, and F = H = (G∨H)θ  for some  θ. 
(Exercise: Show H is then a safe factor of G∨H)

6ciiiSafe Factoring
F is a  safe factor (or a reduction) of C if F is a factor of C and F subsumes C

Exercise: Write down all the safe factors of Qxx ∨Qxy ∨Px ∨Py ∨Pa

On the next slide is an outline program for saturation refinement.The program 
performs subsumption at the end of each stage. To check for backwards / 
forwards subsumption immediately a resolvent is formed requires 
resolveall  to include Sold  as an argument and to be more sophisticated in 
its second call from satref.

satref(Snew,Sold,K):- member([],Snew).
satref([],Sold,K):- writenl(['failed'], fail.
satref(Snew,Sold,K):- Snew ≠[],  not  member([],Snew),
    resolveall(Snew,Snew,R1),resolveall(Snew,Sold,R2),
    append(R1,R2,R3), forwardsubsumed(R3,Snew,Sold,R4),
    backsub(R4,Snew,Sold, R5,Snew1,Sold1),    
    append(Snew1,Sold1,Sold2),K1 is K+1,
    satref(R5,Sold2,K1).

•    satref(New,Old,K)  holds if New are resolvents formed from Old at 
stage K of saturation search, and New union  Old  is unsatisfiable.
•     resolveall(X,Y,Z)  holds if Z are all non-tautologous safe-factored 
resolvents between clauses in X and Y.
•     forwardsubsumed(X,Y,Z,W)  holds if removing clauses from X that 
are subsumed by a clause in Y or Z  leaves W.
•     backsub(X,Y,Z,X1,Y1,Z1)  holds if clauses from X,Y  and Z that are 
backward subsumed by clauses from X are removed leaving,  respectively, 
X1,Y1,Z1 .
•     Initial call  satref(Init, [ ],0) .

6civAn Outline PROLOG program for Saturation Refinement 6cv
The Program on 6civ is only an outline. How might clauses be represented in Prolog? The 
easiest way is to represent a clause as a list of literals, but for quicker pattern matching, 
maybe a clause could be represented by a pair of lists - the first list of the pair being the 
positive literals and the second the negative ones. e.g. P(x)∨Q(x)∨¬R(x) becomes the pair 
([P(x),Q(x)],[R(x)]). The data is then a list of such pairs. The empty clause would be the pair 
( [], []). In that case, for example, the condition not member([],Snew)  in clause 3 
would need to be changed to not member(([] ,[]),Snew) . Much of the work is done 
by resolveall  which has to form all resolvents between the clauses in its first two 
arguments and then remove tautologies and form safe factors of the remainder, if any.  

As an example of how to form safe factors, consider the clause {P(x,x), P(a,z), P(a,a), 
Q(z,v), Q(a,u)}. In this case, by factoring literals in pairs, we could reach successively 
{P(x,x), P(a,a), Q(a,v), Q(a,u)}, {P(a,a), Q(a,v),Q(a,u)}, {P(a,a), Q(a,u)}, which subsumes 
the original. So, does this approach always lead to all factors? 
Exercise: Try to show it does.  You might also try to program it and to consider its 
efficiency. Since most factors are not safe factors, there are clever heuristics to detect when 
safe factoring isn't  possible, before trying all possibilities.

Heuristics can also be useful for detecting (strict) θ-subsumption (or when it does not 
occur). Most clauses don't subsume each other and this can be detected before a full check 
for subsumption is made. E.g. if C has 5 literals and D has 4, then C cannot (strictly) 
θ-subsume D. If the predicates in the two clauses don't subsume each other, then nor will the 
clauses. E.g. P(...)∨P(...)∨Q(....) won't strictly subsume P(..)∨R(...) or vice versa, whatever 
the arguments.  In conclusion, checking for subsumption is not an easy task (see Problem 
sheets and Slide 6cvii). 

