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Abstract
Data-centric AI has proven successful in several
domains, but its outputs are often hard to explain.
We present an architecture combining Artificial
Neural Networks (ANNs) for feature selection and
an instance of Abstract Argumentation (AA) for
reasoning to provide effective predictions, explain-
able both dialectically and logically. In particular,
we train an autoencoder to rank features in input ex-
amples, and select highest-ranked features to gen-
erate an AA framework that can be used for mak-
ing and explaining predictions as well as mapped
onto logical rules, which can equivalently be used
for making predictions and for explaining. We
show empirically that our method significantly out-
performs ANNs and a decision-tree-based method
from which logical rules can also be extracted.

1 INTRODUCTION
Data-centric AI has recently received a great deal of atten-
tion and shown success in several domains (e.g. see [Le-
Cun et al., 2015] for Artificial Neural Networks (ANNs)),
but its predictions are notoriously hard to explain (e.g. see
[Andrews et al., 1995], again for ANNs). Argumentation
has been increasingly studied in AI in the last two decades,
mostly to deal with incomplete and conflicting informa-
tion (see [Atkinson et al., 2017] for a recent survey) but
also to provide dialectical explanations for reasoning out-
puts of various kinds (e.g. see [Amgoud and Serrurier, 2007;
Fan and Toni, 2015]). These explanations are dialectical in
that they can be seen as debates between two opposing par-
ties. We combine ANNs (of the ‘autoencoder’ variety [Hin-
ton and Salakhutdinov, 2006]) and argumentation (of the ‘Ab-
stract Argumentation’ (AA) variety [Dung, 1995]) to provide
effective predictions that can be explained dialectically as
well as logically, from automatically extracted rules. We call
our methodology ANNA (for ANNs with argumentation).

Within ANNA, during training an autoencoder is used to
rank features in input examples, as more or less representa-
tive. These training examples are labelled as belonging to one
of two given classes (outcomes). The ranking is then used
to select a subset of (highest-ranked) features so that the re-
striction of the training examples to these features is coherent

(namely, with no two restrictions having the same features but
different outcomes). The resulting restriction of the training
examples is then mapped onto an AA framework (AAF), us-
ing the approach of [Čyras et al., 2016a], and in turn this AAF
is mapped onto a set of logical rules (of the ‘logic program-
ming’ variety). In the AAF, the set of arguments consists of
the (restrictions of) examples as well as a default argument
(giving the default outcome in the absence of any informa-
tion), and an argument attacks another if they have different
outcomes and the former is a ‘concise’ superset of the lat-
ter. In the logic program, the default outcome is provable by
default, and rules admit exceptions, obtained from examples.

The AAF and the logic program can be equivalently used
(during testing) for prediction of the outcome for unlabelled
examples. For a given example M , with restriction N to the
set of features selected during training, the prediction is made
as follows: (i) by adding to the AAF a new argument for N ,
attacking every argument in the AAF with features irrelevant
toN , and determining whether the default argument is dialec-
tically acceptable in the extended AAF, using the grounded
semantics [Dung, 1995]; or, equivalently (ii) by adding to the
logic program a fact (rule with an empty body) for every fea-
ture inN and determining whether the default outcome being
provable is a logical consequence of the extended logic pro-
gram, using semantics for logic programming [Apt and Bol,
1994]. The extended AAF and logic program can be used to
explain the prediction, dialctically or logically, respectively.

We show empirically, using the dataset of [Dheeru and
Karra Taniskidou, 2017], that ANNA significantly outper-
forms ANNs, while being less sensitive to the size of the
training dataset, as well as a decision-tree-based method from
which logical rules can also be extracted.

2 PRELIMINARIES
In this section we give essential background on Artificial
Neural Networks (ANNs), argumentation and logic program-
ming, of the kinds used within our method.

ANNs have been widely applied both in classification tasks
and in dimensionality reduction, e.g. as in [Verikas and Ba-
causkiene, 2002]. Typically, dimensionality reduction refers
to selecting a subset of the original feature set (selection) or
mapping the initial data in M-dimensional space onto a K-
dimensional space with K < M (extraction). ANN-based



feature selection methods use multilayer perceptrons to de-
termine which features are redundant [Gasca et al., 2006]
as well as autoencoders [Hinton and Salakhutdinov, 2006;
Wang et al., 2017; Han et al., 2017]. These are unsupervised
learning models based on ANNs which take a set of features
as input and aim, through training, to reconstruct the inputs
[Hinton and Salakhutdinov, 2006; Erhan et al., 2010].

