

Binary Chop

- This is a very useful algorithm, but one that is difficult to get right first time.
- It illustrates the problem solving method of **Divide and Conquer**: given a big problem —
 - divide it into smaller parts;
 - solve each part separately (easier than the original)
 - hence **conquer** the original problem.
- For binary chop in particular, the key to making good use of the strategy is to know exactly what you are trying to do.
- Illustrate reasoning with pre/post conditions and invariants.

20/2/09

KB0809 - Binary Chop Page 1

WHAT IS BINARY CHOP ABOUT?

Problem: Given a *sorted* array a [say of **int**] and an **int** x as input, find whereabouts in a the element x occurs.

If a wasn't sorted, there'd be little alternative to inspecting all the elements of a one by one until x is found.

BUT – for a sorted array we can be smarter.

Rough idea (assuming a is sorted in ascending order):

Look at the element half way along a .

If this is bigger than x , then x must be in the first half.

If it is smaller, then x must be in the second half.

Either way, we have cut the search area by a factor of 2.

Repeat this until x is found.

20/2/09

KB0809 - Binary Chop Page 2

SPECIFICATION – FIRST ATTEMPT

```
int search( int [] a, int x ) {
// Pre:      Sorted(a)
// Post:     a[r]= x
}
```

In this part of the course, r denotes the value returned by the function.

Is that it?

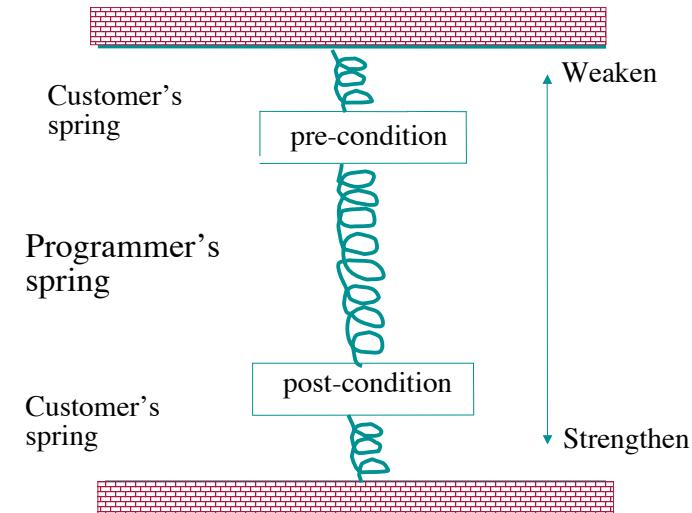
Things to consider:

1. (AE)

3. (DU)

2. (SA)

4. (NI)



20/2/09

KB0809 - Binary Chop Page 3

20/2/09

KB0809 - Binary Chop Page 4

FIRST PROBLEM – SUPPOSE X IS NOT IN THE ARRAY ?

What answer would we like?

One possible use for search is to find whereabouts in a to insert a new element x so that a remains sorted. We look for the boundary between the elements $< x$ and those $> x$.

There are two ways of describing this boundary by r .

Way 1:	$a[r] < x$	$a[r+1] > x$	x goes at $a[r+1]$
--------	------------	--------------	----------------------

Look at the boundary cases:

	all elements of a are $> x$	all elements of a are $< x$
Way 1	r is -1 ($a[0] > x$)	r is $a.length - 1$

OR:

Way 2:	$a[r-1] < x$	$a[r] > x$	x goes at $a[r]$
--------	--------------	------------	--------------------

Look at the boundary cases:

	all elements of a are $> x$	all elements of a are $< x$
Way 2	r is 0	r is $a.length - (a[a.length-1] < x)$

20/2/09

KB0809 - Binary Chop Page 5

20/2/09

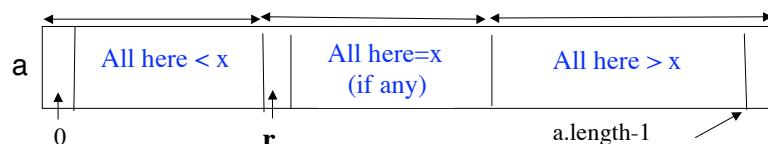
KB0809 - Binary Chop Page 6

NEXT PROBLEM – WHAT IF X OCCURS MORE THAN ONCE IN THE ARRAY?

- Because a is ordered, all the occurrences will be together.
- Would we like r to be the index of the first or the last?
- Choose the first, so that r is the smallest index.
- r defines the boundary between the elements $< x$ and those $\geq x$.
- This matches our choice for when x doesn't occur at all.

So in all possible cases...

r is the smallest index where the array element is $\geq x$,
or $a.length$ if all the elements are $< x$.



