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Knowledge Graph — graph structured Knowledge Base, where 
knowledge is encoded by relationships between entities.
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Knowledge Graph — graph structured Knowledge Base, where 
knowledge is encoded by relationships between entities. 
In practice — set of subject-predicate-object triples, denoting a 
relationship of type predicate between subject and object.

subject predicate object

Barack Obama was born in Honolulu

Hawaii has capital Honolulu

Barack Obama is politician of United States

Hawaii is located in United States

Barack Obama is married to Michelle Obama

Michelle Obama is a Lawyer

Michelle Obama lives in United States

Knowledge Graphs
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Link Prediction in Knowledge Graphs
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Rule-Based Link Prediction

∀X, Y, Z :
married with(X, Y) ⇐

parent of(X, Z),
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✕ Not always true 
✕ Hard to learn from data 
✕ Hard to formalise for other modalities
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Learning Representations
ℒ(𝒢 ∣ Θ) = ∑

(s,p,o)∈𝒢

log σ (fp(es, eo))
+ ∑

(s,p,o)∉𝒢

log [1 − σ (fp(es, eo))]
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Neural Link Prediction — Scoring Functions

Models Scoring Functions Parameters

RESCAL [Nickel et al. 2011]

TransE [Bordes et al. 2013]

DistMult [Yang et al. 2015]

HolE [Nickel et al. 2016]

ComplEx [Trouillon et al. 2016]

ConvE [Dettmers et al. 2017]

− es + rp − eo
2

p

⟨es, rp, eo⟩

Re (⟨es, rp, eo⟩)

r⊤
p (ℱ−1 [ℱ[es] ⊙ ℱ[eo]])

f (vec (f ([es; rp] * ω)) W) eo

rp ∈ ℝk

rp ∈ ℝk

rp ∈ ℝk

rp ∈ ℝk, W ∈ ℝc×k

rp ∈ ℂk

e⊤
s Wpeo Wp ∈ ℝk×k

The interaction between the latent features is defined by the scoring 
function            — several variants in the literature:f( ⋅ )
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Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean 
Reciprocal Rank (MRR), Hits@k. In MRR and Hits@k, for each test triple:

• Modify its subject with all the entities in the Knowledge Graph,
• Score all the triple variants, and compute the rank of the original test triple,
• Repeat for the object.

MRR =
1

|𝒯 |

|𝒯|

∑
i=1

1
ranki

, HITS@k =
|{ranki ≤ 10} |

|𝒯 |
From [Lacroix et al. ICML 2018]

Neural Link Prediction — Accuracy



Convolutional 2D Knowledge Graph Embeddings

Subject Embedding

Predicate Embedding

[AAAI 2018]

Idea — use ideas from computer vision for modeling the interactions 
between latent features.
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Convolutional 2D Knowledge Graph Embeddings

Subject Embedding

Predicate Embedding

Reshape

“Latent Images”

2D ConvolutionsConcatenate
Projection Logits

Product with 
Entity Matrix

Idea — use ideas from computer vision for modeling the interactions 
between latent features.

[AAAI 2018]
✓Scalable 

✓State-of-the-art Results



Convolutional 2D Knowledge Graph Embeddings
Idea — use ideas from computer vision for modeling the interactions 
between latent features.

[AAAI 2018]

0.1

0.225

0.35

0.475

0.6

DistMult ComplEx R-GCN ConvE

MRR Hits@1 Hits@3 Hits@10

✓Efficiency via parameter sharing 
✓State-of-the-art Results



Interpreting Knowledge Graph Embeddings
Quite hard to understand the semantics of the learned representations..

[Minervini et al. ECML 2017]
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Quite hard to understand the semantics of the learned representations..
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incorporating — semantic relationships between them.
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Regularising Knowledge Graph Embeddings
Quite hard to understand the semantics of the learned representations..

.. but we can use their geometric relationships for identifying — and 
incorporating — semantic relationships between them.

[Minervini et al. ECML 2017]

✕ is a(x, y) ∧ is a(y, z) ⇒ is a(x, z)
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[Minervini et al. UAI 2017]
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Θ
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S
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Incorporating Background Knowledge     
via Adversarial Training

Idea — adversarial training process where, iteratively: 
• An adversary searches for inputs where the model violates constraints, 
• The model is regularised to correct such violations. 