In this paper we use autoencoders for feature selection and
generic ANNs for experimental comparison.

AA-CBR [Čyras et al., 2016a; Čyras et al., 2016b] is an
Abstract Argumentation (AA)-driven and Case-Based Rea-
soning (CBR)-inspired model for reasoning with (past) cases
(where a case is a set of features together with an outcome)
to predict the outcomes of new cases.

Consider a fixed but otherwise arbitrary (possibly infinite)
set F of features, and a set O = {δ, δ} of two (distinct) out-
comes, with δ called the default outcome. Then:
• a case is a pair (X, o) with X ⊆ F and o ∈ O;
• a case base is a finite set CB⊆℘(F)×O that is coherent,

i.e. for (X, oX), (Y, oY ) ∈ CB , if X=Y then oX =oY ;
• a new case is a pair (N, ?) with N ⊆ F and ? indicating

that the outcome is yet unknown.
To illustrate, we use the following example throughout.

Example 2.1. Let F = {a, b, c, d}, CB =
{({a}, δ), ({b}, δ), ({a, c}, δ), ({b, d}, δ)} and (N, ?) =
({a, d}, ?). It is easy to see that CB is coherent.

AA-CBR maps the problem of determining the outcome
for a new case into a membership problem within the
grounded extension of an AA framework (AAF) [Dung,
1995] obtained from the case base CB , the new case (N, ?)
and the default outcome δ. In general, an AAF is a pair
(Args, ), where Args is a set (of arguments) and  is a
binary relation on Args (where, for a, b ∈ Args , if a  b,
then we say that a attacks b and that a is an attacker of b).
For a set of arguments E ⊆ Args and an argument a ∈ Args ,
E defends a if for all b  a there exists c ∈ E such that
c  b. Then, the grounded extension of (Args, ) can
be constructed as G =

⋃
i>0Gi, where G0 is the set of all

unattacked arguments, and ∀i > 0, Gi+1 is the set of ar-
guments that Gi defends. For any (Args, ), the grounded
extension G always exists and is unique.

AA-CBR encompasses the following two modules, respec-
tively (1) extracting an AAF from a coherent case base and a
default outcome, and (2) determining the outcome of a new
case from the grounded extension of the AAF augmented to
take into account the new case.

Module 1 – aaf (CB , δ) gives (Args, ) with:
• Args = CB ∪ {({}, δ)};
• for (X, oX), (Y, oY ) ∈ CB ∪ {({}, δ)}, it holds that
(X, oX) (Y, oY ) iff
1. oX 6= oY , and (different outcomes)
2. Y ( X , and (specificity)
3. @(Z, oX) ∈ CB with Y ( Z ( X . (concision)

The default argument ({}, δ) represents the outcome obtained
in the absence of any information (i.e. features).

Module 2 – outcome((Args, ), N) gives the AA-CBR
outcome of (N, ?) defined as follows:

i. let (ArgsN , N ) be the AAF with

• ArgsN = Args ∪ {(N, ?)};
•  N= ∪{((N, ?), (Y, oY )) : (Y, oY )∈Args, Y *N},

i.e. (ArgsN , N ) extends (Args, ) with the new case
argument (N, ?) that attacks all arguments with ‘irrele-
vant’ features, i.e. features not in N ;

ii. let G be the grounded extension of (ArgsN , N ); G is
non-empty, as (N, ?) is unattacked;

iii. then the AA-CBR outcome of (N, ?) is
• δ, if ({}, δ) ∈ G;
• δ, otherwise, if ({}, δ) 6∈ G.

Example 2.2. Given CB , δ and (N, ?) from Example 2.1,
outcome(aaf (CB , δ), N) gives δ. Indeed (Args, ) =
aaf (CB , δ) is the AAF depicted in Figure 1 when the
polygon node and all arrows from it are ignored, and
(ArgsN , N ) from step (i) in Module 2 is the full AAF
in the figure.1 The grounded extension of (ArgsN , N ) is

({}, δ)

({a}, δ) ({b}, δ)

({a, c}, δ) ({b, d}, δ)({a, d}, ?)

