
AUTOMATED REASONING

SLIDES 9 to 11 (Appendix A2):

RELATIONS between RESOLUTION and TABLEAU
 Completeness of Resolution via tableaux
 A useful notation (chain notation)
 Relation of ME with linear resolution
The UNIFY - AT - END tableau development
Parallel Model Elimination

KB-AR - 09

A2ai

Example. Given: ¬B ∨ ¬M, M ∨ ¬L, M ∨ L ∨ ¬B, B ∨ R, ¬R

A: Form a tableau such that
 no literal occurs twice in a branch, and
 every internal node is matched by a leaf node.

B: Each clause with
leaf nodes only can be
resolved with the literal
just above. e.g. clause
labelled (1).

¬B ¬M

B R M ¬L

¬R B R

M L ¬B
¬R

(1)

C: The tableau is
adjusted by removing
the resolved literals
from the two clauses
involved. e.g. ¬B from
(1) and B from B∨R.

The remaining literals
still match above and the
tableau still closes. e.g.
Simulates formation of
resolvent M∨L∨R.

NOTE:
M∨L∨¬B can be removed from
beneath ¬B as M does not
match below. Then M∨¬L can
be removed similarly.

¬B ¬M

M ¬L

M L ¬B

B R

¬R

Completeness of Resolution using Tableaux

A2aii

¬B ¬M

B

M

M
(4)

¬L

L(5)

¬M

M M

1: M∨L∨¬ B + B∨R
 ⇒M∨L∨R
2: ¬R + B∨R ⇒ B
3: ¬R + M∨L∨R ⇒ M∨L

4: B + ¬B∨ ¬M} ⇒¬M
5: M∨L + M∨ ¬ L
 ⇒ M∨M ⇒M
6: ¬M + M ⇒[]

After each step, it is still the case that no literal occurs twice in a branch
and all internal nodes are matched by a leaf node.

Also, the tableau is properly closed still, but using (some of) the original
clauses as well as any new resolvent. It may be necessary to factor.
e.g. Before step (6) must factor M∨M to M.

¬B ¬M

B M ¬L

R

¬R

M L

(3)

R

¬R(2)

A2aiii

Another Proof of Completeness for Resolution:

The slides A2a give a constructive proof that refutation by ground resolution (and
factoring) is complete, but this time based on the completeness of tableau systems. The
idea is to build a closed (ground) tableau from the given clauses and then to transform it
in small steps, each step corresponding to a resolution step. In Stage A a closed ground
tableau is formed with the properties that (i) every non-leaf node is complemented by a
leaf node and (ii) no branch contains a literal more than once. In order to achieve this, if
n is a non-leaf node in clause C that is not complemented, then C is removed from the
tableau and the sub-tableau beneath n can descend directly from its parent since no
closures use n. (See example.) If n is a node occurring twice in a branch, then the clause
containing the occurrence at greater depth can be removed and the sub-tableau beneath n
can descend directly from its parent as any closures can use the remaining occurrence.

In Stage B clauses are removed from the tableau starting from all-leaf clauses. The parent
of such a clause C must match with at least one literal in C, given that property (i) of
Stage A is true. Thus C can be resolved (possibly with factoring of the matching literal)
with the clause D containing its parent. The resolvent replaces D in the tableau. The
properties (i) and (ii) of Stage A are maintained and the tableau still closes. If there were
an exception, it would contradict that the property held before the resolution step.
Exercise: show these 3 things.

After none or more resolvents have been formed, a tree occurs of the form X(¬X) at a
node m, with one or more occurrences of ¬X(X) at child nodes of m. The corresponding
resolution step (including factoring) results in the empty clause. A simple induction proof
on the number of closures is used to formalise the argument.

A2biRelation between ME tableau and Linear resolution refinements (1)

ME-tableaux are closely related to the linear refinement of resolution. This refinement is
outlined below. It was introduced before free-variable ME-tableaux, as were the various
restrictions of the refinement. However, there is one particular restriction, called SL-
resolution, which corresponds exactly to free-variable ME-tableau. When the generalised
closure rule is included, then more general linear resolution proofs can be simulated by
tableaux. The relationship between the two systems is detailed further in the chapter notes
on clausal tableaux, if you're interested.

Strategy of Linear resolution
First select an initial clause called top in the set of support of set of clauses S:
The set of support of S = {C |C ∈S & S-{C} is satisfiable}; i.e. each C in the set of
support is necessary to derive [].

