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Hyper-resolution is the strategy employed 
in the widely used Otter family of provers.

Hyper-resolution generalises ``bottom-
up’’ reasoning and combines several 
resolution steps into one big step.

Hyper-resolution Strategy:

Clauses are divided into
   nucleii  (those with ≥1 negative literals), 
   electrons (those with no negative literals).

Resolution occurs between 1 or more 
electrons and 1 nucleus. There is 1 electron 
clause used for each negative literal in the 
nucleus. 

Hyper-Resolution

{¬Px,¬Qx,Rx} {Qa,C}

{¬Pa,Ra,C}
{Pa,D}

{Ra,C,D}

(nucleus)

(electron)

(hyper-resolvent
another electron)

(intermediate
resolvent
discarded)

(electron)

A hyper-resolution step

8aiiExample                 (M(x,y,z) reads as z=x∗y)

(N)1.   {M(x,y,z), ¬M(y,x,z)}      Commutativity  of times (x∗y=z if y+x=z)
(E)2.   M(x,x,s(x))                      x_squared=x∗x
(N)3.   {D(x,y), ¬M(x,z,y)}          y=x∗z → x divides y
(N)4.   {¬P(x),¬D(x,u),¬M(y,z,u),D(x,,y),D(x,z)}
                ( x is prime ∧x divides u ∧ u=y*z→ x divides y ∨ x divides z)
(E)5.   M(a,s(c),s(b))               (E)6.   P(a)                   (N)7.   ¬D(a,b)    

8.   (1,5)   M(s(c),a,s(b))     9.   (2,3)   D(x,s(x))           10.  (3,5)  D(a,s(b))
     ((1+2) gives M(u,u,s(u)) which is subsumed by 2

Goal is to show: 
∀x[x is prime ∧ b_squared=x∗c_squared → x divides b] ≡  
(when negated) ¬∀x[P(x) ∧M(x,s(c),s(b))→D(x,b)] 
(which Skolemises to) P(a),  M(a,s(c),s(b)),  ¬D(a,b)   (a is Skolem constant)                     

Nucleii: 1,3,4,7;   
Electrons:  2,5,6

11.   (8,3)  D(s(c),s(b))                             12.  (4,6,8,10)  {D(a,s(c)),D(a,a)}
13.  (4,6,9,2)   {D(a,a),D(a,a)}  factors to  D(a,a)  and subsumes 12
14.  (4,6,10,2)  {D(a,b),D(a,b)}   factors to D(a,b)
15.   (14,7) []

Notice that only electrons are 
formed as final resolvents. In this 
refutation they happen to be facts, 
but need not be. (See clause 12 on 
Slide 8aii.)

Although nucleii are never derived, 
they may be deleted by 
subsumption using derived 
electrons. 

Tautologies can initially be deleted, 
but they are never derived as they 
are nucleii. 

Nucleii can be safely-factored at the 
start.  Electrons can be factored. 

8aiii

The derivation as a tree ....

[ ]

D(a,b)∨D(a,b)==>D(a,b)

¬D(a,b)D(a,s(b))

 ¬P(x)∨¬D(x,u)∨¬M(y,z,u)∨D(x,,y)∨D(x,z)

P(a)M(x,x,s(x)) 

D(x,y)∨ ¬M(x,z,y)

M(a,s(c),s(b))

Exercise : Show that, if a tautology is derived part way into forming a new 
electron, the final electron will be subsumed. 



8aivOutline  PROLOG program for Hyper-resolution
hyper(Ns, OldN,Es,Num):- member(empty,Es).
hyper([],OldN,Es,0):- writenl(['fail']), fail.
hyper([],OldN,Es,Num):- Num>0, not member(empty,Es), 
         hyper(OldN,[],Es,0).
hyper([N|RestN],OldN,Es,Num):-N_is_subsumed_by_Es(N,Es), 
         hyper(RestN,OldN,Es,Num).
hyper([N|RestN],OldN,Es,Num):-
        hyperresolve(N,Es,NewEs,Es1),
        append(NewEs,Es1,E2,Count),Num1 is Num +Count,
        hyper(RestN,[N|OldN],E2, Num1).
Initial call: hyper(N,[],E,0).

hyper(A,B,C,D) holds if Nucleii A and B and electrons C yield the 
empty clause.  D is a flag to indicate no new resolvents can be formed.
append(A,B,C,D)  appends A and B to give C and D=length(A).

hyperresolve(N,E,NewE,RestE)  holds if  nucleus N yields non 
subsumed hyper-reolvents NewE , no clauses in RestE , a subset of E, are 
subsumed, clauses in E-RestE  are subsumed (by clauses in NewE).