Using Prolog to  program a Saturation Search Theorem Prover



Programs mostly test for strict θ-subsumption and simple cases of safe-factoring only. An 
example of what can happen otherwise is that some factor of C may subsume D, even though it 
isn't a safe factor.  e.g. C=P(x,y)∨P(y,x)  θ subsumes D=P(x,x)∨R (but not strictly); 
C[x==y] = P(x,x) is a non-safe factor of C which non-strictly subsumes D.   You can begin to 
see the kinds of problems faced when constructing an efficient theorem prover.

As for the program on 6civ, notice that it contains two calls to append . It would be more 
efficient  to represent the lists of clauses as difference lists, so that they can be appended in 
constant time. A general difference list representation  has the form of a pair of lists, (Z, W), 
where W is a suffix of Z. E.g. ([1,2,3,4|W], W) represents the list [1,2,3,4]; i.e. the difference 
between the list consisting of 1,2,3,4 followed by some W, and W. Appending ([1,2,3,4|W],W) 
to ([5,6|Z],Z) results in the binding W/[5,6|Z] and the new list ([1,2,3,4,5,6|Z],Z). The single 
clause for append using difference lists is append((X,Y),(Y,Z),(X,Z)).

To resolve two clauses such as ([P(x),Q(x)],[R(x)]) and ([S(v),R(v)][]) using Prolog, first use 
copy_term  to make a copy of the two clauses with fresh variables (so their variables do not 
become bound by Prolog when unifying R(x) and R(v)). Then the resolvent is formed, in this 
case ([P(x1),Q(x1),S(x1)],[]), where x1 is the fresh variable for clause1, v1 is the fresh 
variable for clause2 and ¬R(v1) is resolved with R(x1) with unifier v1/x1. Prolog helpfully 
propagates this binding to other occurrences of v1 to give the desired resolvent. A copy 
operation is also needed to implement a subsumption check. The potentially subsuming clause 
C is copied and the potentially subsumed clause D is grounded to Dg - its variables are bound 
to new ground terms, using the numbervars predicate. Then a check is made of whether C is 
a subset of Dg for some instance of C.    (Exercise: Check why this works.) 6cvi

Continued from Slide 6cv
Further Properties of subsumption and factoring.  

Full subsumption is not usually checked as it can be a theorem proving problem itself that 
may not terminate.  E.g. ¬ P(x)∨P(f(x)) subsumes ¬P(x)∨P(f(f(x))) (i.e. the first clause 
implies the second) but it does not θsubsume it.  Even checking for θsubsumption can be 
hard. If C is a clause with (say) 5 literals, all positive and all of predicate P, and D is a 
similar kind of clause, how many possible ways are there that C might subsume D? Lots! 
One simple way to check for θsubsumption is given in the exercise solutions.

Checking for factoring is also not easy. If every factor of a clause is added then the number 
of clauses can get very large very quickly. But factors are often useful, especially if they 
instantiate a clause. The factored clause might resolve with fewer clauses than the original, 
so fewer resolvents are considered. One strategy might be to favour factored clauses. 
However, the original clause cannot normally be discarded. Factors are also sometimes 
necessary – see Slide 3ci for an example.

A factor of C is implied by C (Why?). If also the factor subsumes C, then it implies C and 
hence C and the factor are equivalent. We call this safe factoring (or reduction). In this case 
C can be discarded.  Finding safe-factors is worthwhile – the factor is smaller than C as at 
least two literals have been made identical. Moreover, it has been shown that these are the 
only kinds of factors that might be necessary in order to find a refutation, although smaller 
proofs might be found if other factors may be generated and used.  

(By the way, note that a refutation is sometimes called a proof, since it is a proof of a 
contradiction,  the empty clause.)

6cvii

6cviii

As illustrated on Slides 6biv/v, using subsumed clauses leads to redundancy in a proof.  We 
can show that the following Property SubFree holds for refutations formed using saturation 
search. (See Appendix1 for the proof.) The proof given there uses the notion of maximum 
depth of a refutation, which is the stage in the generation of resolvents in a refutation by 
saturation search at which the empty clause is formed.  A resolvent R is derived in a 
refutation at depth k if k is the stage in the saturation search at which R is derived.

