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Knowledge Graphs

Knowledge Graph — graph structured Knowledge Base, where
knowledge is encoded by relationships between entities.

In practice — set of subject-predicate-object triples, denoting a
relationship of type predicate between sub/ect and object.

subject predicate

Honolulu

Barack Obama, was born in

Hawaii has capital Honolulu
Barack Obama is politician of United States
Hawaii is located in United States
Barack Obama is married to Michelle Obama
Michelle Obama, is a Lawyer
Michelle Obama lives in United States

M|chelle
Obama



Knowledge Graphs
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Link Prediction in Knowledge Graphs
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Rule-Based Link Prediction
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Rule-Based Link Prediction

alia Ann Sash VX.,Y,Z:
[MOba”ﬁa j [Ot?;maa] married with(X,Y) <

parent of parent of(X, Z),
[ Barack ... Y T S %'SQ%“:J parent of(Y, Z)

\
lives in /
\

( Washington )

X Not always true
X Hard to learn from data
X Hard to formalise for other modalities
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Neural Link Prediction
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Obama Obama
L fmarried( H ? i )
parent of
Barack | ......| & |...... Michelle
[Obamaj ? > Obamaj
A\ .
lives in Learning Representations
A
(Washington ) (9 1€)= > loga(fe,e,)
(s,p,0)€EEG

T 2 log _1 —(7(];(35» e0)>_



Neural Link Prediction — Scoring Functions

he interaction between the latent features is defined by the scoring
function f( - ) — several variants in the literature:

RESCAL [Nickel et al. 2011] e; Wye, W, € R
TranskE [Bordes et al. 2013] &t T ; I, € R¥
DistMult [Yang et al. 2015] (€T, €,) r, € R*
HolE [Nickel et al. 2016] r, (Pf‘f‘l |Fle]o F [eo]]) r, € R
ComplEx [Trouillon et al. 2016] Re <(es, r, éo>) r, € Ck
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Neural Link Prediction — Accuracy

Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean
Reciprocal Rank (MRR), Hits@k. In MRR and Hits@k, for each test triple:

- Modify its subject with all the entities in the Knowledge Graph,

 Score all the triple variants, and compute the rank of the original test triple,

- Repeat for the object.

A rank; < 10

MRR = —— , HITS@k = A l /|
| T | “ rank; | T |
From [Lacroix et al. ICML 2018] i=1

Model WNI18 WNI18RR FB15K FB15K-237 YAGO3-10
MRR H@]0 MRR H@]l0 MRR H@l0 MRR H@]I0 MRR H@I10
CP-FRO 0.95 0.95 0.46 048 0.86 0.91 0.34 0.51 0.54 0.68
CP-N3 0.95 0.96 0.47 0.54 0.86 0.91 0.36 0.54 0.57 0.71

ComplEx-FRO 0.95 096 047 054 0.86 091 035 053 057 0.71
ComplEx-N3 0.95 09 048 0.57 0.86 091 0.37 0.56 0.58 0.71

Reciprocal




Convolutional 2D Knowledge Graph Embeddings

Idea — use ideas from computer vision for modeling the interactions
between latent features.
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Predicate Embedding

[AAAI 2018]
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Convolutional 2D Knowledge Graph Embeddings

Idea — use ideas from computer vision for modeling the interactions
between latent features.

Projection Logits

Reshape

Concatenate 2D Convolutions -
{ Product with
Entity Matrix
> V. - >

Subject Embedding

Predicate Embedding

“Latent Images”

V' Scalable
Vv State-of-the-art Results [AAAI 2018]
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Convolutional 2D Knowledge Graph Embeddings

Idea — use ideas from computer vision for modeling the interactions
between latent features.

06 - W MRR [ Hits@1 B Hits@3 I Hits@10

0.475 |
0.35 |

0.225 |

0.1
DistMult ComplEXx R-GCN ConvE

Vv Efficiency via parameter sharing
v State-of-the-art Results [AAAI 2018]



Interpreting Knowledge Graph Embeddings

Quite hard to understand the semantics of the learned representations..
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Quite hard to understand the semantics of the learned representations..

Real Part Imaginary Part

hypernym 1.0 -3.1 3.2 2.9FKd-3.0-3.0
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Regularising Knowledge Graph Embeddings

Quite hard to understand the semantics of the learned representations..