Figure 1: (ArgsN , N ) for Example 2.2.

G = {({a, d}, ?), ({a}, δ)}, and ({}, δ) 6∈ G. Note that,
in (ArgsN , N ), ({b, d}, δ) 6 ({}, δ) because of the con-
cision requirement: ({b}, δ) is a more concise attacker of
({}, δ). Note also that (N, ?) attacks all cases that have fea-
tures not present in N .

For our purposes, a logic program is a set P of ground
rules of the form h ← p1, . . . , ps, not ps+1, . . . , not ps+t.
where s, t ≥ 0, h and each pi are atoms, and not
is negation as failure. h is called the head, and
p1, . . . , ps, not ps+1, . . . , not ps+t the body of such a rule. A
fact is a rule h← .with an empty body. All logic programs in
this paper are stratified, and can be ascribed a meaning using
the perfect model semantics[Apt and Bol, 1994]. We say that
an atom a is provable (in P) if a ∈ model(P).

3 ANNA METHODOLOGY – PART I
In this section we describe our Artificial Neural Networks
with Argumentation methodology for prediction (ANNA in
short), summarised in Figure 2, but ignoring rule extraction
and rule-based prediction (part II) until Section 5.

3.1 AUTOENCODER + FEATURE SELECTION
ANNA assumes the availability of a training dataset consist-
ing of a (possibly large) set of examples, (referred to as L in
the remainder), each amounting to a set of features from a

1 Here, as conventional, the AAF is depicted as a graph with
nodes holding arguments and arrows indicating attacks. We use dif-
ferent shapes for nodes for readability: the default argument ({}, δ)
and the new case ({a, d}, ?) argument are enclosed in rectangle and
polygon respectively, while other arguments are enclosed in ellipses.



Figure 2: A bird’s eye view of ANNA. Part I: during training with
dataset L a trimmed dataset S is obtained, that, together with default
outcome δ, gives rise to an AAF used for predicting the outcome for
(any) M via its trimmed version N . Part II: the AAF is mapped
onto rules for making equivalent predictions for M via N .

given set FL and an outcome from a set O. We assume that
there are exactly two outcomes in O, i.e. prediction is a binary
classification problem. The set FL may be large, especially
if features are assignments of alternative values to attributes
(e.g. ‘colour’ may take many different values). ANNA relies
upon an autoencoder for capturing the most salient features
from the training dataset, resulting in a trimmed dataset (re-
ferred to as S in the remainder), which may be much smaller
than the original L and consisting of examples with much
fewer features (from a trimmed set F ⊆ FL). Formally,
S = {(Y, o) : (X, o) ∈ L, Y = X ∩ F}. ANNA en-
forces that feature selection, leading to F, is such that S is
coherent and thus representative of the original L (if coher-
ent to start with) and devoid of noise (if L was not coherent).
Thus feature selection guarantees that S is “rational”.
Example 3.1. Let examples in L be characterised by 5 at-
tributes a1, . . . , a5 and an outcome amongst o1, o2. Suppose
each attribute may take one of 4 distinct, discrete values, say
v1ai
,. . . ,v4ai

for ai. Then FL= {a1=v1a1
,. . . ,a5 = v4a5

} con-
sists of 20 features (binary attribute-value pairs). Suppose
that ANNA is realised so as to select 4 features, namely F
consists of 4 elements, e.g. F = {a1 = v1a1

,a2 = v4a2
,a3 =

v2a3
,a4 = v4a4

} = {a, b, c, d}: if L = {({a, a1 = v2a1
, a5 =

v1a5
}, o1), ({a, a1 = v3a1

}, o1)} then S = {({a}, o1)}. Note
that if L had also included ({a, a5 = v1a5

}, o2), then ANNA
would not have selected F, as this would have resulted in an
incoherent S = {({a}, o1), ({a}, o2)}.