Next resolve C with an input clause from S (possibly a second copy of top). Then, at each
subsequent step resolve the latest resolvent with either an input clause, or a previous
resolvent (called ancestor resolution). e.g. If the refutation is R0 , R1 , R2 ,, [], where
R0 is the top clause, then R2 is formed by resolving R1 with an input clause or with R0 or
with R1.

Linear resolution appears to be quite natural as it generalises top-down/goal-directed
reasoning. The search space is a tree, each branch being one possible linear derivation, so
efficient search methods and Prolog technology can be employed. The example shown on
the right in A2bv looks as follows: Px ∨Q, Rx ∨Q, ¬Rb ∨Q, Q∨Q (i.e. Q), [].The
ancestor resolution step is between ¬Rb ∨Q and Rx ∨Q, deriving Q∨Q, which factors to Q.

A2biiRelation between ME tableau and Linear resolution refinements (2)

Next we explain how a ME-tableau relates to a linear resolution derivation. The idea is that at
each ME-step the disjunction of the leaf literals in open branches is the latest resolvent of the
corresponding linear refutation. In the example on A2bv, after the first closure the leaf literals
of the open branches are Rx and Q, which are exactly the literals in the second resolvent in the
derivation, as given in A2bi. Similarly, after the second closure the leaf literals are ¬Rb and Q,
exactly the third clause in the derivation.

The various tableau steps correspond as follows:
i) Extension corresponds to resolution of an input clause with the latest resolvent, ie one that
has been extended in the branch before, choosing to resolve on a literal most recently
introduced into the resolvent.
ii) Closure corresponds to resolution of the latest resolvent with an ancestor resolvent, but in a
quite restricted way. If the previous resolvent used was R = L ∨ C, where L was the literal
resolved upon in R before, then R can only be used again by resolving on L. Moreover, the
same "instance" of R must be used. That means that both copies of R must use the same
instantiation, i.e. it is R used twice, not R and a copy of R. This is sufficient to ensure that the
2 occurrences of clause C in the resolvent that arise from the two steps using R will factor. In
fact, as long as this latter property holds, the other restriction can be relaxed; this would
correspond to using the generalised closure rule.

In a normal ME tableau, the restriction on closure is automatically ensured by the structure of
the tableau, since only one instance of each literal occurrence is allowed. On A2bv, notice that
in order to use Rx a second time with substitution b, it is necessary to use a second occurrence,
which brings with it a second occurrence of Q. The same effect can be obtained by allowing a
second instance of Rx (namely when x==b), as in the generalised closure rule of ME. As an
example, A2biii/A2biv shows the linear refutation corresponding to the LH tableau of 11bi.

A2biiiModel Elimination Tableau Simulation of Linear Resolution

Consider the tableau shown on 11bi (repeated on A2biv) and the corresponding linear resolution
derivation, which is also shown. The top clause of the linear derivation is Fx1∨Hx1, which is the
first clause in the ME tableau. The first two steps resolve with input clauses and the resolvents of
each step correspond to the leaf literals of the open branches of the tableau. Notice that the third
step, which resolves with Fx1 for a second time and which derives Hb ∨Hb, is an ancestor
matching step in the tableau and that there is only one instance of Fx1, which is the one enforced
by the unifier of this step. The two occurrences of Hb appear just once in the tableau. In the
resolution proof the resolution is between the clause ¬Fb ∨Hx1 and a copy of the ancestor
Fx1∨Hx1, say Fx3∨Hx3, which yield Hb ∨Hx1. This factors to Hb and corresponds with the
tableau version.

The restricted linear resolution strategy, which simulates ME, only allows resolution with the
ancestor instance Fx1∨Hx1, not a fresh copy of Fx ∨Hx. It also restricts to using Fx1, the literal
prevously resolved upon. If that instance were to be used later in the derivation, it is only the
instance Fb ∨Hb that may be used. The unrestricted liner resolution strategy will also allow ¬Fx2
to resolve with a fresh copy of the ancestor Fx ∨Hx. In the tableau, the ancestor matching step
(corresponding to using the copy) is not available because Fx1 from Fx1∨Hx1 is not part of the
"history" leading to ¬Fx2. That is why ancestor use is restricted to using the literal previously
resolved upon.

