
Making Human-Centred Machine
Intelligence Intelligible
Dr Simone Stumpf
Centre for Human-Computer Interaction Design
Simone.Stumpf.1@city.ac.uk
@DrSimoneStumpf

Dr Simone Stumpf

The problem with machine intelligence for people

■Black boxes

■Limited user feedback

■Poor mental models

■ Intelligibility

■Controllability

■User Experience

We transcribed participant utterances during each song and
applied the codes to these utterances (each code could be
applied, at most, once per song). Two researchers
independently coded a small portion of the transcripts and then

discussed areas of disagreement. Once the researchers agreed
on the coding of these transcripts, they independently coded
two complete transcripts (12% of the data)—their agreement,
as calculated by the Jaccard index (the intersection of all
applied codes over the union of all applied codes), was 83%.
Given this acceptable level of agreement, a single researcher
coded the remaining transcripts and post-study questionnaires. Participants’ mental model “scores” were the number of
correct minus the number of incorrect statements participants
made during the experiment and on the post-study
questionnaire, translated to a 0-to-10 (lowest-to-highest) scale.
Table II shows which types of verbalizations/responses were
correct vs. incorrect. Participants’ verbalizations during the
study and post-study questionnaire responses were weighted
equally.

V. RESULTS A. RQ-1 and RQ-2: Soundness, Completeness, and Types As Fig. 7 shows, HH participants achieved three of the top
four scores. In contrast, all but one of the participants in the
other treatments clustered around lower scores. This surprised
us because we had expected the HH treatment to overload
participants to the point where they would not attend to so
much complex information. Instead, we expected the MM
treatment to be a “sweet spot” in the trade-off between
informativeness and simplicity—but most of the MM
participants clustered around the lowest scores. Further, HH participants’ mental model scores were
consistently high across features and processes, as Fig. 8’s
results from the post-task questionnaire show. In fact, HH
participants were the only ones to correctly describe the song
selection process (third column of Fig. 8, coded as per Table
II), and only one HH participant made any incorrect post-task
observations at all (right half of Fig. 8). (Note from Table II
that participants in any of the treatments could potentially get
credit for process descriptions that had correct process
concepts, e.g., using combinations of features.) 1) Completeness and Intelligibility Types Two of the intelligibility types, why and input, relate to

features, and participants tended to do better at understanding
features than process (Fig. 8). However, a closer look at which

Fig. 3. Excerpts from the Why this Song explanation (why intelligibility type).
(Top left): The high-soundness sheet showed a random sample of decision
trees from the bagging ensemble. (Top right): Each tree was represented as a set of ordered features with allowed
ranges of values. The medium soundness sheet was similar, but only showed
one derived decision tree that approximated the bagging ensemble’s reasoning.
(Bottom right): The low soundness sheet was also similar, but only showed
one derived decision stump (single-featured tree). (Bottom left): For the HH, LSHC, and MM treatments, this sheet also included
the certainty intelligibility type.

Fig. 4. Excerpt from Why this Artist (why intelligibility type), which showed
the artists selected by their user neighborhood. All participants received this
explanation, but with different neighborhood sizes (see Table I).

Fig. 5. Excerpt from What the Computer Knows (input intelligibility type),
which showed a comprehensive list of features that the recommender used. All
participants received this explanation.

Fig. 6. Excerpt from How it All Works Together (model intelligibility type),
which showed how the participants’ artists list was used to make song
recommendations. (Positive and negative training sets were color-coded
throughout the flow-chart.) Only HH and LSHC participants received this
explanation.

Breed by Nirvana

Why this song?
The computer looked at what the green songs tend to have in common, and what makes them

different from the red songs. It did this 100 times, each time randomly picking songs from the red and green groups .
In 93 of the 100 times, it predicted that you’ll like this song . Here are four of the predictions; for

each one, the computer thinks that you’ll like songs with all of these characteristics:
Prediction #1

Prediction #2

Danceability

Danceability

Key and mode

 Key and mode

Loudness

 Loudness

Beat grouping

 Beat grouping Not used for this prediction
Duration

 Duration Not used for this prediction
Energy

 Energy Not used for this prediction
Tempo

 Tempo Not used for this prediction
 Prediction #3

Prediction #4

Danceability

Danceability

Beat grouping

 Key and mode

Key and mode

 Loudness

Loudness Not used for this prediction Beat grouping Not used for this prediction

Duration Not used for this prediction Duration Not used for this prediction

Energy Not used for this prediction
Energy Not used for this prediction

Tempo Not used for this prediction
Tempo Not used for this prediction

Certainty

The computer is 93% confident you’ll like this song:

