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Example.   Given:  ¬B ∨ ¬M,    M ∨ ¬L,    M ∨ L ∨ ¬B,    B ∨ R,    ¬R

A: Form a tableau such that
           no literal occurs twice in a branch, and
           every internal node is matched by a leaf node.

B: Each clause with 
leaf nodes only can be 
resolved with the literal 
just above. e.g. clause 
labelled (1).

¬B ¬M

B R M ¬L

¬R B R

M L ¬B
¬R

(1)

C: The tableau is
adjusted by removing
the resolved literals
from the two clauses
involved. e.g. ¬B from 
(1) and B from B∨R. 

The remaining literals 
still match above and the 
tableau still closes. e.g. 
Simulates formation of 
resolvent M∨L∨R.

NOTE:
M∨L∨¬B can be removed from 
beneath ¬B as M does not 
match below.  Then M∨¬L can 
be removed similarly. 

¬B ¬M

M ¬L

M L ¬B

B R

¬R

Completeness of Resolution  using Tableaux
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¬B ¬M

B

M

M
(4)

¬L

L(5)

¬M

M M

1: M∨L∨¬ B + B∨R           
                        ⇒M∨L∨R 
2: ¬R + B∨R   ⇒ B
3: ¬R + M∨L∨R ⇒ M∨L

4: B + ¬B∨ ¬M} ⇒¬M
5: M∨L + M∨ ¬ L
     ⇒ M∨M  ⇒M
6: ¬M + M  ⇒[]

After each step, it is still the case that no literal occurs twice in a branch 
and all internal nodes are matched by a leaf node.

Also, the tableau is properly closed still, but using (some of) the original 
clauses as well as any new resolvent. It may be necessary to factor.
e.g. Before step (6) must factor M∨M to M.

¬B ¬M

B M ¬L

R

¬R

M L

(3)

R

¬R(2)
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Another Proof of Completeness for Resolution:

The slides A2a give a constructive proof that refutation by ground resolution (and 
factoring) is complete, but this time based on the completeness of tableau systems. The 
idea is to build a closed (ground) tableau from the given clauses and then to transform it 
in small steps, each step corresponding to a resolution step. In Stage A a closed ground 
tableau is formed with the properties that (i) every non-leaf node is complemented by a 
leaf node and (ii) no branch contains a literal more than once.  In order to achieve this, if 
n is a non-leaf node in clause C that is not complemented, then C is removed from the 
tableau and the sub-tableau beneath n can descend directly from its parent since no 
closures use n. (See example.) If n is a node occurring twice in a branch, then the clause 
containing the occurrence at greater depth can be removed and the sub-tableau beneath n 
can descend directly from its parent as any closures can use the remaining occurrence.

In Stage B clauses are removed from the tableau starting from all-leaf clauses. The parent 
of such a clause C must match with at least one literal in C, given that property (i) of 
Stage A is true. Thus C can be resolved (possibly with factoring of the matching literal) 
with the clause D containing its parent. The resolvent replaces D in the tableau. The 
properties (i) and (ii) of Stage A are maintained and the tableau still closes. If there were 
an exception, it would contradict that the property held before the resolution step. 
Exercise: show these 3 things.

After none or more resolvents have been formed, a tree occurs of the form X(¬X) at a 
node m, with one or more occurrences of ¬X(X) at child nodes of m. The corresponding 
resolution step (including factoring) results in the empty clause. A simple induction proof 
on the number of closures is used to formalise the argument.



A2biRelation between ME tableau and Linear resolution refinements (1)

ME-tableaux are closely related to  the linear refinement  of resolution. This refinement is 
outlined below. It was introduced before free-variable ME-tableaux, as were the various 
restrictions of the refinement. However, there is one particular restriction, called SL-
resolution, which corresponds exactly to free-variable ME-tableau. When the generalised 
closure rule is included, then more general linear resolution proofs can be simulated by 
tableaux. The relationship between the two systems is detailed further in the chapter notes 
on clausal tableaux, if you're interested. 

Strategy of Linear resolution
First select an initial clause called top in the set of support of set of clauses S: 
The set of support of S = {C |C ∈S & S-{C} is satisfiable};  i.e. each C in the set of 
support is necessary to derive [ ].

Next resolve C with an input clause from S (possibly a second copy of top). Then, at each 
subsequent step resolve the latest resolvent with either an input clause,  or a previous 
resolvent (called ancestor resolution).  e.g. If the refutation is R0 , R1 , R2 , ...., [ ], where 
R0 is the  top clause, then R2 is formed by resolving R1 with an input clause or with R0 or 
with R1. 