The generalised closure rule corresponds to using the copy to resolve with the current resolvent
R, as long as the copy of the remaining literals safely factors with the literals in R. In general
linear resolution the step of ancestor resolution is even more flexible - any literal in the ancestor
can be used, not just the literal that was used the first time the ancestor was involved in a
resolution step. More on this is in the `Chapter' notes if you're interested.

Fx1∨Hx1 ¬Fx ∨Gx}

{ Gx1∨Hx ¬Gx ∨ ¬Fb}

¬Fb ∨Hx1

Hb ∨Hb

Hb
⇓

¬Hb ∨ ¬Fx

¬Fx2Fx ∨Hx

Hx2¬Ha

x1==b

(x2==a) []

A2bivComparison of Linear resolution and ME for the clauses:
¬Ha , ¬Gx ∨ ¬Fb , ¬Fx ∨ ¬Hb , Gx ∨ ¬Fx, Fx ∨ Hx

¬F(x2)
x2==x1

Fx1 Hx1 ⇒ Hb

G(x2)
⇒Gx1 ¬Hb ¬ Fx2

¬Gx1
Fx2 Hx2¬Fb

x1==b

¬Ha
x2==a

See A2biii for commentary on these derivations

A2bvGeneralised closure rule of ME can simulate Linear Resolution

Rx ∨ ¬Px, Px ∨Q, ¬Ra ∨ ¬Rb, ¬Q

A ME tableau can be
seen as simulating a
special kind of linear
resolution strategy. In
the derivation on the
right the two copies of
Q derived from the
same parent literal will
factor.

This will always be the
case in the tableau if
variables in the branch
closing by the
generalised closure
rule do not occur in
any remaining leaf
literals.

A linear resolution
strategy.

Q
Px

¬Px Rx

¬Ra
x=a

¬Rb

Px Q

¬Px
¬Q

¬Q

=>Ra

Rx

Px ∨Q ¬Px ∨Rx

Rx ∨Q ¬Ra ∨¬Rb

Q ∨Q ¬Q

¬Rb ∨Q

[]

A2ciChain Notation for ME Tableaux:

For interest, slide A2cii shows a convenient representation for ME-tableaux, called the chain
notation, which is possible because such tableaux are developed from left to right. This
notation enables a complete search space to be represented in 2 dimensions.

A ME-tableau is maintained as a chain of literals. There are two types of entry, boxed and un-
boxed literals. The top clause forms the first chain with the leftmost literal the next to be
selected and all literals unboxed. A chain may
(i) be extended by a new clause,
(ii) be extended by ancestor matching or
(iii) be truncated,
corresponding, respectively, to tableau extension, ancestor closure or moving to the next
branch to develop.

(i) results in the matched literal becoming boxed and literals in the (added) matching clause
(not including the complementary literal) being appended to the left of the chain. (ii) results in
the leftmost literal being boxed if it unifies with a boxed literal to its right. (iii) removes
leftmost boxed literals.

A chain represents the remaining open branches of the ME tableau formed so far, which can be
re-constructed from the chain. Each unboxed literal is a leaf literal L of the tableau. Its
ancestors, forming the rest of the branch, are all the boxed literals to its right (the first boxed
literal to the right being the parent of L). Alternatively, all literals to the left of a boxed literal
are its decendants. The example on A2cii illustrates. Regular tableaux can be enforced by not
allowing a step that would result in an unboxed literal being duplicated by another boxed
literal to its right. Also, if an unboxed literal is duplicated by an unboxed literal to its right,
then the leftmost literal can be boxed, corresponding to the "merge" operation.

A2cii

¬B∨ ¬M, M∨ ¬L,
M∨L∨ ¬B, B∨R, ¬R

top clause ¬B¬M

extension R ¬B ¬M

extension R ¬B ¬M
truncation ¬M
extension L¬B ¬M

extension M L ¬B ¬M
ancestor
matching M L ¬B ¬M

truncation ¬B ¬M

extension R ¬B ¬M

extension R ¬B ¬M
truncation []

¬B

B R

¬R

¬M

M L ¬B

¬L M

B R

¬R
Looping: If a literal occurs in a chain
twice, the leftmost unboxed, the right
occurrence boxed, the leftmost indicates
a duplication.

CHAIN NOTATION - A handy shorthand

Merging: If a literal
occurs in a chain twice,
both times unboxed,
the leftmost can be
merged with the right
copy.

A2di

How else could the free variable method be systematic?
The ME approach is "unify as you go"
What about "unify at the end"? How could tableau development be controlled?

