Academic excellence for business and the professions

Making Human-Centred Machine Intelligence Intelligible

Dr Simone Stumpf Centre for Human-Computer Interaction Design Simone.Stumpf.1@city.ac.uk @DrSimoneStumpf

Dr Simone Stumpf

Cognitive science HCI design and evaluation methods HCI theory, concepts and models

Human computer interaction Human-

centered computing Interaction design Machine learning Organizing, principles for web applications Peer-to-peer retrieval Spreadsheets Systems analysis and design Touch screens Web spapications Web searching and information discovery. Web services

The problem with machine intelligence for people

Black boxes

Intelligibility

Limited user feedback Controllability

Poor mental models
User Experience

Explanations for intelligibility

Current frameworks for creating explanations

Aspect	Interpretability	Explanatory Debugging
Main papers	Doshi-Velez and Been Kim 2017	Todd Kulesza, Margaret Burnett,
	Brian Y. Lim and Anind K. Dey 2011	Weng-Keen Wong, and Simone Stumpf 2015
Context of Use	Incompleteness of AI system in optimization or evaluation	Interactive machine learning, personalization
Main Goals	Interpretability, users' understanding	Correct system "bugs"
Secondary Goals	Fairness, reliability, trust	Users' understanding, satisfaction
Explanation design – What to include	Explanations types, such as What, Certainty, Why, Why Not and Inputs	Interactive explanations including features, predictions, and model (e.g. weights, prediction confidence, class balance)
Explanation design – How to present	Communicate in "human- understandable" terms	Presented iteratively, as sound and complete as possible while not overwhelming the user

Improved interactive machine learning through better intelligibility

Explanatory debugging

[eg. Stumpf et al. IJHCS 2009, Kulesza et al. CHI 2012, Das et al. Al 2013, Kulesza et al. IUI 2015]

What we know so far...

Integrating user feedback:

- No improvements in accuracy for all users
- More accurate system accuracy (85% vs 77%)
- With less effort (47 messages vs 182 messages)

Explanations:

- Rule-based \geq Keyword-based (but beware of negative weights!)
- Very individual preferences
- •Better understanding (15.8 MM score vs 10.4) \rightarrow better system
- No difference in workload

Transparency Design Process

[Eiband et al. IUI 2018]

Smart heating

Persuasive Engagement

[eg. Stumpf IUI ExSS2019]

Interpretability

Explanatory Debugging

Aspect	Persuasive Engagement	
Context of Use	Everyday low-risk systems, constrained	
	engagement situations	
Main Goals	User trust and satisfaction	
Secondary Goals	Understanding	
Explanation design	Inputs, Inference step, Decision/Behavior	
– What to include		
Explanation design	Concise, lightweight, drill-down on demand	
 How to present 		

How to construct explanations within PE

Argument structure	Persuasive engagement
Data/Facts	Inputs
Inference step	Persuasive reason for
	making the decision
Qualified Conclusion	Decision/Behavior
On 'Why': Show Warrants,	On request: show input
Backing, Rebuttals	values
Natural language	Present in easily
	understandable form

An example smart heating explanation

HOME

IN OUT

Now 16.5° indoors

So you'll be o

It will take a X a braich

ased on: The indoor and outdoor temperatures How well your home holds its heat Your Comfort & Savings settings

Next: IN period starts 06:45

20°

rtable <in the morning>, your home it

mins to reach <20'> by <6.45a

AWAY

+

(2)

- 7 unexpected decision points
 - Provide persuasive reason for making decision (A)
 - Show inputs (B)
 - Values on request
 - Text first, graphs later

Intelligibility

- How to make a system intelligible in different contexts and for different purposes?
- How to extend and validate Persuasive Engagement framework?
- How does a system become intelligible as the user interacts?

Controllability

How can we empower the user to take control back over their data and over what the system does?

User Experience

Complex relationship between understanding, trust, satisfaction, system performance, explanations, …

References

- S. Stumpf, "Horses For Courses: Making The Case For Persuasive Engagement In Smart Systems," in *IUI Workshops'19, March 20, 2019, Los Angeles, USA*, 2019.
- T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf, "Principles of Explanatory Debugging to Personalize Interactive Machine Learning," in *Proceedings of the 20th International Conference on Intelligent User Interfaces*, New York, NY, USA, 2015, pp. 126–137.
- T. Kulesza, S. Stumpf, M. Burnett, and I. Kwan, "Tell me more?: the effects of mental model soundness on personalizing an intelligent agent," in *Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems*, New York, NY, USA, 2012, pp. 1–10.
- S. Stumpf *et al.*, "Interacting meaningfully with machine learning systems: Three experiments," *Int. J. Hum.-Comput. Stud.*, vol. 67, no. 8, pp. 639–662, 2009.
- Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
- Brian Y. Lim and Anind K. Dey. 2011. Investigating Intelligibility for Uncertain Context-aware Applications. In Proceedings of the 13th International Conference on Ubiquitous Computing (UbiComp '11), 415–424.
- Shubhomoy Das, Travis Moore, Weng-Keen Wong, Simone Stumpf, Ian Oberst, Kevin McIntosh, and Margaret Burnett. 2013. End-user feature labeling: Supervised and semi-supervised approaches based on locally-weighted logistic regression. Artificial Intelligence 204: 56–74.
- Malin Eiband, Hanna Schneider, Mark Bilandzic, Julian Fazekas-Con, Mareike Haug, and Heinrich Hussmann. 2018. Bringing Transparency Design into Practice. In 23rd International Conference on Intelligent User Interfaces (IUI '18), 211– 223. https://doi.org/10.1145/3172944.3172961