20/2/09

KB0809 - Binary Chop Page 7

20/2/09

SPECIFICATION – FINAL ATTEMPT

```
int search(int [] a, int x) {
    // Pre:  Sorted(a) i.e.
    //         $\forall i, j: \text{int } (0 \leq i \leq j < a.length \rightarrow a[i] \leq a[j])$ 
    // Post:  $r$  is the smallest index where the element is  $\geq x$ ,
    //        or  $a.length$  if all the elements are  $< x$  and  $a=a[0]$ 
    //        i.e.  $a=a[0] \wedge 0 \leq r \leq a.length$ 
    //         $\wedge \forall i: \text{int } (0 \leq i < r \rightarrow a[i] < x)$ 
    //         $\wedge \forall i: \text{int } (r \leq i < a.length \rightarrow a[i] \geq x)$ 
}
```

KB0809 - Binary Chop Page 8

LOOP INVARIANT (REMINDER)

```

//start
  | //Loop Initialisation code
  ==> loop invariant true (1st time)
//while loop  ---| Loop invariant true again
  |   |   | (2nd, 3rd, ... times)
  |   |   | "OK so far and
  |   |   | Make progress to postcondition"
  |   | ----->----->
// loop end (Loop invariant still true here)
// Loop Finalisation code (Ensures postcondition)

```

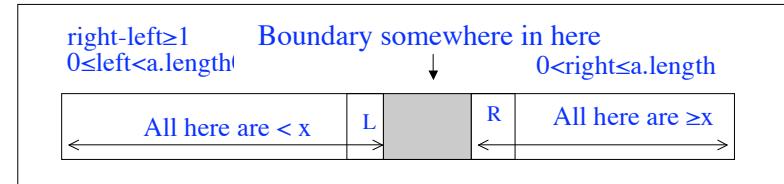
Assume variant: $v:\text{int}$. Loop must terminate if $v_1 > v_2 > v_3 > \dots > v_k > \dots > I$ in the loop.
 (v_i =value of v inside loop for i th time;
 I is a fixed int, usually $I = 0$)

20/2/09

KB0809 - Binary Chop Page 9

DIAGRAM (ILLUSTRATES LOOP INVARIANT)

Keep two variables, `left` and `right`, to show how far we've narrowed the search area. Boundary must be between `left` and `right`.



The shaded region goes from $\text{left}+1$ to $\text{right}-1$ inclusive.

- (i) $a[\text{left}] < x$ and $a[\text{right}] \geq x$ - therefore $\text{left} < \text{right}$ - **why?**
- (ii) If $\text{left}+1 = \text{right}$ and x is in a ,
 then $\text{right} < a.\text{length}$ and $a[\text{right}] = x$ - **why?**

20/2/09

KB0809 - Binary Chop Page 10

This page is deliberately left blank

Proof of Property (i). (Informal)

Given $0 \leq \text{left} < a.\text{length}$ (1), $0 < \text{right} \leq a.\text{length}$ (2), $\forall i (0 \leq i \leq \text{left} \rightarrow a[i] < x)$ (3) and $\forall i (\text{right} \leq i < a.\text{length} \rightarrow a[i] \geq x)$ (4), we are required to show (RTS) that $\text{left} < \text{right}$. We can use proof by contradiction: Suppose $\text{left} \geq \text{right}$.

Case 1: If $\text{right} = a.\text{length}$ then by assumption $\text{left} \geq a.\text{length}$, which contradicts (1).

Case 2: If $\text{right} < a.\text{length}$, then by assumption, (1) and (2) $0 < \text{right} \leq \text{left} < a.\text{length}$. By (4) $a[\text{left}] \geq x$ and by (3) $a[\text{left}] < x$, contradiction.

Proof of Property (ii) (Informal)

Given $0 < \text{left}+1 = \text{right} \leq a.\text{length}$, x is in a , and (3) and (4).

RTS (a) $\text{right} < a.\text{length}$ and (b) $a[\text{right}] = x$.

(a) Suppose for contradiction that $\text{right} = a.\text{length}$. Hence $\text{left} = a.\text{length}-1$ and by (3) all elements in a are $< x$ which contradicts x is in a .

(b) Assume result (a) and suppose for contradiction that $a[\text{right}] \neq x$. From (4) $a[\text{right}] \geq x$, so $a[\text{right}] > x$ and since $\text{right} = \text{left}+1$, $a[\text{left}+1] > x$. (5). By (3) we're also given $a[\text{left}] < x$ (6).

By sortedness, $\forall i (0 \leq i \leq \text{left} \rightarrow a[i] \leq a[\text{left}])$ and $\forall i (a.\text{length} > i \geq \text{left}+1 \rightarrow a[i] \geq a[\text{left}+1])$.

Hence by (5) and (6) $\forall i (a.\text{length} > i \geq \text{left}+1 \rightarrow a[i] > x)$ and $\forall i (0 \leq i \leq \text{left} \rightarrow a[i] < x)$.

Therefore, for no i does $a[i] = x$, contradicting that x is in a .