0%
100%27%

0%
100%27%

-50 dB
10 dB-14 dB -50 dB

10 dB-14 dB

0:00
20:002:57

0%
100%

89%
60 bpm

240 bpm159 bpm

0%
100%27%

0%
100%27%

-50 dB
10 dB-14 dB

93%

7%

Like
Dislike

Songs that similar people listened to

Legend

Songs that dissimilar people listened to

Breed by Nirvana

Why this song?
The computer looked at what the green songs tend to have in common, and what makes them

different from the red songs.
It did this 100 times, each time randomly picking songs from the red and green groups .
In 93 of the 100 times, it predicted that you’ll like this song . Here are four of the predictions; for

each one, the computer thinks that you’ll like songs with all of these characteristics: Prediction #1

Prediction #2 Danceability

Danceability

Key and mode

 Key and mode

Loudness

 Loudness

Beat grouping

 Beat grouping Not used for this prediction Duration

 Duration Not used for this prediction Energy

 Energy Not used for this prediction Tempo

 Tempo Not used for this prediction Prediction #3 Prediction #4 Danceability

Danceability

Beat grouping
 Key and mode

Key and mode

 Loudness

Loudness Not used for this prediction Beat grouping Not used for this prediction
Duration Not used for this prediction Duration Not used for this prediction

Energy Not used for this prediction Energy Not used for this prediction
Tempo Not used for this prediction Tempo Not used for this prediction Certainty

The computer is 93% confident you’ll like this song:

0%
100%27%

0%
100%27%

-50 dB
10 dB-14 dB -50 dB

10 dB-14 dB

0:00
20:002:57

0%
100%

89%
60 bpm

240 bpm159 bpm

0%
100%27%

0%
100%27%

-50 dB
10 dB-14 dB

93%

7%

Like
Dislike

Songs that similar people listened to

Legend

Songs that dissimilar people listened to

Breed by Nirvana

Why this song?
The computer looked at what the green songs tend to have in common, and what makes them

different from the red songs.
It did this 100 times, each time randomly picking songs from the red and green groups .
In 93 of the 100 times, it predicted that you’ll like this song . Here are four of the predictions; for

each one, the computer thinks that you’ll like songs with all of these characteristics: Prediction #1

Prediction #2 Danceability

Danceability

Key and mode

 Key and mode

Loudness

 Loudness

Beat grouping

 Beat grouping Not used for this prediction Duration

 Duration Not used for this prediction Energy

 Energy Not used for this prediction Tempo

 Tempo Not used for this prediction Prediction #3 Prediction #4 Danceability

Danceability

Beat grouping
 Key and mode

Key and mode

 Loudness

Loudness Not used for this prediction Beat grouping Not used for this prediction
Duration Not used for this prediction Duration Not used for this prediction

Energy Not used for this prediction Energy Not used for this prediction
Tempo Not used for this prediction Tempo Not used for this prediction Certainty

The computer is 93% confident you’ll like this song:

0%
100%27%

0%
100%27%

-50 dB
10 dB-14 dB -50 dB

10 dB-14 dB

0:00
20:002:57

0%
100%

89%
60 bpm

240 bpm159 bpm

0%
100%27%

0%
100%27%

-50 dB
10 dB-14 dB

93%

7%

Like
Dislike

Songs that similar people listened to

Legend

Songs that dissimilar people listened to

In Your Light by Gotye

Why this song?
The computer looked at what the green songs tend to have in common, and what makes them

different from the red songs. It thinks that you’ll like songs with all of these characteristics:
Danceability

 Duration Not used for this prediction Energy Not used for this prediction Key and mode Not used for this prediction Loudness Not used for this prediction Tempo Not used for this prediction Beat grouping Not used for this prediction Certainty

The computer is 54% confident you’ll like this song:

0%
100%27%

54%

46%

Like
Dislike

Songs that similar people listened to

Legend

Songs that dissimilar people listened to

How it all works together

Your list of musicians

Get the 25 most popular songs by each of these
artists

Use these relationships to predict whether each new song is like the green
songs (good) or the red songs (bad)

Have the computer look for relationships between a song's
details and and whether it's in the green group or red group.

