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The problem with machine intelligence for people

= Black boxes = Intelligibility
= Limited user feedback =Controllability

= Poor mental models =User Experience




Explanations for intelligibility
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Current frameworks for creating explanations

m Interpretability Explanatory Debugging

Main papers Doshi-Velez and Been Kim 2017  Todd Kulesza, Margaret Burnett,

. _ _ Weng-Keen Wong, and Simone
Brian Y. Lim and Anind K. Dey 2011 Stumpf 2015

Context of Use Incompleteness of Al system in Interactive machine learning,
optimization or evaluation personalization

Interpretability, users’ Correct system “bugs”
understanding
Secondary Goals Fairness, reliability, trust Users’ understanding, satisfaction

SCIEGEULLECHEGIERVLEIR MM Explanations types, such as What, Interactive explanations including
include Certainty, Why, Why Not and Inputs features, predictions, and model
(e.g. weights, prediction
confidence, class balance)
Explanation design — How to Communicate in “human- Presented iteratively, as sound and
present understandable” terms complete as possible while not
overwhelming the user




Improved interactive
machine learning
through better
intelligibility




Explanatory debugging

[eg. Stumpf et al. IJHCS 2009, Kulesza et
al. CHI 2012, Das et al. Al 2013, Kulesza et

al. 1UI 2015]
I Explanation
Feedback
Improved mental model, Future
satisfaction improved

behaviour



Intelligibility
principles

Controllability ™"\ |
principles
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What we know so far...

= Integrating user feedback:
=No improvements in accuracy for all users
=More accurate system accuracy (85% vs 77%)
=\With less effort (47 messages vs 182 messages)

= Explanations:
=Rule-based > Keyword-based (but beware of negative weights!)
=\ery individual preferences
= Better understanding (15.8 MM score vs 10.4) — better system
=No difference in workload



[Eiband et al. Ul 2018]

Transparency Desian Process

WHAT to explain? HOW to explain?
Expert User Target Iterative " ,
Mental Model Mental Model Mental Model Prototyping /] ST
What happens to How do users Which key How can the target How has the user

the best of our
knowledge?

What can be
explained?

What does an
expert mental
model of the
system look like?

currently make
sense of the
system?

What is the user
mental model of the
system based on its
current UI?

How does it differ
from the expert
mental model?

components of the
algorithm do users
want to be made
transparent in

the UI?

To what extent are
users actually
interested in the
rationale behind the
algorithm?

mental model be
reached through Ul
design?

How and where can
transparency be
integrated into the
Ul of the system?

mental model
developed?

Has the target
mental model been
reached?




Smart heating




Persuasive Engagement

[eg. Stumpf IUI ExSS2019]

Context of Use

Secondary Goals

Explanation design
— What to include

Explanation design
— How to present

Interpretability Explanatory Debugging

Persuasive Engagement
Everyday low-risk systems, constrained
engagement situations
User trust and satisfaction
Understanding
Inputs, Inference step, Decision/Behavior

Concise, lightweight, drill-down on demand



How to construct explanations within PE

Argument structure Persuasive engagement

Data/Facts Inputs
Inference step Persuasive reason for
making the decision
Qualified Conclusion Decision/Behavior
On ‘Why’: Show Warrants, | On request: show input
Backing, Rebuttals values
Natural language Present in easily
understandable form




How to construct an explanation
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An exam

lanation

So you'll be comfortable <in the morning>, your home is
preheating.

It willl take <X> hrs <Y> mins to reach <20°> by <6.45am>,
based on:

* The indoor and outdoor temperatures

*+ How well your home holds its heat @

* Your Comfort & Savings settings

<Plus, as you're on <energy tariff>, energy is currently at a
lower rate. This means prehaating now is better value for
you.»

Preheating will continue until the start of the next IN period

(&) (&)

Graphical explanation orstond Settings

= 7 unexpected decision points

= Provide persuasive reason for making

decision (A)
= Show inputs (B)
= Values on request
= Text first, graphs later
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Conclusions ... and yet more questions

= Intelligibility
=How to make a system intelligible in different contexts and for
different purposes?
=How to extend and validate Persuasive Engagement framework?
=How does a system become intelligible as the user interacts?

= Controllability

=How can we empower the user to take control back over their
data and over what the system does?

= User Experience

= Complex relationship between understanding, trust, satisfaction,
system performance, explanations, ...
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