Property SubFree:
Let S be a set of unsatisfiable clauses such that none subsumes any other in S. Then, there is 
a refutation R from S such that for each clause Ck at depth k≥0 and used in R, Ck is not 
subsumed by any different clause that is in S or derived from S at a depth ≤k. 

The proof of Property SubFree uses this fact (illustrated on slides 6biv/bv): 
      if C subsumes D and a step in a refutation uses D (resolving with K) to derive R, 
      then either C subsumes R, 
             or resolving C and K leads to resolvent R' that subsumes R.  
The proof of this fact is not difficult and is left as an exercise. 

Continued from Slide 6cvii

The proof given in Appendix1 constructs a subsumption free refutation in stages from an 
arbitrary refutation. It assumes that any factoring needed is carried out at the time of the 
resolution step, which avoids the restriction to strict subsumption. Try to construct an 
example of a refutation that violates the SubFree Property and then find another refutation 
that satisfies the property. If interested, you could follow the construction.

6diSearch Spaces and Refinements
Fact: Unrestricted resolution leads to formation of far too many resolvents.

Some simple restrictions we have already seen are to: 

•  delete a  tautology (clause with a literal and its negation eg {P(x), Q(x,y), ¬P(x)}            

•  delete a  subsumed clause (which is redundant)

•  generate factors (maybe just safe factors)

More generally we need further ways to restrict resolution. The most popular 
methods exploit the syntactic form of a clause to reduce the search space.

Two different search space structures

Linear search space:
eg resolve with previous resolvent

•

•

•

•

•

•

•

•

•

•

• •

• •

• •

• •
•

Saturation search 
space – take 1 
path at each stage



Study of refinements 
•  of resolution began in about 1970 and continues still

•  of Tableaux started in about 1984 and continues still

•  of equational reasoning started in about 1985 and continues still

•  of natural deduction started in 1960 but has not been actively pursued

Within a systematic search for a refutation, there will still be choices:

The possibilities give rise to a  Search Space and we may ask how to control its 
size and in what order to search it, or even does it contain all required proofs.
•   strategy  refinements concern  which resolvents will be formed –                           
e.g. except at first step can only resolve with a previous resolvent
A strategy refinement affects the structure of the search space and so controls 
its size and the particular refutations that are possible.
•   order refinements  concern the order in which resolvents are formed –        
e.g.  take resolvents with unit clauses first
An order refinement affects how the search space is searched and (in case only 
one refutation is desired), which refutation that would be. 

6diiTypes of refinement

In the next few lectures we’ll look at a selection of syntactic refinements.

Example 2: Prolog
uses  the “selection rule and linear” strategy refinement,
uses the “clause order and depth-first search” order refinement,
and looks for all proofs in the search space

Other order refinements might be parallel search,
or reject useless paths first – eg goal ?...,L,...  and no matching clause for L

6diiiExample 1:Saturation Search 
uses the “forwards subsumption” strategy refinement,
uses the “subsumption/safe-factoring at end, stage-by-stage, or breadth-
first” order refinement,
and looks for one or all proofs within the search space

Other strategy refinements might be to enforce order of literal selection,     
or to make each step a combination of resolution steps.

Question: 
a) Explain how Prolog uses resolution, and.
b) What feature(s) of Prolog makes it unsound in some circumstances       
          (that is, leads it to give the wrong answer)? 
c) Can you suggest additional strategy or order refinements that could 
be used for Logic Programming (i.e. not just Prolog).

6divMiscellaneous notes on Search Spaces

A search space for a strategy refinement may be searched in  (at least) 3 kinds of ways and 
in practice aspects of all 3 ways are used..  The saturation search is just one way.  
Although space consuming, it is in common use.  It is guaranteed to find a short proof in 
the search space if one exists. Two others are:

(1) Each path is taken in order and followed to its conclusion. This is not, in general, 
possible as a  path might not terminate. Instead, a depth d is chosen and all  paths are 
followed to this depth.  If no proof is found then d is increased and the process is repeated.  
The partial proofs found previously to depth d are repeated.  This method could miss a 
short proof if it did not happen to be explored first and d is initially too large.

(2) Search according to some heuristics, often chosen to be data dependent. eg one might 
be able to remove early on paths that become obviously useless.