Get details about all 500 songs

Find 15 people who listen to your list of musicians(Sorted by how many musicians you both like)

Get each person's 100 most-played songs in the past
year

Get the 20 other artists these people most often listen to

200,000 Last.fm listeners

Find 15 people who don't listen to any of the musicians you listed

Get each person's 100 most-played songs in the past
year

Get details about all 1,500 songs

Get details about all 1,500 songs

Songs that similar people listened to

Legend

Songs that dissimilar people listened to

TABLE I. THE “WHY (SONG)” INTELLIGIBILITY TYPE WAS AVAILABLE IN
ALL TREATMENTS, BUT ITS SOUNDNESS VARIED. THE OTHER

INTELLIGIBILITY TYPES WERE USED TO VARY COMPLETENESS. Treatment HH MM HSLC LSHC Relative Soundness High Medium High Low Relative Completeness High Medium Low High

In
te

lli
gi

bi
lit

y
ty

pe
s

Why (song) Bagged
decision

tree

Decision
tree

Bagged
decision

tree

Decision
stump

Why (artist) Nearest
neighbor
(k=15)

Nearest
neighbor
(k=10)

Nearest
neighbor

(k=5)

Nearest
neighbor
(k=15) Certainty Yes Yes No Yes Model Yes No No Yes Input Yes Yes Yes Yes

likely messages containing this word will be classified to

this folder. Providing the necessary dynamic content to

these textual and visual explanations required support from

the underlying machine learning algorithm. Details on the

machine learning algorithm and how it was used to provide

dynamic answers will be discussed in later sections.
Design Principles for End-User Debugging

In general, debugging involves inspecting concrete data

about program execution. For example, debuggers provide

access to variables' values and the stack. Therefore, one

principle that guided the design of our prototype was that

users should be able to "debug" by directly interacting with

the words in actual e-mail messages. Taking this philosophy a step further, we developed an

approach in which the answers to the debugging questions

(Table 1) also serve as the source code itself. Specifically,

the visualizations (Table 2) are actually representations of

the learned program's code, because they are the only

representation of the program logic available for human

reading. Because of these dual purposes of the Why

answers, our policy was to make these answers be faithful

representations of the system logic. For this reason, we

discarded variants of the visualizations that omitted details.

Consistent with the notion that these visualizations are the

source code, and that what the user is trying to do is fix the

code, it follows that the user must be able to manipulate the

visualizations. These manipulations are the method users

have to fix machine-learned bugs—they allow the user to

directly change the logic the learned program will follow.

Machine Learning Design Considerations

For the purposes of investigating our basic approach and

barriers, we decided to begin with an algorithm widely used

in our study's setting. We chose naïve Bayes [22] because,

first, it is a commonly used algorithm for spam filtering.

Second, naïve Bayes is structured such that rich user

feedback can be integrated in a straightforward manner.

Third, we can readily generate rule-based explanations

from the naïve Bayes classifier, and our previous work [23]

has shown that rule-based explanations are the most easily

understood types of explanations. (Our bar graph

visualization can be considered either a rule-based or a

keyword-based explanation, since the rules are defined

using keyword presence and absence.) Fourth, when the

user modifies the weight on a keyword, naïve Bayes will

set the new value to be almost exactly the value specified

by the user.
Techniques like user co-training [24], in contrast, assign a

new value, which could potentially be quite different from

the user-assigned value. User co-training assigns a value

that is a combination of the user-assigned value and the

classifier's internal weight. In pilot runs with user co-

training, we observed that this behavior can be frustrating

to users because it makes the algorithm appear to disobey

the user's change.
In our visualization, naïve Bayes does in fact make a slight

modification to the user-assigned weight. We treat the user-

specified folder assignment for the current email as a new

training data point for the classifier. Thus, in addition to the

user-assigned weights, the classifier (and hence the

visualization) is also changed by the new data point formed

from the current email and the user-specified folder

assignment. This alteration makes the classifier more

sensitive to user feedback in the interactive setting.
How Debugging Works Figure 1 gives a bird's eye view of the prototype we built

following these principles. It consists of the usual email

client elements: a folder list (top left pane), a list of headers

in the current folder (top center pane), and the current

message (right pane). The two bottom panes contain the

textual answers (left) and interactive visualizations for

debugging (center). If at some point the user wants to know why the program is

behaving in a certain way, she can ask any of the Why

questions through either the menu bar, or context-sensitive

menus by right-clicking on the object (such as a particular

word) she has questions about. For example, in Figure 1,

the user has just asked why this message is not filed in

Systems. The keyword bar graph shows the system's

Why does
<word> matter to <folder>?

Why will this message be filed to <folder>?

Why won't this message be filed to <folder>?

Table 2: Visual explanations for three Why questions.