In our realisation of the ANNA methodology in this pa-
per (and in particular in the experiments we present in Sec-
tion 4) we use a simple autoencoder with one hidden layer
as shown in Figure 3, with (for X ⊆ FL): (i) an encoder
function f(X) = σ(XW (1)), and (ii) a decoder function
σ(f(X)W (2)), where W (1),W (2) are the weight parameters
in the encoder and decoder, respectively.

To select F, we average the weights in W (1) for each input
and select the top F factors. F can be chosen in many alter-
native ways, e.g. iteratively (starting from a small number of
features, until a coherent S is obtained) or empirically (as in
the experiments in Section 4, where F=22, with |L| = 126).

In the remainder we will refer to elements of L as original
examples, and to elements of S simply as examples.

Figure 3: Autoencoder used in ANNA: |FL| binary features are used
to train the autoencoder to obtain a code (hidden layer h of size
H < |FL|) that best captures the input |FL| features.

3.2 AA-CBR MINER
Note that S is a coherent case base, in the sense of Section 2,
and examples in S can be seen as cases. ANNA assumes that
a default δ can be naturally identified in O, as the prediction
that can be legitimately made in the absence of information
about features. Then, the AA-CBR miner returns aaf (S, δ)
(see Module 1 in Section 2). Thus, if S=CB in Example 2.1,
the AAF given by the AA-CBR miner is in Example 2.2.

Note that the AAF returned by the AA-CBR miner can be
seen as a model of the trimmed dataset, and, if the feature
selection is rational, also of the original training dataset. This
model identified conflicts between (original) examples, that
need to be resolved every time that a prediction is to be made.

3.3 AA-CBR PREDICTOR
The AA-CBR predictor takes a set M of features in FL, char-
acterising an unseen example with unknown outcome, and
predicts an outcome from O as follows. Let the trimming
function τ :℘(FL) 7→℘(F) be τ(X)=X∩F, for any X⊆FL.
Note that trimming different sets of features may result into
the same set, e.g. in Example 3.1 τ({a, a1 = v2a1

, a5 =

v1a5
}) = τ({a, a1 = v3a1

}) = {a}. The AA-CBR predictor
takes N = τ(M) in input, alongside (Args, ) given by the
AA-CBR miner, and computes outcome((Args, ), N) (see
Module 2 in Section 2), as in Example 2.2.

4 EMPIRICAL EVALUATION
In this section we conduct experiments with a publicly avail-
able dataset, showing that ANNA is an effective method when
compared to end-to-end ANNs and to a method based on de-
cision trees. The latter is chosen for comparison as decision
trees also produce logical rules for justifying predictions, as
ANNA-Part II (see Section 5).

The dataset consists of 8124 examples of gilled mush-
rooms classified as edible or poisonous. Each example is
characterised by 22 (categorical) attributes that can take a
number of different values, leading to 126 (binary) features.
In our experiments we choose several subsets of this dataset
as L, but, for all choices, |FL| = 126.



In our experiments, H ∈ {22, 30} (where H is the size of
the hidden layer, see Figure 3), |F| = 22, for F the trimmed
set of features, O = {edible, poisonous} and δ = edible. This
means that in the absence of any information, i.e. features,
about a mushroom, it can be deemed edible, as represented
by ({}, δ). However, as soon as a mushroom with features is
encountered, it being edible has to be justified by countering
all the relevant examples of poisonous mushrooms.

We use sigmoid as activation function in the autoencoder
and binary cross entropy as loss function. We have experi-
mented with |F| ∈ {22, 30, 50}, with tanh and ReLU as acti-
vations functions and with various optimizers, but report re-
sults for the best performing combinations of parameters.

Table 1: 5-fold cross validation results

Hidden layer size 22 Precision Recall F1

ANNA 0.97 0.96 0.958
Autoencoder + ANN 0.938 0.894 0.878
ANN 0.934 0.888 0.87
Hidden layer size 30
ANNA 0.97 0.962 0.962
Autoencoder + ANN 0.932 0.886 0.86
ANN 0.936 0.896 0.88

In Table 1 we report 5-fold cross validation results, using
weighted averages for each metric, for a stand-alone ANN,
for a combination of Autoencoder+ANN, and for ANNA.
The chosen ANN has one hidden layer and uses sigmoid as
activation function and softmax to make predictions. The
hyper-parameters were optimised using the Adam method
[Kingma and Ba, 2014] with learning rate 0.001. For Au-
toencoder+ANN, we use the learnt weights W (1) from the
encoder, which we do not optimise during training, and soft-
max for classification. In both cases, we trained for 50 epochs
or until the performance on the development set stopped im-
proving. In the case of ANNA, we use the learnt weights from
the encoder to select the top 22 features. As shown in Table 1,
ANNA performs better than the two ANN approaches with
differences in F1 up to 8% and 10% when using a size 22 and
30 hidden layer, respectively.