The 2nd and 4th args of hyper   are used to maintain fairness. The nucleii 
are processed again and again, unless there are no new electrons, in 
which case there is failure.

8avProperties of Hyper-Resolution
Hyper-resolution is Complete:
An inductive proof is considered in the problem sheets so is not given here.

Hyper-resolution can be combined with both predicate/atom ordering and locking:

Predicate ordering : 
Only use ordering in electrons (Why?)
Only resolve on minimal atoms from an electron.
                  eg if R<Q<P then from P(a,x)∨Q(x,y) can only use Q(x,y)

Locking : 
Only lock positive literals in electrons or nucleii; 
Implicitly, negative literals are locked lowest in nucleii to force their use
      eg Given ¬P(a)∨¬Q(x)∨R(x)5,   P(a),  Q(b)4∨Q(c)7    can derive R(b)5∨Q(c)7

Notice that intermediate nucleii can only be used to derive electrons and not 
resolved with each other as the lowest locked negative literals in two nucleii cannot 
be resolved together.

If all positive literals are locked at 1, and all negative literals are locked at 0, then 
locking effectively simulates hyper-resolution. Can therefore adapt the 
completeness proof for locking to obtain a completeness proof for hyper-resolution, 
though that's not what's usually done. (See exercise sheet and answers.)

8aviHyper-Resolution:

Hyper-resolution forms the basis of a family of theorem provers from Argonne.  OTTER 
(which you'll get a chance to use  in the lab) was the first, and is best for beginners; its most 
recent descendant  is called Prover9. In hyper-resolution each ''step'' is actually one or more 
resolution steps, made according to a simple syntactic principle: only (final) resolvents with 
positive literals (called electrons) are allowed to be derived. To form them, a clause with one 
or more negative literals (called a nucleus) is sequentially resolved with electrons, each time 
removing 1 negative literal, until an electron is produced. If the nucleus has 5 negative literals 
there would be 5 intermediate steps. Note that a particular electron may be used in more than 
1 intermediate step, but for each use a fresh copy is taken. As each overall hyper-resolution 
step is generally more than one  resolution step there are fewer possible steps overall, so the 
search space is reduced (compared with that for binary resolution).

The outline Prolog program on Slide 8aiv performs a saturation search to find the empty 
clause by hyper-resolution. Initially, the clauses are divided into nucleii and electrons. 
Assuming there are some of each (why must this be so if S are unsatisfiable?) each nucleus is 
used to find all hyper-resolvents from the current electrons. At the end of all the processing, 
and after applying subsumption, the number of new electrons produced is recorded. If there is 
at least one, then the  process is repeated on the list of  (non-subsumed) nucleii, otherwise 
there is failure. If the empty clause (an electron) is  produced there will be success. All the 
hard work is performed by Hyper-resolve . 

[By the way, the answer to the question above is that if all clauses are electrons, then they 
have a model - just assign T to all atoms. If no clause is an electron, then again the given 
clauses have a model - assign F to all atoms.  For an unsatisfiable set of clauses S neither can 
happen, so S must contain at least one each of an electron and nucleus. ]

8bi

The Set of Support strategy is related to Hyper-resolution and is used by Otter.

 • For a given problem the clauses are divided into two sets, the SOS (set-of-
support) and the rest.  For example, at least some clauses in the clausal form of 
the negated conclusion are often put into the SOS.

• Resolvents may only be formed if at least one clause contributing to the 
resolution step  is from the SOS, or is derived from such a clause (i.e. it has an 
SOS clause as an ancestor).  As a consequence, note that clauses not initially 
in SOS will never be resolved with each other.  (Therefore, if C is to be 
resolved with D at least one of them must be in SOS.) Such clauses behave a 
little like the nucleii in Hyper-resolution. 

• Why is this a good strategy?   
The clauses not in SOS are often satisfiable. e.g. the clauses in a Horn clause 
program could be the complement of the SOS. Resolving between the 
satisfiable non-SOS clauses may give interesting results, but not results that are 
useful for the problem in hand. Using at least one clause derived from the 
conclusion or clauses in SOS will more likely give useful results.