Figure 1: (Top left): Thumbnail of the prototype. (Top right):

Blow-up of the visualization/debugging features. The user

has just decreased the importance of "please" to Systems

by dragging the blue (light) bar downward. (Bottom): But

the system still thinks the message belongs in Resumes.

that supports sequential information. If the user

changes a code, the change becomes additional training

data and the learned program updates its predictions.

For this coding and reasoning context, we devised

facilities to support Explanatory Debugging. These

facilities, described next, allow (but do not require) a

two-way exchange about why the program or user has

made a coding decision.

Two debugging strategies used by professional

programmers are inspecting code and evaluating

program runtime data (testing); recent research shows

that end users also heavily employ both [21]. To enable

each strategy, our approach supports two-way

exchanges about both “source code” and runtime

outputs. Learned programs have no obvious source

code for end users to look at, but there are learned

“rules” that represent the logic the program follows.

Prior research [6, 20] has shown that users want to

understand this logic. Our approach supports

exchanging explanations about such “source code”

(program logic), and exchanging explanations about

runtime data (program outputs).

4.1. Explanations about logic

Participants in Study #1 expressed fixes in a variety

of forms, including single words, word combinations,

punctuation, segments, and relationships.

To explain the logic behind a user’s code

assignment, the user can highlight single and

consecutive words, plus punctuation (Figure 4 W4).

These explanations can be complex, introducing

features the learned program did not use before.

Combinations of non-consecutive words in either the

same or adjacent segments are allowed, modeling

relationships between words and segments, e.g., “‘?’ in

the preceding segment followed by ‘OK’ in this

segment often means this segment is ‘Info Gained’”.

System-generated explanations of AutoCoder’s

logic are similar to the explanations in Study #1, which

were inspired by the “Why” explanations in [12]. Why-

oriented explanations have shown success in other

studies about learned programs [14], and they

improved the complexity of participant mental models

in Study #1. Because Study #1 showed that

participants had problems with the probabilistic nature

of learned programs, we worded explanations to make

clear that the logic is open to uncertainty.

AutoCoder shows the most influential features

(Figure 4 W1) that governed each prediction,

expandable to a full list ordered by influence. A

computer icon identifies the explanation as being

generated by the machine (W1), and a user icon

identifies logic corrections the user entered (W4). User

explanations are incorporated into the machine

learning system as new features with high weight for

predicting the user-specified code. The user can delete

any logic that seems wrong.

Because Study #1 showed that participants did not

realize that absence of features mattered to the

program, the machine’s explanations cover absent

features (Figure 4 W2), e.g. “The absence of ‘?’ often

means that a segment is ‘Info Gained’”. Expressing

how absent features affect the machine’s predictions to

users has previously had mixed success [12, 19].

One logic rule may be relevant to many segments,

so AutoCoder shows counts (Figure 4 W5) of how

many segments each rule potentially affects (i.e., how

many segments contain this suggestion’s features).

This impact is also displayed graphically: when a user

selects a logic rule, AutoCoder responds by

highlighting segments affected by it.

4.2. Explanations about runtime outputs

Professional programmers use testing and

debugging steppers to see the effects of their logic

changes on program outputs. AutoCoder also shows

runtime effects on logic changes users make.

As soon as new data or rules are entered, the

classifier outputs new predictions. To help users

understand the runtime effects of their last action,

Figure 3: The basic AutoCoder prototype showing a

series of segments (A), their corresponding codes (B),

and an overview of the transcript!s codes (C).

Figure 4: Widgets supporting debugging: Machine-

generated Explanation (W1); Absence Explanation (W2);

Prediction Confidence (W3); User-generated Suggestion

(W4); Impact Count (W5); Change History Markers (W6);

Popularity Bar (W7).

 Each study session lasted approximately 1.5 hours. Before

they were asked to consider the vignettes, participants were

familiarized with the CDSS prototype and were told that the

suggestions made by the prototype might not always be

correct. Regarding how the system determined a diagnosis, the

participants were told only that it has a database; no further

detail was provided. They then rated their trust of the system,

before using the system for the first time. The main part of the

study consisted of a participant considering each of the eight

vignettes in turn, entering the information provided into the

prototype and then considering the suggested diagnoses, either

accepting the diagnosis as correct or rejecting it as incorrect.

Hence, the task performed by participants in our study is akin

to CDSS use in a real-world application during a typical

consultation workflow (Fig. 4). As they worked through the

vignettes using the prototype, we asked them to "think aloud"

to verbalize their thoughts and reasoning. At the end of the

study, participants were asked to rate their trust toward the

prototype post-use and they were interviewed about the

explanations' impact on their experience.