We also conducted experiments to test whether ANNA can
better cope with smaller datasets than the Autoencoder+ANN
method (arguably the better performing of the two end-to-
end ANN methods). Hence we run experiments on 6000
randomly drawn examples and 5000 randomly drawn exam-
ples, respectively, and tested on the remaining examples in
the starting dataset. We repeated the experiments 5 times
and report the average performances in Table 2. Here as well
we use the learnt weights W (1) from the encoder in Autoen-
coder+ANN and softmax for prediction. In this set of exper-
iments, we also used for comparison a method, referred to
simply as Decision Tree (DT) in Table 2, that also uses an au-
toencoder for feature selection. For ANNA and DT alike, we
use the learnt weights from the encoder to select the top 22
features as F and give S as discussed in Section 3.1. We used
information gain for DT and selected 1 as the minimum num-
ber of samples required to be at a leaf node to mimic ANNA
treating each example as an argument.

Table 2: Average of 5 runs of training on a reduced dataset and
testing on the remaining examples.

Training set size: 6000, Testing set size: 2124
Hidden layer size 22 Precision Recall F1

ANNA 0.978 0.976 0.976
Autoencoder + ANN 0.802 0.642 0.61
Decision Tree (DT) 0.858 0.774 0.762
Hidden layer size 30
ANNA 0.966 0.964 0.966
Autoencoder + ANN 0.802 0.638 0.604
Decision Tree (DT) 0.852 0.772 0.766

Training set size: 5000, Testing set size: 3124
Hidden layer size 22 Precision Recall F1

ANNA 0.954 0.954 0.954
Autoencoder + ANN 0.84 0.76 0.75
Decision Tree (DT) 0.876 0.828 0.826
Hidden layer size 30
ANNA 0.97 0.97 0.97
Autoencoder + ANN 0.84 0.756 0.748
Decision Tree (DT) 0.886 0.844 0.844

The experiments on reduced datasets show that Autoen-
coder+ANN is less performing than ANNA and DT. ANNA
performs better than DT throughout all experiments, with im-
provements in F1 up to 20% and 12% with training set size
of 6000 and 5000 examples, respectively.

5 ANNA METHODOLOGY – PART II
In this section we describe how ANNA generates logic pro-
grams that capture reasoning with examples in S. These rules
allow to make exactly the same predictions for new examples
as the AA-CBR predictor. At the same time, these rules sum-
marise the structure of S and, by extension, that of L. In
particular, they concisely describe in logical terms what the
prediction should be and which features should influence it.
The rules are generic for S but when a prediction for a new
example is made its features are added as facts to the rules.

We give ANNA Rule extractor/predictor (Figure 2) below.

5.1 RULE EXTRACTOR
Unless stated otherwise, let (Args, ) = aaf (S, δ) be the
AAF returned by the AA-CBR miner (see Section 3.2). In-
formally, rule extraction works as follows.
• Take ({}, δ) ∈ Args and its attackers (if any).
− Create a rule stating that ({}, δ) is accepted unless any of

its attackers are accepted.
− For each attacker ({f1, . . . , fm}, δ) of ({}, δ), create a rule

stating that it is accepted if the features f1, . . . , fm hold,
unless any of its attackers are accepted.

− If there are no attackers, create a rule stating that the argu-
ment is accepted if all its features hold.