Exercise: Write the proofs out using ND and the definition of sortedness on Slide 7. For (ii) the property that x is in a can be written as $\exists j (0 \leq j < a.\text{length} \wedge a[j] = x)$.

Use Pandora if you like. But you may need to use such obvious properties as if $0 \leq i < a.\text{length}$ and $0 \leq \text{left} < a.\text{length}$ then either $0 \leq i < \text{left}$ or $\text{left} \leq i < a.\text{length}$, or $x < y \rightarrow x \neq y$ and $x > y \rightarrow x \neq y$. Perhaps you see why a tool for doing all this would be useful!

20/2/09

KB0809 - Binary Chop Page 11

20/2/09

KB0809 - Binary Chop Page 12

TOWARDS THE CODE

Loop invariant:

$0 \leq \text{left} < \text{right} \leq \text{a.length} \wedge \text{a} = \text{a0}$
 $\wedge \forall i:\text{int} (0 \leq i \leq \text{left} \rightarrow \text{a}[i] < x)$
 $\wedge \forall i:\text{int} (\text{right} \leq i < \text{a.length} \rightarrow \text{a}[i] \geq x)$

Loop variant:

(i.e. the size of the uncharted area in the middle)

```

while
  ( $\text{right} - \text{left} > 1$ ) { // variant >0
    : // re-establish invariant
    : // and make search area smaller
  }
return  $\text{right};$  // $\text{r} = \text{right}$ 

```

20/2/09

KB0809 - Binary Chop Page 13

Loop Initialisation (establishing the invariant)
(We assume $\text{a} = \text{a0}$ from now on)

‡ First try:

```

right =  $\text{a.length};$   $\text{left} = 0;$ 
// invariant:  $0 \leq \text{left} < \text{right} \leq \text{a.length}$   $\wedge$ 
//  $\forall i:\text{int} (0 \leq i \leq \text{left} \rightarrow \text{a}[i] < x)$   $\wedge$ 
//  $\forall i:\text{int} (\text{right} \leq i < \text{a.length} \rightarrow \text{a}[i] \geq x)$ 

```

Wrong – Does not always establish invariant

Why? – at least 1 error; consider some special cases.

‡ Second try:

```

right =  $\text{a.length};$ 
if ( $\text{a.length} == 0 \text{ II } \text{a}[0] \geq x$ ) return 0; else  $\text{left} = 0;$ 
//  $\text{a.length} > 0 \wedge \text{left} = 0 \wedge \text{a}[0] = \text{a}[\text{left}] < x \wedge \text{left} < \text{right}$ 
// invariant:  $0 \leq \text{left} < \text{right} \leq \text{a.length}$   $\wedge$ 
//  $\forall i:\text{int} (0 \leq i \leq \text{left} \rightarrow \text{a}[i] < x)$   $\wedge$ 
//  $\forall i:\text{int} (\text{right} \leq i < \text{a.length} \rightarrow \text{a}[i] \geq x)$ 

```

Proof invariant is initially established (for non-empty a and $\text{a}[0] < x$)

1st conjunct: RTS (Required To Show)

$0 \leq \text{left} < \text{a.length}$ (ie substitute for values of left etc.)

True by arithmetic and assumption that here a is non-empty

2nd conjunct: if $\text{i} = 0$ then $\text{a}[\text{i}] = \text{a}[0] < x$ and $0 \leq \text{i} \leq 0$ so implication true.

For all other i condition of implication is false.

3rd conjunct: There is no i that $\text{right} \leq i < \text{a.length}$ ($\text{right} = \text{a.length}$)

So condition of implication always false

20/2/09

KB0809 - Binary Chop Page 15

We can write the proof a bit more formally as follows.

Given: After the else condition of the if-statement, we know $\text{left} = 0$, $\text{a.length} > 0$, $\text{right} = \text{a.length}$ and $\text{a}[0] = \text{a}[\text{left}] < x$ (note $\text{a}[0]$ is defined).

1st conjunct: RTS $0 \leq \text{left} < \text{right} \leq \text{a.length} \iff 0 \leq 0 < \text{a.length} \leq \text{a.length}$. $0 \leq 0$ and $\text{a.length} \leq \text{a.length}$ by arithmetic. $0 < \text{a.length}$ is given.

2nd conjunct: RTS $\forall i (0 \leq i \leq \text{left} \rightarrow \text{a}[i] < x)$.

Let I be an arbitrary int s.t. (such that) $0 \leq i \leq \text{left}$ (1).

Then RTS $\text{a}[i] < x$. There are two cases: either $\text{i} = 0$ or $0 < i \leq \text{left}$ (by (1)).

Case 1: $\text{i} = 0$. $\text{a}[\text{i}] = \text{a}[0] < x$ (given).

Case 2: $0 < i \leq \text{left} \iff 0 < i \leq 0 \iff \perp \iff \text{a}[\text{i}] < x$ ($\perp E$).