E. Data Collection and Analysis

We used the difference between the trust ratings

participants provided pre- and post-use, rated on a 7-point

Likert scale ranging from 'distrust completely' (a rating of 1) to

'trust completely' (a rating of 7), to measure the impact of the

explanations on their assessment of the reliability of the tool.

We also investigated the effects of the explanations on

system reliance through their verbal responses by noting how

often participants agreed with a diagnosis made by the system,

how often they made the 'right' decision (i.e. they agreed with

the correct diagnosis or rejected the wrong diagnosis) and how

often participants made the 'wrong' decision (i.e. they agreed

with the wrong diagnosis or disagreed with a right diagnosis).

All sessions were video recorded, screen captured and

Fig. 2. Example interface of the CDSS prototype used in the study. Participants were able to enter medical history, symptoms and the results of clinical

examinations to be shown a diagnosis.

Fig. 3. The two versions of the prototype. The Comprehensive version (left) showed all information associated with a diagnosis while the Selective version

(right) showed a less detailed explanation.

3

used email clients such as Mozilla Thunderbird. It also pro-

vided explanations of the classifier’s reasoning about what

emails belonged in what folders (using the "keyword-

based" explanations technique of [27]), and provided ways

users could give feedback to the classifier to improve its

predictions.
To explain its reasoning, as shown in Figure 1, the feedback

panel (bottom left) displayed the top ten keywords for the

selected email to explain why it had been classified in the

predicted folder. These keywords were also highlighted in

the email message displayed in the preview pane (large

pane at the bottom), The feedback panel was the main way through which the

user could give feedback. It allowed participants to select

words in an email that should be treated as keywords, to

make previously selected keywords be ignored, and to ad-

just the weights of each keyword. The keywords displayed

were the ones that had been learned for each folder. Initially

the folder, displayed in the dropdown menu at the top of the

panel, was chosen for the current email message by the

classifier. If the participant saw the folder choice as incor-

rect, s/he could choose a different folder, which then

switched its keyword list and highlighting to those key-

words important to the new folder.

In E-mazing, some keywords can be given more influence

than others. For example, the keyword "resume" might be

weighted heavily for the Resumes folder. The weights

ranged from very low, low, medium, high, to very high. Par-

ticipants could tell the classifier to change the weight by

adjusting the vote slider. This slider told the classifier to

increase the weight of the keyword by the amount indi-

cated, which ranged from "Do Not Change" to "Increase a

lot!!". Once a participant was satisfied, they pressed "Ap-

ply" and the feedback was given to the classifier. An Undo

button at the bottom of the feedback panel allowed partici-

pants to undo their previous action.
Besides the above communications about keywords, partic-

ipants could also communicate about folders. When the

folder displayed in the folder column of the inbox was cor-

rect and the user did not wish to do any further manipula-

tions, s/he could "file it" (by pressing the File It button).

This moved the email to the predicted folder (or, the partic-

ipant could select a different folder from the dropdown

menu in the feedback panel).
Once changes were applied, the program updated the pre-

dicted folders of the emails in the inbox. Emails for which

the classifier changed the predicted folder after user feed-

back were highlighted in red in the email list.

Figure 1. A partial screenshot of the E-mazing email program.

(a) Husky classified as wolf
(b) Explan

ation

Figure 11: Raw data and explanat
ion of a bad

model’s predictio
n in the “Husky vs Wolf” task.

Before
After

Trusted the bad model
10 out of 27

3 out of 27

Snow as a potential f
eature 12 out of 27

25 out of 27

Table 2: “Husky vs Wolf” experiment results.

to work well in the real world
, (2) why, and (3) how do

they think the algorithm
is able to distinguish

between these

photos of w
olves and huskies. A

fter getting
these responses,

we show the same images with
the associated

explanatio
ns,

such as in Figure 11b, and ask the same questions.

Since this task requires so
me familiarity with the notion of

spurious co
rrelations

and generalizat
ion, the set of subj

ects

for this exp
eriment were gr

aduate stu
dents who

have taken
at

least one graduate machine learning course. After gather
ing

the responses,
we had 3 independe

nt evaluat
ors read their

reasoning
and determine if each subject mentioned snow,

backgroun
d, or equivalent

as a feature the model may be

using. We pick the majority to decide whether th
e subject

was correct about the insight, and report these numbers

before and after show
ing the explanatio

ns in Table 2.