• Repeat for each attacker and its attackers in turn.
Formally, assume a naming function name that assigns a

unique name to every argument in Args: we write C : a to
indicate that C names argument a, and we name ({}, δ) by
def . Define the procedure extract(C, (Args, ),R), taking
the name C of an argument in Args and a rule setR, thus:



1. Given C : ({f1, . . . , fm}, o), let {C1, . . . , Ck} be the set
of the names of all the attackers of C in (Args, ).

2. Add the following rule toR, to obtainR′:
acc(C)← f1, . . . , fm, not acc(C1), . . . , not acc(Ck).

3. If {C1, . . . , Ck} = {} then returnR′.
4. For every Ci ∈ {C1, . . . , Ck}, compute
extract(Ci, (Args, ),R′), to obtainR′

1, . . . ,R′
k.

5. ReturnR′
1 ∪ . . . ∪R′

k.
The Rule extractor computes extract(def , (Args, ), {}),
whose output is a logic program, henceforth called P .

Example 5.1. Consider (Args, ) from Example 2.1, de-
picted as in Figure 1 but without the polygon and at-
tacks from it. Let def , Ca, Cb, Cc, Cd be the names of ar-
guments ({}, δ), ({a}, δ), ({b}, δ), ({a, c}, δ), ({b, d}, δ), re-
spectively. Then P consists of the following rules:

acc(def )← not acc(Ca), not acc(Cb).
acc(Ca)← a, not acc(Cc).
acc(Cc)← a, c. acc(Cb)← b.

These rules describe how acc(def ) can be proved. Note
that there is no rule for acceptance ofCd, becauseCd does not
attack any other argument. In particular, there is no (directed)
path from it to ({}, δ) in (Args, ). Hence, Cd is never
reached within extract(def , (Args, ), {}). This illustrates
that the feature d is not important in proving acc(def ).

Note that by construction P is stratified as (Args, ) has
no cycles and every not acc(C ′) in the body of rules with
head acc(C) refers to some child (attacker) C ′ of C.

5.2 RULE PREDICTOR
The generic rules forming P can be used to predict the out-
come of new exampleN=τ(M) by adding each feature from
N as a fact to give program(P, N) = P ∪ {f ← . : f ∈ N}.
Henceforth, PN denotes the logic program program(P, N).

Example 5.2. In Example 5.1, PN consists of rules:

acc(def )← not acc(Ca), not acc(Cb).
acc(Ca)← a, not acc(Cc).
acc(Cc)← a, c. acc(Cb)← b.
a← . d← .

Note: as P is stratified, PN is stratified. The Rule predic-
tor takes (N, ?) and PN in input, and predicts δ if acc(def )
is provable, and δ otherwise. With PN from Example 5.2,
model(PN ) = {a, d, acc(Ca)}, so acc(def ) 6∈ model(PN ),
i.e. acc(def ) is not provable, and the prediction is δ.

The Rule predictor and the AA-CBR predictor are equiva-
lent in the following sense:

Theorem 5.1. Let S, δ and N be given. Let (Args, ) =
aaf (S, δ), P = extract(def , (Args, ), {}), and PN =
program(P, N). Then the AA-CBR outcome of (N, ?) is δ
iff acc(def ) ∈ model(PN ).

Proof. First note that by construction PN can be stratified
while traversing (Args, ) from ({}, δ) to the leaves, by
putting the rule for acceptance of ({}, δ) on the top stratum,
and the rule for acceptance of any other argument on the stra-
tum lower by the length of the longest (directed) path from

that argument to ({}, δ). The facts fromN can then be put on
the lowest stratum.

Given such a partition, the iterated fixpoint construction ef-
fectively mimics the acceptance of ({}, δ) in the grounded ex-
tension of (ArgsN , N ) given by outcome((Args, ), N)
(see Module 2 in Section 2). First, for any rule acc(A) ←
. . . , p, . . . . with p 6∈ N , acc(A) is not provable. Accord-
ingly, A : (X, o) is attacked by (N, ?), so (X, o) 6∈ G. Then,
for any acc(C) ← p0, . . . , ps., acc(C) is provable. Accord-
ingly, acc(C) names a leaf in (ArgsN , N ) and so is in G.
Any argumentA attacked by C is thus not in G. Accordingly,
any rule with head acc(A) has in its body some not p with p
provable, so acc(A) is not provable.

This iteration over rules finishes with the rule acc(def )←
not acc(C1), . . . , not acc(Ck), whence acc(def ) is provable
only if none of acc(Ci) is. By the reasoning above, this
amounts to G defending ({}, δ). In particular, ({}, δ) ∈ G
iff acc(def ) ∈ model(PN ).