Formally:

• Inputs S can be either input space or embedding space 

• In most interesting cases, max has closed form solutions 

• Constraints are guaranteed to hold everywhere in embedding space.

[Minervini et al. UAI 2017]

min
Θ

ℒdata(D ∣ Θ) + λ max
S

ℒviolation(S, D ∣ Θ)

e.g. S = {ex, ey, ez} such that 
is a(ex, ey) ∧ is a(ey, ez) ∧ ¬is a(ex, ez)



Incorporating Background Knowledge     
via Adversarial Training

Idea — adversarial training process where, iteratively: 
• An adversary searches for inputs where the model violates constraints, 
• The model is regularised to correct such violations. 

Formally:

[Minervini et al. UAI 2017]

e.g. S = {ex, ey, ez} such that 
is a(ex, ey) ∧ is a(ey, ez) ∧ ¬is a(ex, ez)

✓Incorporates Background Knowledge 

✓Verifiable

min
Θ

ℒdata(D ∣ Θ) + λ max
S

ℒviolation(S, D ∣ Θ)



Incorporating Background Knowledge     
via Adversarial Training

[Minervini et al. UAI 2017]
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Incorporating Background Knowledge     
in Natural Language Inference Models

[Minervini et al. CoNLL 2018]

Natural Language Inference — detect the type of relationship, i.e. 
entailment, contradiction, neutral, between two sentences.
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Incorporating Background Knowledge     
in Natural Language Inference Models

If a stentence x contradicts y, then also y contradicts x. 
If x entails y, and y entails z, then x also entails z.

x) A man in uniform is pushing a medical bed. 
y) A man is pushing carrying something.

[Minervini et al. CoNLL 2018]

Natural Language Inference — detect the type of relationship, i.e. 
entailment, contradiction, neutral, between two sentences.



Incorporating Background Knowledge     
in Natural Language Inference Models

If a stentence x contradicts y, then also y contradicts x. 
If x entails y, and y entails z, then x also entails z.

ℒviolation({x, y}) : 0.01 ⇝ 0.92P(x entails y) = 0.72

P(y contradicts x) = 0.93

x) A man in uniform is pushing a medical bed. 
y) A man is pushing carrying something.

[Minervini et al. CoNLL 2018]

Natural Language Inference — detect the type of relationship, i.e. 
entailment, contradiction, neutral, between two sentences.



Incorporating Background Knowledge     
in Natural Language Inference Models

[Minervini et al. CoNLL 2018]
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End-to-End Differentiable Reasoning
Core idea — we can combine neural networks and symbolic models 
by re-implementing classic reasoning algorithms using end-to-end 
differentiable (neural) architectures.

(Black-Box) Neural Models

•Can generalise from noisy and 
ambiguois modalities

•Can learn representations from data
•SOTA on a number of tasks

Symbolic Reasoning Models

•Data efficient
•Interpretable
•Explainable
•Verifiable
•Can incorporate background 

knowledge and constraints



Reasoning via Backward Chaining

Backward Chaining — start with a list of goals, and work 
backwards from the consequent Q to the antecedent P to see if 
any data supports any of the consequents.

q(X) ← p(X)
q(a)?p(a)

p(b)
p(c)

…

You can see backward chaining as a query 
reformulation strategy.
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Reasoning via Backward Chaining

Backward Chaining — start with a list of goals, and work 
backwards from the consequent Q to the antecedent P to see if 
any data supports any of the consequents.

q(X) ← p(X)
q(a)?p(a)

p(b)
p(c)

…

You can see backward chaining as a query 
reformulation strategy.

✓

p(a)



End-to-End Differentiable Reasoning
𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏 (𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏 (𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

✓ ✓✓

sim = 1sim = 1sim = 0.9



End-to-End Differentiable Reasoning
Knowledge Base:

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏(𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)

proof score S1

𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

proof score S2

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y ) ⇐
𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Z ),
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, Y ) .
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F∈K

log pKB∖F(F)
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[Minervini et al. 2018, AAAI 2020, 
Welbl et al. ACL 2019]
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End-to-End Differentiable Reasoning 
with Natural Language

We can embed facts from the KG and facts from text in a shared 
embedding space, and learn to reason over them jointly:
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