Before observing
the explanatio

ns, more than a third

trusted the classifier, a
nd a little less than half mentioned

the snow pattern as something the neural netw
ork was using

– although all specula
ted on other patte

rns. After examining

the explanatio
ns, howeve

r, almost all of t
he subjects id

enti-

fied the correct insi
ght, with much more certainty that it was

a determining factor. Fur
ther, the trust in the classifier a

lso

dropped substantia
lly. Although our sample size is small,

this experi
ment demonstrates t

he utility of explaini
ng indi-

vidual pred
ictions for

getting insights int
o classifiers k

nowing

when not to trust them
and why.

7. RELATED WORK

The problems with relying on validation
set accura

cy as

the primary measure of trust ha
ve been well studie

d. Practi-

tioners con
sistently overestimate their model’s accu

racy [21],

propagate
feedback loops [23],

or fail to notice data
leaks [14].

In order to address th
ese issues, rese

archers ha
ve proposed

tools like Gestalt [20]
and Modeltracker

[1], which help users

navigate individual
instances.

These tools are complemen-

tary to LIME in terms of explai
ning models, sinc

e they do

not addres
s the problem of explaini

ng individual
predictions

.

Further, ou
r submodular pick

procedure
can be incorporat

ed

in such tools to aid users in navigating
larger data

sets.

Some recent wor
k aims to anticipate

failures in
machine

learning, s
pecifically

for vision tasks [3, 29]. Letting users

know when the systems are likely to fail can lead to an

increase in trust, by avoiding “silly mistakes” [8]. These

solutions e
ither requi

re additional
annotation

s and feature

engineering
that is spe

cific to vision tasks or do
not provid

e

insight int
o why a decision should not be trusted. F

urther-

more, they assume that the current ev
aluation metrics are

reliable, wh
ich may not be the case if problems such as data

leakage are present. Other recent work [11] focuse
s on ex-

posing users to di↵erent kinds of mistakes (our pick step).

Interesting
ly, the subjects in

their study
did not notice

the

serious pro
blems in the 20 newsgroup

s data even after look-

ing at many mistakes, su
ggesting that exam

ining raw data

is not su�
cient. Note that (auth

or?) [11] are not alone in

this regard
, many researcher

s in the field have unwittingl
y

published
classifiers

that would
not genera

lize for this tas
k.

Using LIME, we show that even non-expert
s are able to

identify these irregularit
ies when explanatio

ns are present.

Further, L
IME can complement these existing systems, and

allow users to assess trust even when a prediction
seems

“correct” b
ut is made for the wrong reasons.

Recognizing
the utility of explana

tions in assessing trust,

many have proposed using interpretab
le models [27], espe-

cially for the medical dom
ain [6, 17, 26].

While such models

may be appropriat
e for some domains, they

may not apply

equally well to others (e.g
. a superspars

e linear model [26]

with 5� 10 features is
unsuitable

for text ap
plications)

. In-

terpretabil
ity, in these cases, com

es at the cost of flex
ibility,

accuracy,
or e�ciency. For text, Eluc

iDebug [16] is a full

human-in-the-l
oop system that shares many of our goals

(interpreta
bility, faith

fulness, et
c). However, th

ey focus on

an already interpretab
le model (Naive Bayes). In

computer

vision, systems that rely on object detection
to produce

candidate
alignments [13] o

r attention
[28] are able to pro-

duce explanatio
ns for thei

r predictio
ns. These

are, howev
er,

constraine
d to specific neural netw

ork architectur
es or inca-

pable of detectin
g “non object” par

ts of the images. Here we

focus on general, m
odel-agnos

tic explanatio
ns that can be

applied to any classifier o
r regressor

that is app
ropriate for

the domain - even ones that a
re yet to be proposed.

A common approach to model-agnos
tic explana

tion is learn-

ing a potentially
interpretab

le model on the prediction
s of

the original m
odel [2, 7,

22]. Having the explanatio
n be a

gradient vector [2] capture
s a similar locality intuition to

that of LIM
E. However, int

erpreting the coe�cients on the

gradient is di�cult, parti
cularly for confident

prediction
s

(where gradient is
near zero).

Further, th
ese explanation

s ap-

proximate the original model global
l

y

, thus maintaining
local

fidelity becomes a significant
challenge,

as our exp
eriments

demonstrate. I
n contrast, L

IME solves the
much more feasi-

ble task of finding
a model that a

pproximates the original

model locally
. The idea of perturbi

ng inputs for e
xplanation

s

has been explored before [24], where
the authors focus on

learning a specific c

o

n

t

r

i

b

u

t

i

o

n

model, as opposed to our

general fra
mework. None of these approaches

explicitly take

cognitive limitations into account, a
nd thus may produce

non-interp
retable explanatio

ns, such as a gradients o
r linear

models with thousands
of non-zer

o weights. The problem

becomes worse if the original fe
atures are nonsensica

l to

humans (e.g. word embeddings).
In contrast, L

IME incor-

porates int
erpretabili

ty both in the optimization and in our

notion of interpre
t

a

b

l

e

r

e

p

r

e

s

e

n

t

a

t

i

o

n

, such that domain and

task specific interpretab
ility criteria can be accommodated.