Either way $\text{a}[\text{i}] < x$ is shown as required.

3rd conjunct: RTS $\forall i (\text{right} \leq i < \text{a.length} \rightarrow \text{a}[i] \geq x)$.

Let I be an arbitrary int s.t. $\text{right} \leq i < \text{a.length} \iff \text{a.length} \leq i < \text{a.length} \iff \perp \iff \text{a}[\text{i}] \geq x$ ($\perp E$).

Question: In the 2nd and 3rd Conjuncts what ND rule was used at the outer level?

Answer: The $\forall \rightarrow I$ rule.

20/2/09

KB0809 - Binary Chop Page 16

Loop Finalization (establishing Post)

```
//Post: (1) 0 ≤ r ≤ a.length
//      (2) ∧ ∀i.int (0 ≤ i < r → a[i] < x)
//      (3) ∧ ∀i.int (r ≤ i < a.length → a[i] ≥ x)
```

Case 1 (exit before loop) a.length=0 or (a.length>0 ∧ a[0]≥x) r=0.

(Informally-if the "if" condition in the code=true then $r=0$ is correct)

- (1) $\Leftrightarrow 0 \leq a.length \Leftrightarrow \text{true}$ (arithmetic and Givens)
- (2) $\Leftrightarrow \forall i.\text{int}(0 \leq i < 0 \rightarrow a[i] < x) \Leftrightarrow \text{true}$ as for all i , $0 \leq i < 0$ is false
- (3) $\Leftrightarrow \forall i.\text{int}(0 \leq i < a.length \rightarrow a[i] \geq x)$. There are 2 cases:
 - (i) $a.length=0 \Leftrightarrow 0 \leq i < 0$ is false for every $i \Rightarrow \text{implication true}$
 - (ii) $a.length>0$: $a[0] \geq x$ and a is sorted $\Rightarrow x \leq a[0] \leq a[i]$ for every i .

Case 2 (exit after loop) right-left≤1; r=right.

(Informally – if left becomes right-1, then $r = \text{right}$ is correct.)

$\text{right-left} \leq 1 \Rightarrow \text{right} \leq \text{left} + 1$. Inv. $\Rightarrow \text{right} \geq \text{left} + 1 \Rightarrow \text{right} = \text{left} + 1$.

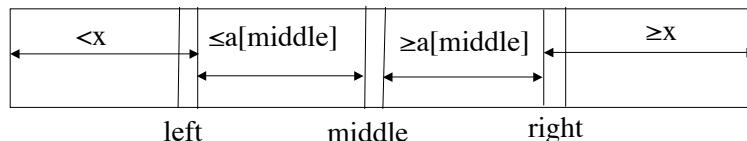
Substitute r for right and $r-1$ for left in the invariant – gives Post.

eg in $\forall i.\text{int}(0 \leq i \leq \text{left} \rightarrow a[i] < x)$ put $r-1$ for left, then

$\forall i.\text{int}(0 \leq i \leq r-1 \rightarrow a[i] < x) \Rightarrow \forall i.\text{int}(0 \leq i < r \rightarrow a[i] < x)$ (2)

20/2/09

KB0809 - Binary Chop Page 17



if $a[\text{middle}] \geq x$ then $\text{right} = \text{middle}$

if $a[\text{middle}] < x$ then $\text{left} = \text{middle}$

RE-ESTABLISHING THE INVARIANT –

The idea is to define 'middle' as $(\text{left} + \text{right}) / 2$.

If $a[\text{middle}] < x$, then we can replace left by middle .
And if $i \leq \text{left}$ then $a[i] \leq a[\text{left}] = a[\text{middle}] < x$.

Otherwise, if $a[\text{middle}] \geq x$, then we can replace right by middle .
For if $i \geq \text{right}$ ($= \text{middle}$), then $a[i] \geq a[\text{right}] = a[\text{middle}] \geq x$.

```
middle = (left+right) / 2;
if (a[middle]< x) left = middle;
else right = middle;
```

Within the loop the while condition is true and we can show
 $\text{right-left} > 1 \Rightarrow \text{right-left} \geq 2 \Rightarrow \text{left} < \text{middle} < \text{right}$
 (uses fact about integer division)

20/2/09

KB0809 - Binary Chop Page 18

RE-ESTABLISHING THE INVARIANT – CTD.

After setting middle to left or to right (as in the code),
 three things need to be proved that are slightly *delicate*:

- a) $0 \leq \text{middle} < a.length$, so that $a[\text{middle}]$ is defined.
- b) that we *still have* $0 \leq \text{left} < \text{right} \leq a.length$,
 so that the invariant (1st part) has been re-established.
- c) that the variant, $\text{right-left}-1$, has strictly decreased.