Real Part Imaginary Part
hypernym 1.0 oK 3.2 2.9H£-3.0-3.0
hyponym 1 0 -3.4-2.8 2.9 3.0
iInstance hypernym - 3.0 -2.8

iInstance hyponym -1.01.5 -2.9m

part of 3.2 -1.58K0)
has part 29 3.0%30.
.. but we can use their geometric relationships for identifying — and
Incorporating — semantic relationships between them.
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Regularising Knowledge Graph Embeddings

Quite hard to understand the semantics of the learned representations..

Real Part
hypernym 1.0

3.0 -3.1 229 -3.0-3.0
hyponym 1.0 BEECH 2.9 3.0
iInstance hypernym -

Instance hyponym -1 0. °11.5 -2.92.8
part of 3.2 -1.58K0)
has part 3.2 2.9 5K 3.0 2.8 -3.0)
.. but we can use their geometric relationships for identifying — and
Incorporating — semantic relationships between them.

Imaginary Part

X 1s a(x,y) A1s a(y,z) = 1s a(x, 2)
[Minervini et al. ECML 2017]
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Incorporating Background Knowledge
via Adversarial Training

Idea — adversarial training process where, iteratively:
* An adversary searches for inputs where the model violates constraints

e.g. x,y,z such that
1s a(x,y) A1s a(y, z) A —1s a(x, 2)

[Minervini et al. UAI 2017]



Incorporating Background Knowledge
via Adversarial Training

Idea — adversarial training process where, iteratively:
* An adversary searches for inputs where the model violates constraints
* The model is reqularised to correct such violations.

Rule isa(X,Y)aisa(Y,Z)=isa(X,”z)

Player Link Predictor

‘ Real Entity

. Adversarial Entity

—— Consistent l ”I“-.

—  Spurious Link

[Minervini et al. UAI 2017]



Incorporating Background Knowledge
via Adversarial Training

Idea — adversarial training process where, iteratively:
* An adversary searches for inputs where the model violates constraints,
* The model is reqularised to correct such violations.

e.g. S ={x,y,z} such that
Formally: / 1s a(x,y) A1s a(y, z) A 1S a(x, z)

min £ 4,.(D | ©) + Amax &L (S,D | ®)
® S

violation

[Minervini et al. UAI 2017]



Incorporating Background Knowledge
via Adversarial Training

Idea — adversarial training process where, iteratively:
* An adversary searches for inputs where the model violates constraints,
* The model is reqularised to correct such violations.

e.g. S=1{e_ e e} such that

X Yy vz

Formally: 1s a(e,,e) Als a(e,e,) A s a(e,, e,)

min £ g,.,(D | ©) +|Amax L .ion(S, D | ©O)
® S

e |nputs S can be either input space or embedding space

® |n most interesting cases, max has closed form solutions

e Constraints are guaranteed to hold everywhere in embedding space.

[Minervini et al. UAI 2017]




Incorporating Background Knowledge
via Adversarial Training

Idea — adversarial training process where, iteratively:
* An adversary searches for inputs where the model violates constraints,
* The model is reqularised to correct such violations.

e.g. S=1{e_ e e} such that

X Yy vz

Formally: 1s a(e,,e) Als a(e,e,) A s a(e,, e,)

min £ g,.,(D | ©) +|Amax L .ion(S, D | ©O)
® S

v Incorporates Background Knowledge
Vv Verifiable

[Minervini et al. UAI 2017]



Incorporating Background Knowledge

via Adversarial Training
1 W Hits@3 His@s [l Hits@10

72.25 |
66.5

60.75

55 ' ' ' ' ' ' |
Transk KALE-Pre KALE-Joint DistMult ASR-DistMult ComplEx ASR-ComplEx

[Minervini et al. UAI 2017]



Incorporating Background Knowledge

via Adversarial Training
8 W Hits@3 His@s [l Hits@10

Transk KALE-Pre KALE-Joint DistMult ASR-DistMult ComplEx ASR-ComplEx
[Minervini et al. UAI 2017]

72.25 |

66.5

60.75

55



Incorporating Background Knowledge
in Natural Language Inference Models

Natural Language Inference — detect the type of relationship, i.e.
entaillment, contradiction, neutral, between two sentences.

[Minervini et al. CoNLL 2018}
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Incorporating Background Knowledge
in Natural Language Inference Models

Natural Language Inference — detect the type of relationship, i.e.
entaillment, contradiction, neutral, between two sentences.