Linear resolution appears to be quite natural as it generalises top-down/goal-directed 
reasoning. The search space is a tree, each branch being one possible linear derivation, so 
efficient search methods and  Prolog technology can be employed. The example shown on 
the right in A2bv looks as follows:  Px ∨Q,  Rx ∨Q,  ¬Rb ∨Q,  Q∨Q (i.e. Q),  [ ].The 
ancestor resolution step is between ¬Rb ∨Q and Rx ∨Q, deriving Q∨Q, which factors to Q. 

A2biiRelation between ME tableau and Linear resolution refinements (2)

Next we explain how a ME-tableau relates to a linear resolution derivation. The idea is that at 
each ME-step the disjunction of the leaf literals in open branches is the latest resolvent of the 
corresponding linear refutation. In the example on A2bv, after the first closure the leaf literals 
of the open branches are Rx and Q, which are exactly the literals in the second resolvent in the 
derivation, as given in A2bi. Similarly, after the second closure the leaf literals are ¬Rb and Q, 
exactly the  third clause in the derivation.

The various tableau steps correspond as follows:
i) Extension corresponds to resolution of an input clause with the latest resolvent, ie one that 
has been extended in the branch before, choosing to resolve on a literal most recently 
introduced into the resolvent. 
ii) Closure corresponds to resolution of the latest resolvent with an ancestor resolvent, but in a 
quite restricted way. If the previous resolvent used was R = L ∨ C, where L was the literal 
resolved upon in R before, then R can only be used again by resolving on L. Moreover, the 
same "instance" of R must be used. That means that both copies of R must use the same 
instantiation, i.e. it is R used twice, not R and a copy of R. This is sufficient to ensure that the 
2 occurrences of clause C in the resolvent that arise from the two steps using R will factor.  In 
fact, as long as this latter property holds, the other restriction can be relaxed; this would 
correspond to using the generalised closure rule.

In a normal ME tableau, the restriction on closure is automatically ensured by the structure of 
the tableau, since only one instance of each literal occurrence is allowed. On A2bv, notice that 
in order to use Rx a second time with substitution b, it is necessary to use a second occurrence, 
which brings with it a second occurrence of Q. The same effect can be obtained by allowing a 
second instance of Rx (namely when x==b), as in the generalised closure rule of ME.  As an 
example, A2biii/A2biv shows the linear refutation corresponding to the LH tableau of 11bi.

A2biiiModel Elimination Tableau Simulation of Linear Resolution

Consider the tableau shown on 11bi (repeated on A2biv) and the corresponding linear resolution 
derivation, which is also shown. The top clause of the linear derivation is Fx1∨Hx1, which is the 
first clause in the ME tableau. The first two steps resolve with input clauses and the resolvents of 
each step correspond to the leaf literals of the open branches of the tableau.  Notice that the third 
step, which resolves with Fx1 for a second time and which derives Hb ∨Hb, is an ancestor 
matching step in the tableau and that there is only one instance of Fx1, which is the one enforced 
by the unifier of this step. The two occurrences of Hb appear just once in the tableau. In the 
resolution proof the resolution is between the clause ¬Fb ∨Hx1 and a copy of the ancestor 
Fx1∨Hx1, say Fx3∨Hx3, which yield Hb ∨Hx1. This factors to Hb and corresponds with the 
tableau version. 

The restricted linear resolution strategy, which simulates ME, only allows resolution with the 
ancestor instance Fx1∨Hx1, not a fresh copy of Fx ∨Hx. It also restricts to using Fx1, the literal 
prevously resolved upon. If that instance were to be used later in the derivation,  it is only the 
instance Fb ∨Hb that may be used.  The unrestricted liner resolution strategy will also allow ¬Fx2 
to resolve with a fresh copy of the ancestor Fx ∨Hx. In the tableau, the ancestor matching step 
(corresponding to using the copy) is not available because Fx1 from Fx1∨Hx1 is not part of the 
"history" leading to ¬Fx2.  That is why ancestor use is restricted to using the literal previously 
resolved upon.

The generalised closure rule corresponds to using the copy to resolve with the current resolvent 
R, as long as the copy of the remaining literals safely factors with the  literals in R. In general 
linear resolution the step of ancestor resolution is even more flexible -  any literal in the ancestor 
can be used, not just the literal that was used the first time the ancestor was involved in a 
resolution step.  More on this is in the `Chapter' notes if you're interested. 