Given the invariant, $(0 \leq \text{left} < \text{right} \leq a.length)$, they all follow simply
 from the following fact, which could usefully be included as a
 comment:

if $\text{left} \leq \text{right}-2$, then $\text{left} < \text{middle} < \text{right}$

Exercise: Show formally that the Loop Finalization implies Post and
 properties a), b), c) hold.

20/2/09

KB0809 - Binary Chop Page 19

20/2/09

KB0809 - Binary Chop Page 20

We can write the proof that the loop finalisation implies Post a bit more formally as follows.

Given: a is sorted (G)

Case 1: (exit before loop starts) $r=0=a.length$. RTS (1), (2) and (3) of Slide 17.

(1) $\Leftrightarrow 0 \leq r \leq a.length \Leftrightarrow 0 \leq 0 \leq 0 \Leftrightarrow$ True by arithmetic

(2) $\Leftrightarrow \forall i (0 \leq i < r \rightarrow a[i] < x) \Leftrightarrow \forall i (0 \leq i < 0 \rightarrow a[i] < x) \Leftrightarrow$ True since for all i, $0 \leq i < 0$ is False.

(3) $\Leftrightarrow \forall i (r \leq i < a.length \rightarrow a[i] \geq x) \Leftrightarrow \forall i (0 \leq i < 0 \rightarrow a[i] \geq x)$

\Leftrightarrow True since for all i, $0 \leq i < 0$ is False

Case 2: (exit before loop starts) $a.length > 0$, $a[0] \geq x$ and $r=0$. RTS (1), (2) and (3) of Slide 17.

(1) $\Leftrightarrow 0 \leq r \leq a.length \Leftrightarrow 0 \leq 0 \leq a.length \Leftrightarrow$ True by arithmetic and the case assumptions

(2) $\Leftrightarrow \forall i (0 \leq i < r \rightarrow a[i] < x) \Leftrightarrow \forall i (0 \leq i < 0 \rightarrow a[i] < x) \Leftrightarrow$ True since for all i, $0 \leq i < 0$ is False.

(3) $\Leftrightarrow \forall i (r \leq i < a.length \rightarrow a[i] \geq x) \Leftrightarrow \forall i (0 \leq i < a.length \rightarrow a[i] \geq x)$

\Leftrightarrow True since for all i $a[i] \geq a[0] \geq x$ (by (G) and case).

Case 3: (exit after loop ends) $right-left \leq 1$ and $r=right$. RTS (1), (2) and (3) of Slide 17.

Given Invariant:

(I1) $0 \leq left < right \leq a.length$; (I2) $\forall i (0 \leq i \leq left \rightarrow a[i] < x)$ (I3) $\forall i (right \leq i < a.length \rightarrow a[i] \geq x)$

Note: $right-left \leq 1 \Leftrightarrow right \leq left+1$ and $left < right$ (by I1) $\Leftrightarrow left+1 \leq right$; $\therefore left+1 = right$

(1) $\Leftrightarrow 0 \leq r \leq a.length \Leftrightarrow 0 \leq right \leq a.length \Leftrightarrow 0 \leq left+1 \leq a.length$.

By (I1) $0 \leq left \Leftrightarrow 0 \leq left+1$ and $left < a.length \Leftrightarrow left+1 \leq a.length$.

(2) $\Leftrightarrow \forall i (0 \leq i < r \rightarrow a[i] < x) \Leftrightarrow \forall i (0 \leq i < right \rightarrow a[i] < x) \Leftrightarrow \forall i (0 \leq i < left+1 \rightarrow a[i] < x)$

$\Leftrightarrow \forall i (0 \leq i \leq left \rightarrow a[i] < x) \Leftrightarrow$ True by (I2).

(3) $\Leftrightarrow \forall i (r \leq i < a.length \rightarrow a[i] \geq x) \Leftrightarrow \forall i (right \leq i < a.length \rightarrow a[i] \geq x) \Leftrightarrow$ True by (I3).

20/2/09

KB0809 - Binary Chop Page 21

HOW DO WE KNOW THAT LEFT < MIDDLE < RIGHT?

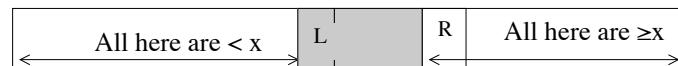
Remember we are assuming $left \leq right-2$. Then

$$\text{middle} = (\text{left} + \text{right}) / 2 \geq (\text{left} + \text{left} + 2) / 2 = \text{left} + 1$$

$$\text{middle} = (\text{left} + \text{right}) / 2 \leq (\text{right} + \text{right} - 2) / 2 = \text{right} - 1$$

This depends on the facts $(n+n-2) / 2 = n-1$ and $(n+n+2) / 2 = n+1$.

This solves a problem that can arise if **left** is taken as the first unchecked element and looping continues until $left >= right$. For then, computing **middle** when $left=right-1$ might give **left** or it might give **right**, depending on the exact definition of integer division in the language. And then the program could go wrong. (See Exercises).