If a, stentence x contradicts y, then also y contradicts x.
If x entails y, and y entails z, then x also entails z.

x) A man in uniform is pushing a medical bed.
y) A man is pushing carrying something.

entails

X ¥) =072 Z yiolation(1X, Y1) 1 0.01 » 0.92
contradlcts
P(y X) = 0.93

[Minervini et al. CoNLL 2018}



Incorporating Background Knowledge
in Natural Language Inference Models

Number of violations (%) made by ESIM

— *. O con(Xl,X2)=>C0n(X2,X1)
2 10 - .

o (\ ‘e, W ent(Xy, Xz2)=-con(Xz, X1)
2 S '04.. neut(X1, X2) = =con(X>, X1)
O 5 — *\ = 'T.=> ent(Xy, X7)

-— ~, ‘'®

AL - e,

.9 o H‘ \

> O i o ) =y

0.0 10-4 1073 1072 107! 1.0
Regularisation Parameter A
[Minervini et al. CoNLL 2018}



End-to-End Differentiable Reasoning



End-to-End Differentiable Reasoning

Core idea — we can combine neural networks and symbolic models
by re-implementing classic reasoning algorithms using end-to-end
differentiable (neural) architectures.

(Black-Box) Neural Models <9 Symbolic Reasoning Models

e Can generalise from noisy and ®Data efficient

ambiguois modalities ® Interpretable
eCan learn representations from data eExplainable
¢ SOTA on a number of tasks ®\erifiable

e Can incorporate background
knowledge and constraints



Reasoning via Backward Chaining

Backward Chaining — start with a list of goals, and work
backwards from the consequent Q to the antecedent P to see if
any data supports any of the consequents.

q(X) < p(X)
You can see backward chaining as a query

p (Cl) q (Cl) ? reformulation strategy.
p(b)
p(c)
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Reasoning via Backward Chaining

Backward Chaining — start with a list of goals, and work
backwards from the consequent Q to the antecedent P to see if
any data supports any of the consequents.

qg(X) < p(X)
pla) Q@7 rotomulaton swategy
pb) .. ,=

"""" p(a)”



End-to-End Differentiable Reasoning
grandPalf (abe, Dbart)

} sim=0.9 ' sim = 1 + sim = 1

v v v

grandFather0f (abe, bart)
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End-to-End Differentiable Reasoning

Knowledge Base:
grandPa(f(abe, bart)

fatherOf(abe, homer) [] HE N

parentOf(homer, bart)
grandFatherQf(X,Y) < fatherOf(abe, homer) parentOf(homer,bart)

fatherUt(X.2), ] (DN (O] (NS (] [

parent0f(Z,Y). proof score S, proof score S,
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End-to-End Differentiable Reasoning

Knowledge Base:
grandPa(f(abe, bart)

fatherOf(abe, homer) ] HERIE

parent0f(homer, bart)
0\(X,Y) < 0,(X,2),05(Z,Y) £ ather0f (abe, homer) parent0f(homer, bart)

proof score S, proof score S,
father0f(abe, Z) grandFatherQf(X,Y)
Subgoals:
.. B - BT | X/abe Y/bart
Traln via pI’OOf score S4 '\proof score S3 fatheer(abe,Z)
Self-Supervision: _— parent0f(Z, bart)

l

fatherOf(abe, homer)

Y logp®N(F) I DR OB - - -

FeK proof score S;

- ), logp"B(F)

F~corr(F)




End-to-End Differentiable Reasoning

Knowledge Base:
grandPa(f(abe, bart)

fatherOf(abe, homer)
parentOf(homer, bart)
grandFather0f(X,Y) <«
father0f(X, Z2),
parent0f(Z,Y).

fatherOf(abe,homer) parent0f(homer,bart)

proof score §; proof score S,

father0f(abe, Z) grandFatherQf(X,Y)

CeEle B X/abe Yivars o

proof score S, v\proof score 5 father(f(abe, Z)
— parent0f(Z, bart)
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End-to-End Differentiable Reasoning

Knowledge Base:
grandPa(f(abe, bart)

fatherOf(abe, homer) [] HE N

parentOf(homer, bart)
grandFather0f(X,Y) <«
father0f(X, Z2),
parent0f(Z,Y).

father0f(abe, Z) grandFatherQf(X,Y)

CeEle B X/abe Yivars o

proof score S, v\proof score S; father(f(abe, 2)
— parent0f(Z, bart)

l

fatherOf(abe, homer)

proof score S;
[Minervini et al. 2018, AAAI 2020,
Welbl et al. ACL 2019]




End-to-End Differentiable Reasoning

Query Score S,

Proofs / Explanations

part_of(X,Y):—has_part(Y,X)