Fx1∨Hx1 ¬Fx ∨Gx}

{ Gx1∨Hx ¬Gx ∨ ¬Fb}

¬Fb ∨Hx1

Hb ∨Hb

Hb
⇓

¬Hb ∨ ¬Fx

¬Fx2Fx ∨Hx

Hx2¬Ha

x1==b

(x2==a) [ ]

A2bivComparison of Linear resolution and ME for the clauses:
¬Ha , ¬Gx ∨ ¬Fb ,  ¬Fx ∨ ¬Hb ,  Gx ∨ ¬Fx,  Fx ∨ Hx

¬F(x2)
x2==x1

Fx1 Hx1 ⇒ Hb

G(x2)
⇒Gx1 ¬Hb ¬ Fx2

¬Gx1
Fx2 Hx2¬Fb

x1==b

¬Ha
x2==a

See A2biii for commentary on these derivations



A2bvGeneralised closure rule of ME can simulate Linear Resolution

Rx ∨ ¬Px,   Px ∨Q,   ¬Ra ∨ ¬Rb,   ¬Q

A ME tableau can be 
seen as simulating a 
special kind of linear 
resolution strategy. In 
the derivation on the 
right the two copies of 
Q derived from the 
same parent literal will 
factor. 

This will always be the 
case in the tableau if 
variables in the branch 
closing by the 
generalised closure 
rule do not occur in 
any remaining leaf 
literals.

A linear resolution 
strategy.

Q
Px

¬Px Rx

¬Ra
x=a

¬Rb

Px Q

¬Px
¬Q

¬Q

=>Ra

Rx

Px ∨Q ¬Px ∨Rx

Rx ∨Q ¬Ra ∨¬Rb

Q ∨Q ¬Q

¬Rb ∨Q

[ ]

A2ciChain Notation for ME Tableaux:

For interest, slide A2cii shows a convenient representation for ME-tableaux, called the chain 
notation, which is possible because such tableaux are developed from left to right. This 
notation enables a complete search space to be represented in 2 dimensions. 

A ME-tableau is maintained as a chain  of literals. There are two types of entry, boxed and un-
boxed  literals. The top clause forms the first chain with the leftmost literal the next to be 
selected and all literals unboxed. A chain may 
(i) be extended by a new clause, 
(ii) be extended by ancestor matching or 
(iii) be truncated, 
corresponding, respectively, to tableau extension,  ancestor closure or moving to the next 
branch to develop. 

(i) results in the matched literal becoming boxed and literals in the (added) matching clause 
(not including the complementary literal) being appended to the left of the chain. (ii) results in 
the leftmost literal being boxed if it unifies with a boxed literal to its right. (iii) removes 
leftmost boxed literals.

A chain represents the remaining open branches of the ME tableau formed so far, which can be 
re-constructed from the chain. Each unboxed literal is a leaf literal L of the tableau. Its 
ancestors, forming the rest of the branch, are all the boxed literals to its right (the first boxed 
literal to the right being the parent of L). Alternatively, all literals to the left of a boxed literal 
are its decendants. The example on A2cii illustrates.  Regular  tableaux can be enforced by not 
allowing a step that would result in an unboxed literal being duplicated by another boxed 
literal to its right. Also, if an unboxed literal is duplicated by an unboxed literal to its right, 
then the leftmost literal can be boxed, corresponding to the "merge" operation. 

A2cii

¬B∨ ¬M,   M∨ ¬L, 
M∨L∨ ¬B,  B∨R,   ¬R

top clause     ¬B¬M

extension     R ¬B ¬M

extension     R ¬B ¬M
truncation             ¬M
extension         L¬B ¬M

extension    M  L ¬B ¬M
ancestor
matching     M  L ¬B ¬M

truncation      ¬B ¬M

extension     R ¬B ¬M

extension     R ¬B ¬M
truncation []

¬B

B R

¬R

¬M

M L ¬B

¬L M

B R

¬R
Looping: If  a literal occurs in a chain 
twice, the leftmost unboxed, the right 
occurrence boxed, the leftmost indicates 
a duplication.

CHAIN NOTATION - A handy shorthand

Merging: If a literal 
occurs in a chain twice, 
both times unboxed, 
the leftmost can be 
merged with the right 
copy.

A2di

How else could  the free variable method be systematic?  
The ME approach is "unify as you go"
What about "unify at the end"? How could tableau development be controlled?