20/2/09

KB0809 - Binary Chop Page 23

We can show the Properties a), b), c) as follows.

First we show $left \leq right-2 \rightarrow left < \text{middle} < right$ using $\text{middle} = (\text{left} + \text{right}) / 2$;

Suppose $left \leq right-2$. RTS $left < \text{middle}$ and $\text{middle} < right$.

$left + 2 \leq right \Rightarrow \text{middle} \geq (\text{left} + \text{left} + 2) / 2 = \text{left} + 1 \Leftrightarrow \text{middle} > \text{left}$, and

$\text{middle} \leq (\text{right} - 2 + \text{right}) / 2 = \text{right} - 1 \Leftrightarrow \text{middle} < \text{right}$.

Next we show properties a), b), c)

Given: (G1) $\text{middle} = (\text{left} + \text{right}) / 2$; (G2) $left \leq right-2 \rightarrow left < \text{middle} < right$;

(G3) $0 \leq left < right \leq a.length$ (from Invariant (I1)) and (G4) $left \leq right-2$ (loop test);

(G2)+(G4) $\Rightarrow left < \text{middle} < right$ (G5).

a) $\Leftrightarrow 0 \leq \text{middle} < a.length$. This follows from (G3) and (G5).

Let $left1$ and $right1$ be the values of $left$ / $right$ before the reassignment of $left$ or $right$ and $left/right$ the values after.

Either (i) $left = \text{middle}$ and $right = right1$, or (ii) $left = left1$ and $right = \text{middle}$.

b) (G6) $0 \leq left1 < \text{middle} < right1 \leq a.length$ follows from (G3) and (G5).

(i): RTS $0 \leq left < right \leq a.length \Leftrightarrow 0 \leq \text{middle} < right1 \leq a.length$.

Follows from a) and (G6).

(ii) is similar.

Hence in both cases $\text{right-left-1} \geq 0$.

c) Variant before loop code = $right1 - left1 - 1$. Variant after loop code = $right - left - 1$.

(i) $right - left - 1 = right1 - middle - 1 < right1 - left1 - 1$.

(ii) $right - left - 1 = middle - left1 - 1 < right1 - left1 - 1$.

So in both cases $\text{variant} \geq 0$, from (b), and variant decreases, from (c).

20/2/09

KB0809 - Binary Chop Page 22

A slightly different version of the algorithm is obtained if **left** is taken to be the first element of the unexplored region instead of the last element of the region of elements known to be $< x$, as was done in the given algorithm. In this alternative, the first part of the invariant must be changed from $left < right$ to $left \leq right$. The loop initialisation is also slightly easier, as there is no need for the "if-statement" and both (I2) and (I3) are vacuously true just before the loop. The while condition in this case would be $right-left > 0$. When false, together with the invariant property $left \leq right$, this gives $left = right$, which means, in effect, that there is no unexplored territory, so **right** can be returned as the result. However, the code to determine **middle** is rather more delicate.

After computing **middle** and checking $a[middle]$, if it is too large then $right = \text{middle}$. But if it is too small then $left = \text{middle} + 1$. The delicate bit is to show the variant still decreases. For this, we need to be sure that $\text{middle} < right$. If $\text{middle} = (\text{left} + \text{right}) / 2$, can we show that, if $left < right$ (while condition true), then $\text{middle} < right$? It will depend on how integer division is treated in the language. The difficult case is when $left = right - 1$. If care isn't taken the program could loop for ever. The exercises guide you to fill in the details.

For yet another version, if a 3-way test is available, then it appears that when $a[middle] = x$ the loop exit could be made early. For example, suppose the very first time the loop is executed gives rise to $a[middle] = x$. Is it right to return with $r = \text{middle}$? NO!

Exercise. Explain why you could not guarantee the given postcondition (without some additional computation). Give a new postcondition that can be guaranteed.

Even if the original postcondition is kept, the 3-way test may still be useful:

Exercise. Assume that **left** and **right** indicate the first and last elements of the uncharted territory and a 3-way test is available. Make appropriate changes to invariant and code.

20/2/09

KB0809 - Binary Chop Page 24

THE CODE FOR BINARY CHOP

```

int search (int [] a, int x) {
  // Pre: Sorted(a)
  int left, middle;
  int right = a.length;
  if ((a.length==0)|| (a[0]>=x)) return 0; else left = 0;
  //a[left]<x
  while
    // Loop invariant : see slide 13
    // Loop variant = right - left-1
    (right-left>1) {
      middle = (left+right) / 2; // left < middle < right
      if (a[middle]< x) left = middle; else right = middle;
    }
  return right;
}

```

20/2/09

KB0809 - Binary Chop Page 25

DOCUMENTATION

- All serious programs have to be “documented” – i.e. there has to be a written explanation of what they do and how they [are supposed to] work. This is usually incorporated as comments.
- The comments in `search` should show the level of detail that is most useful – not a full formal proof, but must show the most important steps.
- If a formal correctness proof is required, the comments indicate how it would be constructed.
- Even if no (extra) comments, the *loop invariant* gives a solid framework in which to understand the working of the program.
- If there’s a suspicion of a mistake, or if someone else is trying to understand your code, the framework immediately suggests specific questions: e.g. *Does* the loop body re-establish the invariant? *Is* the variant decreased each time? *Are* array accesses OK?