Exercise:  (1)  Prolog uses the SOS strategy. What is its SOS?
                 (2) What happens in this strategy if SOS is initially empty?

Set of Support Strategy



8bii

Otter is a very versatile theorem prover with a simple interface. The successor 
is Prover9, but Otter is used in class as it gives single step and user interaction.

Otter makes use of 2 main lists: sos and usable (non-sos clauses). 
The main loop is:

While sos is not empty and empty clause is not derived
     select given from sos (various criteria for selection)
     generate resolvents using usable clauses and given 
             (various inference rules are allowed and restrictions can be imposed)
    move given to usable
    process new clauses and put kept  ones into sos (various criteria for retention)
End

Selection criteria include number of literals, number of variables, weight of 
terms, most recent addition, oldest clause, etc.

Inference rules include resolution, hyper-resolution.

Retention criteria include measures as above, plus factoring, subsumption.

The OTTER Theorem Prover

Otter forms resolvents using the SOS restriction strategy, and processes them 
according to user defined settings until the empty clause is deduced.

8biiiThe OTTER Theorem Prover Main Loop

USABLE

SOS

GIVEN RESOLVENTS
ACCORDING

TO
STRATEGY

NEW USABLE
AFTER

PROCESSING

NEW SOS
AFTER

PROCESSING

KEPT
RESOLVENTS
ACCORDING

TO
CRITERIA

USABLE

SOS

STOP IF [ ]

STOP IF
SOS  EMPTY

8biv

Example1 usable:     1: ¬Ha      2: ¬Gz ∨¬Fb     3: ¬Fx ∨¬Hb     4: Gx ∨¬Fx
                   sos:         5: Fx ∨Hx 
In all examples assume hyper-resolution, for/back subsumption, no factoring.
Select 5 as given.  Compute resolvents:  (5+1= 6): Fa,  (5+4=8): Gx ∨Hx
                              (5+5+3=7): Hx ∨Fb    (Remember, use Hyper-resolution,            
                                                 and have only 1 electron (5), so cannot use (2))
sos is now 6, 7, 8 and usable is 1- 5.

Select 6. Compute resolvents:  (6+5+3=9): Fb (subsumes 7), (6+4=10): Ga.                                
                                                  (Remember, use Hyper-resolution)
sos = 8, 9,10 and usable = 1- 6.

Select 10. Compute resolvents: (10+2+5=11): Hb.
sos = 8, 9,11 and usable = 1 - 6, 10.

Select 11. Compute resolvents: (11+3+6=12):[], (11+3+5=13): Hx.
Stop , as empty clause is deduced.

Example 2  usable = 1 - 5;                         sos = empty. Stops immediately!

Example 3  usable = 1: H ∨¬G    2: G        sos = 3: ¬H  
Select 3. No hyper-resolvents possible using only 3 and usable.
sos = empty, usable = 1 - 3. Stop!  even though refutation possible.

The Otter Theorem Prover 8bv
Otter is a resolution based theorem prover that was developed at Argonne. It is based 
on the set of support principle. The user can control its deduction cycle in many ways 
by setting numerous flags and parameters.

Otter has a single main loop that forms resolvents and processes them until either the 
empty clause is deduced or the resources are used up. Otter keeps the clausal data in 
two main lists called the usable list and  sos list. Resolvents are produced using one 
clause  selected from the sos list and one or more clauses taken from the usable list. Its 
main operating loop is shown on Slide 8bii.

Criteria for selecting the given clause are measures such as number of literals, number 
of variables, weight of terms in the clause, etc. These can be controlled by the user. The 
inference rules can be resolution or hyper-resolution, as well as several others (see the 
on-line manual). Derived clauses are subject to various processing, such as factor 
forming, subsumption tests, etc.  Again, the user can control which tests are carried out. 

For example, the user can set a flag so that resolvents that have more than a set number 
of variables or literals are not kept. Although this will make the search space 
incomplete, it may keep it within reasonable bounds.

Otter allows user interaction which is helpful for beginners. However, a replacement 
called Prover9  (See  http://www.cs.unm.edu/~mccune/mace4/ ) is recommended for 
serious work.



More about Otter
There is a third list used by Otter called the passive list. Clauses in this list are not used to 
form resolvents unless they can be used to derive the empty clause immediately from two 
facts. For instance, perhaps we would like to know if an intermediate literal L is ever 
derived. In that case, we can put the negation of L into  the passive list. If  L is ever derived, 
the empty clause is immediately generated and Otter stops.  