Possibilities for controlling Unify-at-the-end:
• Restrict total no. of clause instances over all branches / over each branch,
or number of instances of each clause over all branches / over each branch.
• Likely to get many literals in a branch that cannot possibly unify; the
branches of which they are a part can be pruned.

e.g.
• If only one occurrence of Hx in a branch then no need for two instances of
a clause containing ¬H(y), as they would have to be the same.
• If no copies of Hx in a branch then no use for ¬Hy.

Good/bad points of Unify-at-the-end:
• If not many quantifiers "unify at end" may be better.
• May only be one binding for a particular branch. Selecting it can restrict
unifiers in other branches.
• May be able to close branches without unifying. No backtracking (over
those branches).
• May have many unifiers in a branch; all have to be tried.

Comparison between Unify-at-the-end and Unify-as-you-go in ME tableaux

A2diiConstructing Free Variable Tableaux

When constructing a free variable tableau, you may do it in one of two ways, which could be
called "unify-as-you-go", or "unify-at-the-end". Slides 9-11 used the unify-as-you-go method
and the alternative approach to closure is shown on Slides A2d: instead of closing each branch
"as you go" and propagating the bindings across the whole tableau, it is noted when a branch
can close and what the corresponding binding is, but no propagation takes place.

The tableau on Slide A2diii is constructed using "unify-at-the-end". In the construction, if a
branch can be closed by unifying two complementary literals, then it is marked as possibly
closed. All possible unifiers that may lead to closure can be recorded as a label of the branch.
When every branch has such a potential closure, a single unifier must be constructed using one
unifier from the label of each branch in the tableau. For the example on A2diii it results in the
combined unifier (ie unify the individual unifiers) {x2==w1==g(n), x1==y1==x3==z1==n,
u1==f(g(n)), y2==f(g(n))}. If it is not possible to construct a single unifier, then a different set
of closures must be found (which may involve further extending the tableau) and another
combined unifier sought.

This is in contrast to the "unify-as-you-go" kind of construction, illustrated on Slide 9ciii, where
whenever a closure is made that requires a binding to be made to one or more free variables,
the substitution is applied to all occurrences in the tableau of those newly bound variables. This
guarantees consistency of the bindings as the tableau is constructed. Only one binding may be
made to any free variable.

The unify-as-you-go approach is useful for most applications, especially those using data
structures, when it may be necessary for a piece of data to be used many times. If it is known
(or quite possible that) each sub-sentence of each sentence is to be used only once or a very few
times, the unify-at-the-end approach can be a reasonable one.

(1) div(x,x), (2) less(1,n), (3) div(u,w) ∧ div(w,z) → div(u,z)
(4) ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x)) → pr(x)
(5) less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x)) Show ∃∃∃∃y (pr(y)∧∧∧∧div(y,n))

A2diii

¬∃y (pr(y)∧div(y,n))
¬(pr(y1) ∧div(y1,n))

div(g(x1),x1) ∧ less(1,g(x1)) ∧ less(g(x1),x1)
pr(x1)

div(f(x2), x2)
pr(f(x2))
¬ (pr(y2)) ∧div(y2,n))

div(u1,z1)

¬ less(1,x2)

¬ less(x2,n)

x2==g(x1)

x2==g(x1)
x1==n
(or x2==1 is
possible)

¬ div(u1,w1)
¬div(w1,z1)u1==f(x2)

w1==x2 z1==x1
w1=g(x1)

¬ pr(y2)

¬ div(y2,n)

y2==f(x2)

¬ pr(y1) ¬ div(y1,n)
y1==x1

y1==n
x3==n

div(x3,x3)

y2==u1,
z1==n

Gives: { x2==w1==g(n), x1==y1==x3==z1==n, u1==y2==f(g(n))}

Free variable rules
Unify at the end

A2divE.g. Given: Fxa ∨Fg(x)x , Fxa ∨Fxg(x), ¬ Fxa ∨ ¬ Fxz ∨ ¬ Fzx

Fx1a Fg(x1)x1

Fx2a Fx2g(x2) Fx3a Fx3g(x3)

¬Fx4a

¬Fx4z1

¬Fz1x4

¬Fx5a

¬Fx5z2

¬Fz2x5

¬Fx6a

¬Fx6z3

¬Fz3x6

¬Fx7a
¬Fx7z4

¬Fz4x7

Assume at most one
instance of each clause will
be used in each branch.