20/2/09

KB0809 - Binary Chop Page 26

AN INTERLUDE

We can run search and see how many comparisons it takes.
 Theory says it is $\log_2 \text{size}$, where the array has size elements.
 Let's see ...
 Set up arrays of varying lengths with increasing random integers.
 Then search for various integers.

VARIATION 1: CHANGE OF PRE/POST

Suppose the precondition includes the fact that x is in a .
 $\wedge \exists y: \text{Nat} (y < a.length \wedge a[y] = x)$

We can then strengthen the postcondition, which was:

$$\begin{aligned}
 & 0 \leq r \leq a.length \wedge \\
 & \forall i. \text{int}(0 \leq i < r \rightarrow a[i] < x) \wedge \forall i. \text{int}(r \leq i < a.length \rightarrow a[i] \geq x) \\
 & \text{to} \\
 & 0 \leq r \leq a.length \wedge a[r] = x \wedge \forall i. \text{int}(0 \leq i < r \rightarrow a[i] < x)
 \end{aligned}$$

In other words, the result r is the index of the first occurrence of x in a .
 Question: Why does the new-Post follow from the old-Post and new-Pre?

20/2/09

KB0809 - Binary Chop Page 27

20/2/09

KB0809 - Binary Chop Page 28

VARIATION 1 (CONTINUED)

New-Precondition: \mathbf{a} is sorted and \mathbf{x} is in \mathbf{a} .

- (1) $\forall i, j: \text{int} (0 \leq i \leq j < \mathbf{a}.\text{length} \rightarrow \mathbf{a}[i] \leq \mathbf{a}[j]) \wedge$
- (2) $\exists y: \text{Nat} (y < \mathbf{a}.\text{length} \wedge \mathbf{a}[y] = \mathbf{x})$

Old-Post: $0 \leq \mathbf{r} \leq \mathbf{a}.\text{length} \wedge$

- (3) $\forall i: \text{int} (0 \leq i < \mathbf{r} \rightarrow \mathbf{a}[i] < \mathbf{x}) \wedge \forall i: \text{int} (\mathbf{r} \leq i < \mathbf{a}.\text{length} \rightarrow \mathbf{a}[i] \geq \mathbf{x})$

to new-Post: (4) $0 \leq \mathbf{r} < \mathbf{a}.\text{length} \wedge \mathbf{a}[\mathbf{r}] = \mathbf{x} \wedge \forall i: \text{int} (0 \leq i < \mathbf{r} \rightarrow \mathbf{a}[i] < \mathbf{x})$

Case 1: $0 \leq \mathbf{r} < \mathbf{a}.\text{length}$

From (3) $\mathbf{a}[\mathbf{r}] \geq \mathbf{x}$ and $\forall i: \text{int} (0 \leq i < \mathbf{r} \rightarrow \mathbf{a}[i] < \mathbf{x})$

If $\mathbf{a}[\mathbf{r}] > \mathbf{x}$, then by (1) $\forall i: \text{int} (\mathbf{r} \leq i < \mathbf{a}.\text{length} \rightarrow \mathbf{a}[i] \geq \mathbf{a}[\mathbf{r}] > \mathbf{x})$

Hence $\forall i: \text{int} (0 \leq i < \mathbf{a}.\text{length} \rightarrow (\mathbf{a}[i] < \mathbf{x} \vee \mathbf{a}[i] > \mathbf{x}))$

This contradicts (2). Therefore $\mathbf{a}[\mathbf{r}] = \mathbf{x}$

Case 2: $\mathbf{r} = \mathbf{a}.\text{length}$. Then (3) contradicts (2) so case impossible

VARIATION 2: CHANGE OF CODE

Suppose we use a case test on $\mathbf{a}[\text{middle}]$ with one of 3 outcomes:

$\mathbf{a}[\text{middle}] < \mathbf{x}$, $\mathbf{a}[\text{middle}] = \mathbf{x}$ or $\mathbf{a}[\text{middle}] > \mathbf{x}$.

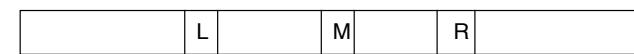
If $\mathbf{a}[\text{middle}] = \mathbf{x}$, suppose we write `return middle`.