The clauses in the passive list can also be used to remove subsumed clauses. For example, 
suppose we know that clauses with a literal of the form P(f(f(f(x)))), for any x, will be 
useless. Otter uses the passive list to detect additional subsumed clauses: if P(f(f(f(x)))) is 
put into the passive list and the subsumption flag is set, then all clauses of this form will be 
subsumed and removed. 

Initially, the user puts each initial clause either into the sos-list or into the usable-list. The 
sos-list acts as a set of support facility. All resolvents will be formed using a clause in the 
initial sos-list or from a resolvent having at least one ancestor from the initial sos-list.  Note 
therefore, that if the sos-list is initially empty no processing can occur as there is no clause 
to be the first given-clause.  It is possible for the user to interact with Otter to tell it which 
should be the next given-clause. Otter will find all proofs of the empty clause within the 
parameters set by the user, who can also constrain Otter to find just one proof. As an 
experiment, run Otter on the three clauses 
                                  -p(u,v) | -p(v,u),  p(x,f(x)),  p(f(y),y)
with various combinations of initial assignments of clauses to the sos-list and usable-list.

You will have a chance to try Otter on some simple problems.  For instance, you could try 
the three problems from Slides 0 (Otter includes reasoning with equality). You are 
expected to have used Otter and be familiar with the basic flags as part of the course.

8bvi
8ci

•   Let I be an H-interpretation in which all atoms are False , so all negative 
literals are True .   A nucleus will be True in I and an electron False in I.
•   A hyper-resolvent (an electron) is False in I.
•   Resolution occurs between one clause which is True in I (the nucleus) and 
other clauses (electrons) that are False in I.
•   Hyper-resolution can be generalised for any H-interpretation I that splits a 
given set of clauses S into non-empty  S1 and S2 s.t.

      • S1 = clauses which are True in I   (still called nucleii)
      • S2 = clauses which are False in I  (still called electrons).

•   The strategy is still to resolve between 1 nucleus and ≥1 electrons.
•   In the 'standard' hyper-resolution method it is easy to distinguish between 
nucleii and electrons:

• every instance of an electron clause is  an electron
• every instance of a nucleus clause is  a nucleus  
• for each nucleus literal, either all instances are true, or all instances are false

•   So whatever unifiers are involved, a clause remains either a nucleus or an 
electron.    Any H- interpretation I that satisfies these criteria is called a 
uniform H-interpretation and can be used to form nucleii and electrons.

Hyper-resolution has an interesting feature

Suppose I  makes all atoms TRUE.  

That is, atoms L are true and literals ¬L are false. 
An all-negative clause becomes a standard electron, and
a clause with ≥1 positive literals is a nucleus.
The positive literals are resolved upon. 
Notice that a Horn clause with 1 +ve atom is a nucleus needing 1 electron

8ciiExample of a Uniform Interpretation in Hyper-resolution

Rename each atom A as ¬A' (so I makes A' false) – gives
(1)  ¬P'∨ Q' ∨R'  (N)         (2)  ¬Q'   (N)        (3)  ¬R' ∨ Q'  (N)        (4) P'   (E)
Now use standard hyper-resolution
We can use renaming to show completeness using any uniform interpretation

EG Given the Horn clauses:
(1)  P∨¬Q ∨¬R  (N)            (2)  Q   (N)        (3)  R ∨¬Q   (N)        (4) ¬P   (E)
A hyper-resolution refuation using  I can resolve (N) on underlined literals:
(1+4=5) ¬Q ∨¬R    (5+2=6) ¬R   (5+3=7) ¬Q     (2+7=8)     [ ]
(Do you notice any pattern? HINT: Think of a logic programming trace)

In fact,  for Horn clauses  standard Hyper-resolution (without renaming) is just 
forward reasoning with Modus Ponens, whereas hyper-resolution w.r.t. I (I 
makes all atoms true) can simulate "top down" refutations (as in Prolog).

Suppose I is a uniform interpretation that makes R, P True and Q false, and 
given:  (1)  P∨Q  (N)       (2) ¬P∨R    (N)        (3)  ¬Q∨R   (N)       (4)  ¬R    (E)
A refutation using this uniform interpretation (true literals underlined) is
(4+2 =5): ¬P        (5+1=6): Q        (6+3+4):  [ ]
Notice all electrons and resolvents are false in I.