This result shows that in ANNA, both AA-CBR predictor
and Rule predictor can be equivalently used to make predic-
tions for new examples. Thus, the two predictors have the
same predictive performances (see Section 4).

6 ILLUSTRATING EXPLANATIONS
In this section we illustrate the explanatory power of ANNA
with the mushroom dataset used in Section 4.

6.1 LOGICAL EXPLANATIONS
In what follows, we use the logic program P obtained for S
from one of the datasets from one of the experiments (with
|L| = 5000) in Section 4. This S consists of 306 examples,
and P consists of 13 rules. The rule in P concerning the
acceptance of ({}, δ) is

acc(def )←not acc(131def ), . . . , not acc(34def ). (1)

with 7 elements in the body (of which we spell out 2).2 This
rule says that the outcome is δ—namely, a mushroom being
edible—unless at least one of the seven exceptions applies.
Let us look at one particular exception, induced by example
131. The rule concerning acceptance of 131 is

acc(131def )← f1, . . . , f10, not acc(2504
131 ). (2)

with 11 elements in the body, including one exception. This
rule says that given features f1, . . . , f10, example 131 is an
exception to the default outcome, but that it also admits an
exception—namely example 2504.

The exception to acc(131def ) is given by the rule

acc(2504131 )← gill− size broad. (3)

This rule says that an exception to example 131 is obtained
as soon as the feature gill− size broad is present. Note that
example 2504 has no exceptions.

Suppose that N = {f1, . . . , f10, gill− size broad} and that
only exception 131 to rule (1) applies in PN . Then rules (1),
(2), (3) and the facts obtained from N form the basis for a
logical explanation for why δ is predicted for N .

2Examples in S are named by integer numbers.



6.2 DIALECTICAL EXPLANATIONS
The prediction for the outcome of a given N in the con-
text of some S can be explained dialectically too, by us-
ing (Args, ) = aaf (S, δ) and (ArgsN , N ) given by
outcome((Args, ), N) (see Section 3). To this end, imag-
ine a debate between a proponent, P, seeking to establish that
a given mushroom is edible, and an opponent, O, seeking to
establish that it is poisonous. This debate can be visualised
via (ArgsN , N ), with arguments labelled as P and O. The
debate would unfold as follows.

Given some particular mushroom represented by (N, ?), P
moves argument ({}, δ), representing that by default a mush-
room is edible. Note that ({}, δ) has no features, i.e. does not
describe any mushroom in particular, but rather represents a
generic mushroom. So accepting ({}, δ) means that in the ab-
sence of any information about a given mushroom, it should
be edible. O then argues for the mushroom in question to be
poisonous by putting forward examples of poisonous mush-
rooms. To this end, the opponent puts forward arguments
with the non-default outcome δ. For instance, suppose that,
mirroring Section 6.1, O uses the argument named 131.
P then has to counter-argue O’s argument(s). P has two

ways to do that. i) Either the example put forward by O is
of a poisonous mushroom that has features different from N .
For instance, it may be that f10 6∈ N . If this happens, P argues
that the example is ‘irrelevant’, whence (N, ?) attacks argu-
ment 131. Generally, putting forward ‘irrelevant’ examples
is useless. ii) Otherwise, P can find a more specific example
of an edible mushroom that has all the features of the given
example and, in addition, some more features that are still
present in N . For instance, if gill− size broad ∈ N , then P
can use argument 2504, which attacks argument 131.

The process continues in this way whereby O puts forward
counter-examples and P tries to defend against those. If in
the end O has no arguments to put forward and all of O’s ar-
guments are attacked by P’s arguments, i.e. all leaves are la-
belled P, then P has established the default outcome, namely,
that the mushroom in question is edible. Otherwise, if there is
an applicable counter-example put forward by O that P can-
not argue against, the default outcome cannot be upheld, and
so the mushroom is deemed poisonous. For instance, sup-
pose in the above that (N, ?) attacks all the arguments attack-
ing ({}, δ) but does not attack the one named 131, and sup-
pose {f1, . . . , f10, gill− size broad} ⊆ N . Then P’s last ar-
gument 2504, which is a leaf and hence unattacked, together
with (N, ?) defends ({}, δ), and so P wins the debate and
establishes that the mushroom represented by N is edible.