The original postcondition was

$$\begin{aligned} & 0 \leq \mathbf{r} \leq \mathbf{a}.\text{length} \wedge \\ & \forall i: \text{int} (0 \leq i < \mathbf{r} \rightarrow \mathbf{a}[i] < \mathbf{x}) \wedge \forall i: \text{int} (\mathbf{r} \leq i < \mathbf{a}.\text{length} \rightarrow \mathbf{a}[i] \geq \mathbf{x}) \end{aligned}$$

Q: Why is this not now guaranteed always to be true?

HINT: Consider an array in which all values $= \mathbf{x}$.



All elements are equal to \mathbf{x}

VARIATION 2 (CONTINUED)

To make the *original* postcondition true could increment left until $\mathbf{a}[\text{left}+1] = \mathbf{x}$ and return $\text{left}+1$ as result.

i.e. \mathbf{r} is the index of the first occurrence of \mathbf{x} in \mathbf{a} .

We can also strengthen the invariant to reflect that $\mathbf{a}[\text{right}] > \mathbf{x}$ (instead of $\mathbf{a}[\text{right}] \geq \mathbf{x}$). Then, if stop because $\text{right}-\text{left}=1$ also know that $\mathbf{a}[\text{right}] \neq \mathbf{x}$.

What would this tell us about \mathbf{x} and \mathbf{a} ?

A new postcondition:

$$\begin{aligned} & 0 \leq \mathbf{r} \leq \mathbf{a}.\text{length} \wedge \forall i: \text{int} (0 \leq i < \mathbf{r} \rightarrow \mathbf{a}[i] < \mathbf{x}) \wedge \\ & ((\mathbf{r} < \mathbf{a}.\text{length} \wedge \mathbf{a}[\mathbf{r}] = \mathbf{x}) \vee \forall i: \text{int} (\mathbf{r} \leq i < \mathbf{a}.\text{length} \rightarrow \mathbf{a}[i] > \mathbf{x})) \end{aligned}$$

A WARNING

The Binary chop algorithm is presented in many different ways. Possible differences are:

- (i) the precondition states that \mathbf{x} is known to be in \mathbf{a} ; this can simplify the postcondition, which can be $0 \leq \mathbf{r} < \mathbf{a}.\text{length} \wedge \mathbf{a}[\mathbf{r}] = \mathbf{x} \wedge \forall i: \text{int} (0 \leq i < \mathbf{r} \rightarrow \mathbf{a}[i] < \mathbf{x})$. There is no need to state that elements beyond \mathbf{r} are $\geq \mathbf{x}$ – they must be since \mathbf{a} is sorted. For the original postcondition this was required, since $\mathbf{a}[\mathbf{r}] \geq \mathbf{x}$ could not be used instead of $\mathbf{a}[\mathbf{r}] = \mathbf{x}$, as $\mathbf{a}[\mathbf{r}]$ might not be a valid array access;
- (ii) the test between $\mathbf{a}[\text{middle}]$ and \mathbf{x} has three outcomes, depending on whether $\mathbf{a}[\text{middle}] = \mathbf{x}$, $\mathbf{a}[\text{middle}] < \mathbf{x}$ or $\mathbf{a}[\text{middle}] > \mathbf{x}$. This allows for the while loop to terminate early in case the value \mathbf{x} is encountered, although care must be taken to ensure $\forall i: \text{int} (0 \leq i < \mathbf{r} \rightarrow \mathbf{a}[i] < \mathbf{x})$ is true at the end.
- (iii) the `right` variable indicates the *last* index of the portion of \mathbf{a} that has still to be searched. This is in contrast to what was proposed here, where `right` was the first element *beyond* the part of \mathbf{a} still to be searched;
- (iv) the `left` variable indicates the first element in the part of \mathbf{a} that has still to be searched. For this variation the initial IF-statement can be dropped. This version is covered in the exercise sheet, and uses a different computation of `middle`;
- (v) sometimes both of (iii) and (iv) are used; the resetting of `left` or `right` may then be slightly different, being `left=middle+1`, or `right=middle-1`;
- (vi) if the postcondition is weakened to $0 \leq \mathbf{r} < \mathbf{a}.\text{length} \wedge \mathbf{a}[\mathbf{r}] = \mathbf{x}$ and \mathbf{x} is known to be in \mathbf{a} (ie just find some index of \mathbf{a}), then if the 3-way test is used the while condition can be changed to $(\text{right}-\text{left} > 2)$, and the invariant to $0 \leq \text{left} < \text{right}-1 \leq \mathbf{a}.\text{length}-1$. The initial test should check that the array has at least 2 elements, else it is known the only one must $= \mathbf{x}$.

None of these variations affects very much the efficiency of the algorithm for large arrays \mathbf{a} .

FINAL POINTS

- The usual pitfall with the binary chop algorithm lies in not being quite sure what the values of `left` and `right` are supposed to mean.
- Making the specification and the loop invariant precise and being careful about the difference between `<` and `\leq` is the way to avoid this.