8ciiiUsing Uniform Interpretations in Hyper-resolution (1)

Remember: electons are false in an interpretation I and nucleii are true.

We now rename literals in the original clauses so that under the standard 
interpretation (when all atoms false) electrons are false and nucleii are true.

Rename P to ¬P' and R to ¬R'. Since I makes P and R true it makes P' and R' 
false, and it still makes Q false.   (¬P becomes P' and ¬R becomes R')

Then:  (1)  ¬P'∨Q  (N)       (2) P'∨¬R'     (N)       (3)  ¬Q∨¬R'   (N)     (4)  R'    ( E)
A standard HR-refutation is       (4+2 =5): P'        (5+1=6): Q        (6+3+4): [ ]
which is exactly the same as the original refutation after renaming.

SUMMARY: For each atom that I makes false - do nothing;
For each atom A that I makes true rename A as ¬A' (so I makes A' false)
Then can use standard hyper-resolution



8civ

How might a suitable uniform interpretation I be found?

•  If clauses T are a theory about something or other, they will be satisfiable 
and have a model M. With respect to M, the clauses in T are nucleii.

•  Suppose a conclusion C, when negated, yields clauses G. 
If T |= C then T+ ¬C is inconsistent, and the clauses T+G are not satisfiable.
That is, any model M of T must make at least one clause in G false and that 
clause would be an electron with respect to M.

• So we look for a uniform I such that (if possible)
    • nucleii = clauses in T          (I makes clauses in T True)
    • electrons = clauses in G     (I makes clauses in G False)

then hyper-resolution allows resolution between a clause in T and clauses in 
G or derived from G, but never  between two clauses in T.

It is unlikely this can be achieved exactly; for any selected I, usually at least 
some clauses in G  are nucleii or some clauses in T are electrons, but the 
idea is good - divide clauses into 2 sets, called the major and minor sets, 
such that resolvents must be formed using at least one clause derived from 
the major set and clauses in the minor set are never resolved together.

• The set-of-support  strategy considered earlier is the result.

Example     Show  ∀xy[(x<y∨x=y) ∧  y<c→x<c]   (Use E for = and L for <) 

1.  Exx                          x=x                 2.   {¬Exy,¬Eyz,Exz}     x=y ∧y= z →x=z
3.   {¬Exy,Eyx}              x=y → y=x     4.   {¬Lxy,¬Lyz,Lxz}      x<y ∧ y<z → x<z
5.   {¬Lxy,¬Lyx}             x <y → ¬y<x   6.   {Lxy,Exy,Lyx}         x<y  ∨ y<x  ∨  x=y
7.   {¬Exy,¬Lxy}            x=y → ¬x<y
8.   {Lab,Eab}                             9.   Lbc                         10.  ¬Lac               

8cv

Let I = {Exy all True, Lxy all false.};  (a uniform interpretation)    
Then  all except 9 are nucleii with True  literals positive E or negative L.   
9 is the only electron. Electrons have negative E and positive L literals

The True literals in nucleii for resolving are underlined - all the resolvents are 
electrons so no true literals.

 negated goal is  ≡  ∃xy[(x<y ∨ x=y) ∧ y<c ∧¬x<c]
 which becomes after Skolemising (a < b ∨ a=b ) ∧ b < c ∧ ¬a < c    (i.e. 8,9,10)

11. (7+9).      ¬Ebc                               
12. (2+11).     {¬Eby, ¬Eyc}
13. (12 +6).    {Lyc, Lcy, ¬Eby}          
14. (13+10)    {Lca, ¬Eba} 
15. (14+4+9)  {Lba, ¬Eba}         

16. (7+15).      ¬Eba          
17. (3+16).      ¬Eab                      
18.  (8+17).     Lab                         
19. (18+4+9).  Lac         
20. (19+10)     []

Generalising Hyper-resolution.
As Slide 8ci  argues, hyper-resolution can be generalised. One interesting and simple 
generalisation is to exchange the roles of positive and negative literals. We'll call a clause 
with only negative literals an N-electron and  a clause with at least one positive literal an N-
nucleus. Then all positive literals in an N-nucleus are resolved with N-electrons in an N-
hyper-resolution step. A special case of this occurs for Horn clauses – all N-nucleii will have 
just one positive literal, so each step is a single resolution step and the result is, in effect, a 
simulation of a logic programming system. Exercise: Show that this is the case. Slide 8cii 
shows the relation between hyper-resolution and N-hyper-resolution.