7 RELATED WORK
Several works have integrated argumentation and machine
learning (see e.g. [Cocarascu and Toni, 2016]). Perhaps the
most relevant work to ours is that of [Amgoud and Serrurier,
2007] where argumentation and concept learning are used to
reason about classifications. Arguments are examples and hy-
potheses. Preferences (assumed to be given) over arguments
are employed to resolve conflicts stemming from an inconsis-
tent training set, using the grounded extension to capture the
version space model, while also supporting generation of ar-

gumentative explanations for classifications. In contrast, we
advance a novel model using only examples. Our training
sets are coherent (by construction) and the definition of at-
tack incorporates a form of preference over arguments. Also,
we provide dialectical and logical explanations, in terms of
arguments and rules, respectively.

[d’Avila Garcez et al., 2005] propose a Neural Argumen-
tation Algorithm that translates argumentation frameworks to
ANNs and affords semantic correspondence between the two.
[Makiguchi and Sawamura, 2007] further this research to pro-
vide symbolic dialogues from ANNs. These works are not
concerned with predictions or subsequent explanation of pre-
dictions. In [Thimm and Kersting, 2017] a proposal is formu-
lated to extract (possibly inconsistent) rules from a dataset us-
ing machine learning, and then to use those rules in structured
argumentation formalisms (see e.g. [Besnard et al., 2014]) to
classify new examples. We instead use ANNs to mine argu-
mentation frameworks for reasoning and rule extraction.

In [Kontschieder et al., 2016; Zhou and Feng, 2017;
Balestriero, 2017] decision trees and ANNs are combined to
give Neural Decision Trees. Such approaches can potentially
be interpretable as trees are easier to analyse than ANNs and
can cope with small datasets [Zhou and Feng, 2017]. By con-
trast, ANNA’s data models are logic-based rather than proba-
bilistic, and can be compactly represented via both (argumen-
tation) graphs and (logic programming) rules.

Several approaches to explanation in AI have been pro-
posed, e.g. see [Ribeiro et al., 2018]. Rather than explain-
ing existing methods, we have defined a novel method that is
explainable, in two alternative ways (logically and dialecti-
cally), and in such a way that it can explain both predictions
and underlying learnt model.

8 CONCLUSION AND FUTURE WORK
Our main contributions in this paper are as follows.
• Combining (a form of) Artificial Neural Networks (ANNs)

and (a form of) Argumentation for solving binary classifi-
cation problems, whereby ANNs perform feature selection
and Argumentation performs classification.

• The resulting methodology, ANNA, provides
argumentation-based predictions (classification) as
well as logical rules that give equivalent predictions.

• ANNA performs well in our experiments.
• ANNA’s predictions are explainable both dialectically and

logically, and the explanations form argumentation-based
and rule-based models of data.
In the future we plan to do (at least) the following: (i) fur-

ther experiment with ANNA, considering other datasets and
other forms of ANNs for feature selection or engineering;
(ii) relax the notion of coherent case bases to deal with
noise; (iii) incorporate probabilities over features; (iv) ex-
plore the application of logic programming transformation
(e.g. see [Proietti and Pettorossi, 1995]) to simplify rule-
based predictions; (v) compare our rule extraction to other
approaches that mine rules from data, such as Inductive Logic
Programming (e.g. see [Muggleton, 1991]); (vi) compare the
forms of explanation we generate with those of other meth-
ods, e.g. that of [Ribeiro et al., 2018].
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and R. Alonso. Eliminating redundancy and irrelevance
using a new MLP-based feature selection method. Pattern
Recognition, 39(2):313–315, 2006.

[Han et al., 2017] Kai Han, Chao Li, and Xin Shi. Autoen-
coder feature selector. CoRR, abs/1710.08310, 2017.

[Hinton and Salakhutdinov, 2006] Geoffrey Hinton and Rus-
lan Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504 – 507,
2006.

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[Kontschieder et al., 2016] Peter Kontschieder, Madalina
Fiterau, Antonio Criminisi, and Samuel Rota Bulò. Deep
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