Possibilities for controlling Unify-at-the-end:  
•   Restrict  total no. of clause instances over all branches / over each branch, 
or number of  instances of each clause over all branches / over each branch.
•  Likely to get many literals in a branch that cannot possibly unify; the 
branches of which they are a part can be pruned.

e.g. 
•   If only one occurrence of Hx in a branch then no need for two instances of 
a clause containing ¬H(y), as they would have to be the same.
•   If no copies of Hx  in a branch then no use for ¬Hy.

Good/bad points of Unify-at-the-end:
•   If not many quantifiers "unify at end"  may be better.
•   May only be one binding for a particular branch. Selecting it can restrict 
unifiers in other branches.
•   May be able to close branches without unifying. No backtracking (over 
those branches).
•   May have many unifiers in a branch; all have to be tried.

Comparison between Unify-at-the-end and Unify-as-you-go in ME tableaux



A2diiConstructing Free Variable Tableaux

When constructing a free variable tableau, you may do it in one of two ways, which could be 
called "unify-as-you-go", or "unify-at-the-end".  Slides 9-11 used the unify-as-you-go method 
and the alternative approach to closure is shown on Slides A2d: instead of closing each branch 
"as you go" and propagating the bindings across the whole tableau, it is noted when a branch 
can close and what the corresponding binding is, but no propagation takes place. 

The tableau on Slide A2diii is constructed using "unify-at-the-end". In the construction, if a 
branch can be closed by unifying two complementary literals, then it is marked as possibly 
closed. All possible unifiers that may lead to closure can be recorded as a label of the branch.  
When every branch has such a potential closure, a single unifier must be constructed using one 
unifier from the label of each branch in the tableau. For the example on A2diii it results in the 
combined unifier  (ie unify the individual unifiers) {x2==w1==g(n), x1==y1==x3==z1==n, 
u1==f(g(n)),  y2==f(g(n))}. If it is not possible to construct a single unifier, then a different set 
of closures must be found (which may involve further extending the tableau) and another 
combined unifier sought.

This is in contrast to the "unify-as-you-go" kind of construction, illustrated on Slide 9ciii, where 
whenever a closure is made that requires a binding to be made to one or more free variables,  
the substitution is applied to all occurrences in the tableau of those newly bound variables. This 
guarantees consistency of the bindings as the tableau is constructed. Only one binding may be 
made to any free variable.  

The unify-as-you-go approach is useful for most applications, especially those using data 
structures, when it may be necessary for a piece of data to be used many times. If it is known 
(or quite possible that) each sub-sentence of each sentence is to be used only once or a very few 
times, the unify-at-the-end approach can be a reasonable one.

(1)  div(x,x),    (2)  less(1,n),      (3)  div(u,w) ∧ div(w,z) → div(u,z)
(4)  ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x) ) → pr(x)
(5)  less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x))          Show ∃∃∃∃y (pr(y)∧∧∧∧div(y,n))

A2diii

¬∃y (pr(y)∧div(y,n))
¬(pr(y1) ∧div(y1,n))

div(g(x1),x1) ∧ less(1,g(x1)) ∧ less(g(x1),x1) 
pr(x1)

div(f(x2), x2)
pr(f(x2))
¬ (pr(y2)) ∧div(y2,n))

div(u1,z1)

¬ less(1,x2)

¬ less(x2,n)

x2==g(x1)

x2==g(x1)
x1==n
(or x2==1 is
possible)

¬ div(u1,w1)
¬div(w1,z1)u1==f(x2)

w1==x2 z1==x1
w1=g(x1)

¬ pr(y2)

¬ div(y2,n)

y2==f(x2)

¬ pr(y1) ¬ div(y1,n)
y1==x1

y1==n
x3==n

div(x3,x3)

y2==u1, 
z1==n

Gives: { x2==w1==g(n), x1==y1==x3==z1==n, u1==y2==f(g(n))}

Free variable rules
Unify at the end

A2divE.g. Given: Fxa ∨Fg(x)x ,   Fxa ∨Fxg(x),   ¬ Fxa ∨ ¬ Fxz ∨ ¬ Fzx 

Fx1a Fg(x1)x1

Fx2a Fx2g(x2) Fx3a Fx3g(x3)

¬Fx4a

¬Fx4z1

¬Fz1x4

¬Fx5a

¬Fx5z2

¬Fz2x5

¬Fx6a

¬Fx6z3

¬Fz3x6

¬Fx7a
¬Fx7z4

¬Fz4x7

Assume at most one 
instance of each clause will 
be used in each branch.

A successful unification 
is x4, z1, x1  all bound 
to a ;  i.e. didn't need 
Fx2a ∨Fx2g(x2)  in LH 
branch -  it can be 
removed - so only need 
one of the  copies of 
¬Fxa ∨ ¬Fxz ∨ ¬Fzx  

x6  bound to x3 and z3 
and x3  bound to a;

x7 bound to g(a), z4 
bound to a.