Slide 8cv shows an example of a  uniform interpretation. A non-uniform interpretation for 
the given clauses on 8cv is the following one: 
         Lxx = false, Lab=Lbc=Lca=true and Lba=Lcb=Lac=False.
         Exx = true and Exy = false if x≠y. 
For this interpretation consider clause 3 on Slide 8cv. It is always a nucleus and ¬Exy is 
always true, except if x=y. In that case the clause becomes a tautology, which is perhaps not 
too bad. Now consider clause 5. It also is always a nucleus, but when x/a, y/b, then  ¬Lyx is 
true, whereas when x/b and y/a , then ¬Lxy  is true. So sometimes the nucleus should be 
used by resolving on  ¬Lxy and sometimes on ¬Lyx. But if resolving with Luv (say) how 
can you tell which to use?  Perhaps this too is a special case as it is a symmetric clause.  So 
consider clause 4. The instance ¬Lab∨¬Lbc∨Lac is an electron as it is false, but the instance 
¬Lab∨¬Lba∨Laa is a nucleus, with ¬Lba (from ¬Lyz) the true literal.  

Because of these kinds of problems, non-uniform interpretations are not often considered.  

8cvi Relation between Standard Hyper-resolution and using any Uniform Interpretation.

If you were to attempt hyper-resolution for the clauses on Slide 8cv using the non-uniform 
interpretation suggested on slide 8cvi,  it would be difficult. You might resolve on a literal in 
an electron only to find later that the implicit instance used was a nucleus! It is for this reason 
that uniform interpretations are the best.  Even then, they may not be so efficient for humans 
or machines to process as the standard interpretation.  

A uniform interpretation may appear to be a useful generalisation, but in fact, any proof found 
using it is isomorphic to an ordinary hyper-resolution proof, and so the generalised version 
using uniform interpretations is complete too.  This is shown next.

In a uniform interpretation, for any literal occurring in a clause either all its instances will be 
true or all its instances will be false. Thus each literal in a clause can be given a label t or f 
and it can be determined  whether a clause is an electron or a nucleus, and, in the latter case, 
which literals are true. (In the standard interpretation, where all atoms are assigned false, each 
negative literal is true and each positive literal is false.) Let I be a uniform interpretation. We 
can rename each atom L, such that L is true in I, as ¬L' for some new L', which will be false 
in I,  and hence all instances of ¬L' will be true. That is, L' is equivalent to ¬L and for the 
renamed atoms, each  occurrence of the literal ¬L will be replaced by  L' and each occurrence 
of  L will be replaced by ¬L'.  Atoms that are already  false in I are not affected.  I now makes 
all atoms false (the unaffected ones were already false and the renamed L' type of atoms were 
constructed to be false).  The clauses that were nucleii are still nucleii (but now in the usual 
sense) and the same literals are true in them. For example, if C was a nucleus and included 
atom S, which was true in I, then S will be replaced by ¬S', where S' is false in I. Similarly, 
the clauses that were electrons are still electrons (now in the usual sense). See Slides 8cii and 
8ciii for an example.  (Continued on Slide 8cviii.) 8cvii



8cviii

(Continued from Slide 8cvii). 
Each step in the original derivation (using the original uniform interpretation) corresponds 
exactly to a step in the renamed version (made using the standard rules). 

On the other hand, after the transformation the standard hyper-resolution strategy can be 
used to find a refutation, always possible since the standard strategy is complete.  Since only 
syntactic changes have been made, a refutation from the original clauses respecting the 
original interpretation, if desired, can be recovered from the standard one that is found using 
the transformed clauses. (See Slide 8ciii again.)

As another example, in the particular case when the interpretation makes every atom true, 
all literals must be renamed. Any Horn clause with one positive literal now becomes a 
nucleus with one negative literal, and any negative clause with no positive literals becomes 
an electron. Since only one negative clause is necessary for a Horn clause refutation, the 
resulting electron may be the only one.