We usually require a strategy refinement  to be complete:

•  the search space generated should contain all required solutions (proofs). 

although a weaker form ensures the search space contains at least one proof (if any exists). 

We also require an order refinement to be search-complete, or  fair. That is, every branch 
will eventually be developed, or shown to be redundant. eg depth-first search with no depth 
limit is generally not fair, because of the possibility of  infinite branches. 

6eiSummary of Slides 6

1.  Without control, resolution generally produces too many resolvents, many 
of which are redundant.

2. Some simple control methods are forwards and backwards subsumption, 
tautology deletion and safe factoring. Subsumption removes clauses that 
would most likely, if used, lead to longer derivations. Tautologies, if used, lead 
to subsumed resolvents. Safe factoring replaces a clause with an equivalent, 
but smaller clause.

3. Generally, subsumption detection is limited to strict θ-subsumption, as other, 
stronger forms of subsumption are expensive to detect, and, in the case of 
general subsumption may be undecidable

4. Deletion of sbsumed clauses and tautologies does not affect unsatisfiability.

5. Control of resolution (and indeed of other techniques) is a much researched 
area, and continues to be so. Most strategy refinements are syntactic. 
Semantic refinements tend to be in specialised domains.



6eii

6. A simple Prolog program was introduced for saturation search. A saturation 
search proceeds by stages, generating resolvents in groups, at each stage 
using at least one resolvent from the immediately preceeding stage in every 
resolution step and no resolvents generated in the current stage.

7.  A search space is the set of possible steps that can be made. For a given 
problem and general strategy there may be several different search spaces 
that can be generated, depending on the particular strategy refinement. Any 
search space may often be searched in different ways as well, depending on 
the order refinement. 

For example, in Logic Programming, different search spaces will result 
depending on the selection of literal from each query. In Prolog, the selection 
is always the leftmost literal of the most recent literals added to the query. But 
other choices are possible. Prolog searches its search space from left to right 
and depth-first. It is also possible to search each branch to depth 1, then each 
branch to depth 2 and so on, although this uses up rather more space than 
depth-first. But depth-first search is not complete if branches may be infinite, 
as they often are in Prolog.   (Exercise: Find such an example.)

8. A refutation (using subsumption) can constructively be transformed into a 
simpler refutation that does not use subsumption.

6eiii

1 Data retention: the program keeps too much information in its data base.

Remedy: throw away some data, perhaps needing to recompute when 
needed.          BUT which data to delete?

3 Inadequate focus:  the program gets lost too easily and wanders down 
useless paths.

Remedy: use some sort of weighting to decide on useful  deductions.
BUT how can this weighting be formulated?

2 Redundant information:  the program keeps  generating the same 
information, or subsumed information, over and over again. 
eg if A in data, no need for A or B.         Or ∀x. A(x), no need for A(b).
Remedy: throw away the redundant info. 
BUT: requires checking to find redundancy.

1,2,3 usually result in the program  generating too many conclusions,
 many of which are redundant or irrelevant.

Obstacles to the Automation of Reasoning (Wos)      (For interest only)

4 The inference rules may be too fine-grained, resulting in the problems 
1-3, or they may be too large,  or too restrictive, resulting in the problem 
of too  little information being drawn. (We’ll consider several examples.)

6  The program may not use an appropriate representation of the information 
pertinent to  the  problem. 
Remedy: lots of experience.

7 Ordinary computing difficulties such as indexing  in the database and finding 
appropriate  information.

6eiv

5  There are no general guidelines for selecting  the  appropriate means to 
control the problems in 1-4.

Remedy: control by strategy 
– syntactic kinds prohibit certain paths – easy for the program;     
– semantic kinds harder – but focus on paths likely to solve problem.    
– More generally, could  allow deductions only if they yield facts;
– or use equations from left to right only – e.g. a=b can be used to replace a 
by b but not b by a.

– e.g. simulation of LP by resolution: start from negative clause and generate 
next resolvent from current resolvent and an input clause; select literals in a 
fixed order; order input clauses; could check constraints to remove failing 
paths quickly;   