1143

Explanations for intelligibility

Current frameworks for creating explanations

Aspect Interpretability Explanatory Debugging
Main papers Doshi-Velez and Been Kim 2017

Brian Y. Lim and Anind K. Dey 2011

Todd Kulesza, Margaret Burnett,
Weng-Keen Wong, and Simone

Stumpf 2015
Context of Use Incompleteness of AI system in

optimization or evaluation
Interactive machine learning,

personalization
Main Goals Interpretability, users’

understanding
Correct system “bugs”

Secondary Goals Fairness, reliability, trust Users’ understanding, satisfaction

Explanation design – What to
include

Explanations types, such as What,
Certainty, Why, Why Not and Inputs

Interactive explanations including
features, predictions, and model

(e.g. weights, prediction
confidence, class balance)

Explanation design – How to
present

Communicate in “human-
understandable” terms

Presented iteratively, as sound and
complete as possible while not

overwhelming the user

FAT
now!

Improved interactive
machine learning

through better
intelligibility

FAT =
Fairness

Accountability

Transparency

Explanatory debugging
[eg. Stumpf et al. IJHCS 2009, Kulesza et

al. CHI 2012, Das et al. AI 2013, Kulesza et
al. IUI 2015]

Explanation

Feedback

Future
improved
behaviour

Improved mental model,
satisfaction

Be
iterative

Be
sound

Don’t
over-

whelm

Be
complete

Intelligibility
principles

Be
reversible

Be
action-

able

Honour
feedback

Be
incre-
mental

Controllability
principles

What we know so far…

■ Integrating user feedback:

■No improvements in accuracy for all users

■More accurate system accuracy (85% vs 77%)

■With less effort (47 messages vs 182 messages)

■Explanations:

■Rule-based ≥ Keyword-based (but beware of negative weights!)

■Very individual preferences

■Better understanding (15.8 MM score vs 10.4) → better system

■No difference in workload

Transparency Design Process
[Eiband et al. IUI 2018]

Expert
Mental Model

User
Mental Model

Target
Mental Model

Iterative
Prototyping Evaluation

What happens to
the best of our
knowledge?

What can be
explained?

What does an
expert mental
model of the
system look like?

How do users
currently make
sense of the
system?

What is the user
mental model of the
system based on its
current UI?

How does it differ
from the expert
mental model?

WHAT to explain? HOW to explain??

Which key
components of the
algorithm do users
want to be made
transparent in
the UI?

To what extent are
users actually
interested in the
rationale behind the
algorithm?

How can the target
mental model be
reached through UI
design?

How and where can
transparency be
integrated into the
UI of the system?

How has the user
mental model
developed?

Has the target
mental model been
reached?

Employees &
Transparency Team

Users &
Transparency Team

Users &
Transparency Team

Employees &
Transparency Team

Users &
Transparency Team

− Workshops
− Interviews

− Online surveys [28]
− Hypothetical

scenarios [25]
− Semi-structured

interviews
− Data collection in

problem-solving
tasks [32]

− Drawing tasks
[8, 18]

− In-depth interviews
− Focus groups
− Hypothetical

scenarios [25]
− Card sorting [47]

− Focus groups,
workshops and
brainstorming
sessions

− Design guidelines
/best practices

− Low and high
fidelity prototyping

− Interviews [7]
− Data collection in

problem-solving
tasks [32]

− Hypothetical
scenarios [22]

− Think-Aloud [31]
− Questionnaire [21]

Figure 1. Our stage-based participatory design process for the integration of transparency in intelligent systems. The first three stages focus on what to

explain in the system (content of an explanation) the last two on how to explain (presentation format). The stages are each guided by central underlying
questions and involve different stakeholders. We also suggest exemplary methods for each stage that are either established in participatory design or
have been used in prior work on eliciting and improving mental models.

Each stage may involve several stakeholders: members of
the team responsible for the integration of transparency, other
members of the company, and different user groups. We will
distinguish between these stakeholders as transparency team,
employees and users in the remainder of this section.

We will furthermore refer to central aspects of the algorithm,
be it input items, output items, the relation between those
items, or calculation steps, as key components of the algorithm.