There is at least one class of problems when a non-uniform interpretation can be useful. It is 
when the clauses represent a problem with a sorted Herbrand universe. That is, the terms are 
divided into disjoint subsets (called sorts). For example, a predicate A(x,y) may occur in 
two kinds of places - those in which x and y would both be bound to elements of one sort, or 
those in which x and y would both be bound to elements of another sort. It may also be the 
case that when x and y were of different sorts A(x,y) would never participate in a successful 
refutation. Then, we might be tempted to divide the clauses containing A(x,y) or its 
instances into those in which x and y belong to the first sort and those in which x and y 
belong to the second sort and to ignore the others. Then, if required, A(x,y) could be made 
true for the first sort and false for the second, or vice versa.  An example of this idea is 
described on 8cix.

8cixFor Interest Only:
Example  of a non-uniform interpretation making use of a sorted universe.

Let the signature = <{A,B,C}, {g}, {a,b,c,k,m}> and A and B be of arity 1, and C be of 
arity 2. Also, let g, of arity 1, return sort 1, whatever its argument,  a and b be of sort 1, 
and c, k, m be of sort 2. Assume arguments of A, B and C can be of either sort.  

Consider an interpretation in which  A(x) is assigned true iff x is of sort 1 and B(x) is 
assigned true iff x is of sort 2 and suppose an assumption is made that the only useful 
instances of the clause ¬A(x)∨¬B(y) ∨ C(x,y) are when x is of sort1 and y is of sort 2. In 
this clause C(x,y) instances can be assumed to be of the kind C(sort1, sort2) and all these 
can be given the same truth value. On the other hand, in ¬A(x)∨¬A(y) ∨ C(x,y) perhaps 
the useful instances can be assumed to be of kind C(sort1 ,sort1), which can also all be 
given the same truth value. but not necessarily the same one as was given to the 
C(sort1,sort2) instances.  Thus in transforming from the non-standard interpretation to 
the standard interpretation by renaming, as illustrated on Slide 8cviii,  C(x,y) might be 
renamed in one clause (say the first one), but not in another.

If the predicates A and B were not explicitly in the sorted signature the singleton clause 
C(x,y) could still be split into two clauses as above, by implicitly introducing the 
predicates A and B in order to control the sorts of the arguments in the clause.  Applying 
this approach to the so-called “Steam-roller” problem, makes it quite easy, whereas 
otherwise it appears hard for theorem provers. See more about this in Problem Sheet.

8diSummary of Slides 8
1. Hyper-resolution is a refinement in which each step consists of one or more 
linked resolution steps made according to a specific restriction.

2. Each clause is classified either as an Electron (no negative literal) or as a 
Nucleus (at least one negative literal). Each step is made by resolving one 
nucleus clause with one or more electron clauses in turn, until the resolvent is 
an electron. Only electrons are generated by hyper-resolution.

3. Otter is one of a famous family of theorem provers which uses the Hyper-
resolution strategy, together with the set-of-support strategy. In searching for 
Hyper-resolvents, at least one clause in the linked resolutions making up a 
hyper-resolution step must be derived from the so-called SOS.

4. The SOS strategy allows a user to prevent the theorem prover making 
potentially non-useful steps by resolving clauses from some satisfiable theory.

5.The set-of-support strategy can be ``explained’’, or "derived" by considering a 
generalisation of hyper-resolution to use uniform interpretations. In fact, the use 
of arbitrary, but uniform, interpretations is equivalent to standard hyper-
resolution.

6. Standard hyper-resolution is based on the H-Interpretation which assigns 
False to every ground atom. Nucleii are true in this interpretation and electrons 
are false. Other uniform interpretations can assign either true or false to 
atoms, restricted so that, for each  literal occurring in the given clauses, all 
instances are assigned the same value. Nucleii are clauses that are True 
under the uniform interpretation and electrons are clauses which are false. 
Uniform interpretations with at least 1 each of a nucleus and electron can 
always be found for refutable sets of clauses, but not always for satisfiable 
sets of clauses. (Why?)

7. Standard hyper-resolution is complete . One proof uses an amended 
semantic tree argument (see Chapter notes), another uses an induction proof 
(see solutions to Problems).

8. Predicate Ordering can be combined easily with Hyper-resolution. Each  
electron is restricted in its use to resolving on the lowest atom in the order. 

9. Locking also can be combined with hyper-resolution. Both extensions, of 
Predicate ordering and locking,  can be shown to be complete by choosing  a 
suitable set of indices for literals so that a locking refutation produces a 
simulated hyper-resolution refutation. There is no need to index negative 
literals as they muct be resolved in each step anyway. (See Problems for 
examples and discussion.)

8dii