A successful unification
is x4, z1, x1 all bound
to a ; i.e. didn't need
Fx2a ∨Fx2g(x2) in LH
branch - it can be
removed - so only need
one of the copies of
¬Fxa ∨ ¬Fxz ∨ ¬Fzx

x6 bound to x3 and z3
and x3 bound to a;

x7 bound to g(a), z4
bound to a.

• Sections of the tableau (indicated by
dotted lines) can be developed in parallel.
• If the tableau is ME style then
possibilities for re-use can be anticipated:
eg if S occurs in closure below branch (ii)
it can be closed in the same way as the
closure below S in branch (i). Anticipate
this by adding ¬S to branch (ii).

11eiParallel ME : Propositional case

• Each branch of a clausal tableau
can be distributed to a separate
process. This is called and-
parallelism as every branch must
close for a refutation.

• This is different from or-
parallelism in which each process
is instead given a branch of the
search space. eg in the tree on the
left, if KLM (ie K∨L∨M) matched
with more than one clause (as it
does here: KLM matches with given
clauses ¬KST and ¬K¬S), then
there would be two branches of the
search space. Process1 is given
the search space using ¬KST and
process2 the search space using
¬K¬S. If process2 finished before
process1 then process1 can be
terminated.

K L M

¬K S T

¬S ¬K

¬S
¬K ¬K

¬L

(ii)
(i)

Parallel ME: First Order case 11eii

• In the and-parallel development to cope with potentially infinite tableau,
each section is developed to a fixed depth. Failure to find a proof causes the
depth to be increased for a second attempt.
• Shared (ie non-universal) variables pose a problem:

e.g. Given:
¬Pxy ∨ ¬Pyx, Pf(u)u ∨ Pua, {Pvf(v) ∨ Pva

Pf(u1)u1 Pu1a

• Values of u1 must be reconciled
between two processes.
• Pu1a can close with u1==a. It
can also close with u1==f(a). Are
there any more values?
• Within a finite depth the number
of values will be finite.
• Pf(u1)u1 can also close
(eventually) with u1 ==a.
• Each solution is passed up to
the parent process to be
reconciled.
• Only bindings mentioned in
ancestor nodes are retained.

¬Px1y1
u1==x1
y1==a

¬Py1x1

u1==y1
x1==a

Reconcile: obtain
u1==x1==y1==a;
Retain u1==a.

• If u1 were
universal, then
can use a
technique
similar to the
generalised
closure rule.

11eiii

Parallel Clausal Tableau Development:

Slides 11e illustrate some possibilities for and-parallel execution within a clausal
tableau. Each branch, called a section on 11ei, can be given to a separate processor.
It's possible to anticipate some possible cases for re-use as shown on the slide.

The first order case is more complex as bindings must be preserved across branches
for the shared (ie non-universal) free variables. One method is for each branch
below a node n to be evaluated independently, finding as many bindings as possible
for the variables occurring in the literal at n (to some max. depth to guarantee
termination). The bindings are then reconciled (i.e. combined) at the node n with
those from other sibling branches of n (i.e. only bindings which belong to the
solution set of every sibling branch are retained, possibly further instantiated).
Finally, only bindings to variables occurring in an ancestor of n need be kept for
further propagation.

E.g. let ground P occur at n's parent. Then n matches with P and let n's siblings be
Q(x1) and R(x1). Although x1 must be reconciled with some binding, the particular
binding is not relevant to the parent of n, unless x1 occurs elsewhere in the tableau.
As this is not the case, the empty binding would be retained to pass back up the
tableau. However, notice that the following circumstance could occur: x1 is bound
in another branchto some non-universal variable z in some ancestor of n, say x1==z,
and also to x1==a, then the reconciled binding z==a is relevant, since z occurs in an
ancestor of n. If all reconciliations fail, then no bindings are retained.

A2ei

Summary of Slides 9 - 11 (Appendix 2)
1. Different unification regimes can be employed in ME tableau,
such as ``unify-as-you-go'', or ''unify-at-the-end''.

2. The completeness of resolution can be shown using tableaux. No
doubt, by controlling the style of tableau formed - e.g. ordering use
of clauses in any branch – specific sorts of resolution proofs can be
derived.

3. ME tableau are related to linear resolution. The correspondence
imposes restrictions on the linear resolution, which is partially
relaxed if the generalised closure rule is used.

4. A useful chain notation exists to represent tableau as a list of
boxed and unboxed literals.

5. With care ME tableaux can be evaluated in parallel.