Complementary material as to the application of the process
in the Freeletics project can be found under the following link:
medien.ifi.lmu.de/team/malin.eiband/transparencydesign.

What to Explain: (A) Expert Mental Model
The first stage serves two purposes: (1) The transparency team
acquires knowledge about the system logic through communi-
cation and exchange with employees. (2) From this knowledge,
the transparency team extracts the key components used in the
calculation of the algorithm to build what we call an expert
mental model, a hypothetical version of a user mental model
that includes all key components. This is likely to require a

certain level of abstraction from the system logic, and may
take into account intellectual property protection.

Guiding Questions
What happens to the best of our knowledge? What can be
explained? What does an expert mental model of the system
look like?

Why is this Important?
The expert mental model serves as a reference for eliciting
users’ mental models in the next stages.

Outcome
The outcome of this stage should be twofold: (1) A shared
understanding of the data collection and processing methods
in place among all members of the transparency team, as well
as a common language when talking about the algorithms. (2)
An expert mental model that specifies all key components used
by the algorithm, as far as possible.

Exemplary Methods
– Workshops with employees (approach taken)
– Interviews with employees

Session 3A: XAI: Explainable IUIs IUI 2018, March 7–11, 2018, Tokyo, Japan

215

makes heat

controls heat

Smart heating

Interpretability Explanatory Debugging

Persuasive Engagement
[eg. Stumpf IUI ExSS2019]

Aspect Persuasive Engagement
Context of Use Everyday low-risk systems, constrained

engagement situations
Main Goals User trust and satisfaction

Secondary Goals Understanding
Explanation design
– What to include

Inputs, Inference step, Decision/Behavior

Explanation design
– How to present

Concise, lightweight, drill-down on demand

How to construct explanations within PE

Argument structure Persuasive engagement
Data/Facts Inputs

Inference step Persuasive reason for
making the decision

Qualified Conclusion Decision/Behavior
On ‘Why’: Show Warrants,

Backing, Rebuttals
On request: show input

values
Natural language Present in easily

understandable form

How to construct an explanation

Data Qualifier, Conclusion

Warrants

Backing

Rebuttals

Inference Step
Inputs Decision/

Behaviour

Show input
values

Persuasive
Reason

An example smart heating explanation

■ 7 unexpected decision points
■Provide persuasive reason for making

decision (A)
■Show inputs (B)
■Values on request
■ Text first, graphs later

A

B

A

Conclusions … and yet more questions

■ Intelligibility
■How to make a system intelligible in different contexts and for

different purposes?
■How to extend and validate Persuasive Engagement framework?
■How does a system become intelligible as the user interacts?

■Controllability
■How can we empower the user to take control back over their

data and over what the system does?

■User Experience
■Complex relationship between understanding, trust, satisfaction,

system performance, explanations, …

References
■ S. Stumpf, “Horses For Courses: Making The Case For Persuasive Engagement In Smart Systems,” in IUI Workshops’19,

March 20, 2019, Los Angeles, USA, 2019.
■ T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf, “Principles of Explanatory Debugging to Personalize Interactive

Machine Learning,” in Proceedings of the 20th International Conference on Intelligent User Interfaces, New York, NY,
USA, 2015, pp. 126–137.

■ T. Kulesza, S. Stumpf, M. Burnett, and I. Kwan, “Tell me more?: the effects of mental model soundness on personalizing
an intelligent agent,” in Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, New
York, NY, USA, 2012, pp. 1–10.

■ S. Stumpf et al., “Interacting meaningfully with machine learning systems: Three experiments,” Int. J. Hum.-Comput. Stud.,
vol. 67, no. 8, pp. 639–662, 2009.

■ Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint
arXiv:1702.08608.

■ Brian Y. Lim and Anind K. Dey. 2011. Investigating Intelligibility for Uncertain Context-aware Applications. In Proceedings
of the 13th International Conference on Ubiquitous Computing (UbiComp ’11), 415–424.

■ Shubhomoy Das, Travis Moore, Weng-Keen Wong, Simone Stumpf, Ian Oberst, Kevin McIntosh, and Margaret Burnett.
2013. End-user feature labeling: Supervised and semi-supervised approaches based on locally-weighted logistic
regression. Artificial Intelligence 204: 56–74.

■ Malin Eiband, Hanna Schneider, Mark Bilandzic, Julian Fazekas-Con, Mareike Haug, and Heinrich Hussmann. 2018.
Bringing Transparency Design into Practice. In 23rd International Conference on Intelligent User Interfaces (IUI ’18), 211–
223. https://doi.org/10.1145/3172944.3172961