•   Sections of the tableau (indicated by 
dotted lines) can be developed in parallel.
•   If the tableau is ME style then 
possibilities for re-use can be anticipated: 
eg if S occurs in closure below branch (ii) 
it can be closed in the same way as the 
closure below S in branch (i). Anticipate 
this by adding ¬S to branch (ii).

11eiParallel ME : Propositional case

•   Each branch of a clausal tableau 
can be distributed  to a separate 
process. This is called and-
parallelism as every branch must 
close for a refutation.

•   This is different from or-
parallelism in which each process 
is instead given a branch of the 
search space. eg in the tree on the 
left, if KLM (ie K∨L∨M) matched 
with more than one clause (as it 
does here: KLM matches with given 
clauses ¬KST and ¬K¬S), then 
there would be two branches of the 
search space.  Process1 is given 
the search space using ¬KST and 
process2 the search space using 
¬K¬S. If process2 finished before 
process1 then process1 can be 
terminated.

K L M

¬K S T

¬S ¬K

¬S
¬K ¬K

¬L

(ii)
(i)



Parallel ME: First Order case 11eii

•  In the and-parallel development to cope with potentially infinite tableau, 
each section is developed to a fixed depth. Failure to find a proof causes the 
depth to be increased for a second attempt.
•  Shared (ie non-universal) variables pose a problem:

e.g. Given:
¬Pxy ∨ ¬Pyx,  Pf(u)u ∨ Pua, {Pvf(v) ∨ Pva

Pf(u1)u1 Pu1a

•  Values of u1 must be reconciled 
between two processes.
•  Pu1a can close with u1==a. It 
can also close with u1==f(a). Are 
there any more values?
•  Within a finite depth the number 
of values will be finite.
•  Pf(u1)u1 can also close 
(eventually) with u1 ==a.
•  Each solution is passed up to 
the parent process to be 
reconciled.
•  Only bindings mentioned in 
ancestor nodes are retained.

¬Px1y1
u1==x1
y1==a

¬Py1x1

u1==y1
x1==a

Reconcile: obtain
u1==x1==y1==a;
Retain u1==a.

•   If u1 were 
universal, then 
can use a 
technique 
similar to the 
generalised 
closure rule.

11eiii

Parallel Clausal Tableau Development:

Slides 11e  illustrate some possibilities for and-parallel execution within a clausal 
tableau. Each branch, called a section on 11ei, can be given to a separate processor. 
It's possible to anticipate some possible cases for re-use as shown on the slide. 

The first order case is more complex as bindings must be preserved across branches 
for the shared (ie non-universal) free variables. One method is for each branch 
below a node n to be evaluated independently, finding as many bindings as possible 
for the variables occurring in the literal at n (to some max. depth to guarantee 
termination). The bindings are then reconciled (i.e. combined) at the node n with 
those from other sibling branches of n (i.e. only bindings which belong to the 
solution set of every sibling branch are retained, possibly further instantiated). 
Finally, only bindings to variables occurring in an ancestor of n need be kept for 
further propagation. 

E.g. let ground P occur at n's parent. Then n matches with P and let n's siblings be 
Q(x1) and R(x1). Although x1 must be reconciled with some binding, the particular 
binding is not relevant to the parent of n, unless x1 occurs elsewhere in the tableau. 
As this is not the case, the empty binding would be retained to pass back up the 
tableau. However, notice that the following circumstance could occur: x1 is bound 
in another branchto some non-universal variable z in some ancestor of n, say x1==z, 
and also to x1==a, then the reconciled binding z==a is relevant, since z occurs in an 
ancestor of n.  If all reconciliations fail, then no bindings are retained.

A2ei

Summary of Slides 9 - 11 (Appendix 2)
1. Different unification regimes can be employed in ME tableau, 
such as ``unify-as-you-go'', or ''unify-at-the-end''.

2. The completeness of resolution can be shown using tableaux. No 
doubt, by controlling the style of tableau formed - e.g. ordering use 
of clauses in any branch – specific sorts of resolution proofs can be 
derived.

3. ME tableau are related to linear resolution. The correspondence 
imposes restrictions on the linear resolution, which is partially 
relaxed if the generalised closure rule is used. 

4. A useful chain notation exists to represent tableau as a list of 
boxed and unboxed literals.

5. With care ME tableaux can be evaluated in parallel.