AN N (12 ATDTAA N 0.995 has_part(AFRICA.N.01, CONGO.N.03)
part_of(CONGO.N.03,AFRICA.N.O1) L _ o
0.787 part_of(X,Y):—instance_hyponym(Y, X)
’ instance_hyponym(AFRICAN_COUNTRY.N.O1, CONGO.N.03)
hyponym(X, Y) :— hypernym(Y, X)
x TN T TTeTT A TTDT B v 072 0.987 A TDT B V(12 DVt 1QLr
hyponym(EXTINGUISH.V.04, DECOUPLE.V.03) hypernym(DECOUPLE.V.03, EXTINGUISH.V.04)
= 0.920 hypernym(SNUFF_OUT.V.01, EXTINGUISH.V.04)
part_of(PITUITARY.N.O1, DIENCEPHALON.N.O1) 0.995 has_part (DIENCEPHALON.N.O1, PITUITARY.N.O1)
, _ , has_part(X,Y) :—part_of(Y,X)
has_part(TEXAS , ODESSA.N.02) 0.961 part_of(ODESSA.N.02, TEXAS.N.O1)
hyponym(SKELETAL_MUSCLE, ARTICULAR_MUSCLE) 0.987 hypernym(ARTICULAR_MUSCLE, SKELETAL_MUSCLE)
' X,Y):—
deriv_related_form(REWRITE,REWRITING) 0.809 derlv—r_e_lé,ted—,fo_r_m( Y) i~ hypernym(Y, X)
hypernym(REVISE, REWRITE)
0.962 also_see(X,Y):—also_see(Y,X)
§ also_see(TRUE.A.01,FAITHFUL.A.O1) T also_see(FAITHFUL.A.01, TRUE.A.O1)
% 0.590 also_see(CONSTANT.A.02, FAITHFUL.A.O1)
0.962 also_see(VIRTUOUS.A.01,GOOD.A.03)
GOOD.A.03, VIRTUOUS.A.0 -
= also_see( ’ ) 0.702 also_see(RIGHTEOUS.A.O1, VIRTUOUS.A.O1)
instance_hypernym(CHAPLIN, FILM_MAKER) 0.812 instance_hypernym(CHAPLIN, COMEDIAN)

[Minervini et al. AAAI 2020]



End-to-End Differentiable Reasoning

Test-1 Test-11 Test-ALL
Hits@N (%) Hits@N (%) Hits@N (%)
3 5 10 MVRR 3 5 10 MVRR 3 5 10 MRR
KALE-Pre (Guo et al. 2016) 35.8 419 498 0.291 829 86.1 899 0.713 61.7 66.2 71.8 0.523
=3 KALE-Joint (Guo et al. 2016) 384 447 52.2 0.325 79.7 84.1 89.6 0.684 61.2 664 72.8 0.523
== ASR-DistMult (Minervini et al. 2017) 36.3 40.3 449 0.330 98.0 99.0 99.2 0.948 70.7 73.1 75.2 0.675
= =2 ASR-ComplEx (Minervini et al. 2017) 373 41.0 459 0.338 99.2 993 994 0.984 71.7 73.6 75.7 0.698
KBLR (Garcia-Duran and Niepert 2018) = = = - - - - - 74.0 77.0 79.7 0.702
= TransE (Bordes et al. 2013) 36.0 41.5 48.1 0.296 77.5 828 884 0.630 589 642 70.2 0.480
= i”a DistMult (Yang et al. 2015) 36.0 40.3 453 0.313 92.3 938 947 0.874 674 702 729 0.628
= é ComplEx (Trouillon et al. 2016) 37.0 413 46.2 0.329 914 919 924 0.887 67.3 695 719 0.641
=™  GNTPs 337 369 412 0313 (982 99.0 993 0977) (69.2 711 732 0.678)
Models
Datasets Metrics NTP 3 GNTP NeuralLP  MINERVA Rules Learned by GNTP
Standard Attention
S 90.83 + 154 99.98 +0.05 100.0 0.0 100.0 £ 0.0 100.0 + 0.0 locatedIn(X.Y) :— locatedIn(X.Z), locatedIn(Z.Y)
Countries S2 AUC-PR 8740+ 11.7 90.82+088 93484329 751+03 92364241 neighborof(X.,Y) - neighborof(X,Z), locatedIn(Z.Y)
S3 56.68 + 17.6 87.70 £4.79 9127 +4.02 9220+02 9510+ 1.20 neighborof(X.,Y) - neighborof(Y.,X)
MRR 0.35 0.719 0.759 0.619 0.720 term0(X,Y) - term0(Y, X)
o HITS@1 0.24 0.586 0.642 0.475 0.605 termd(X,Y) —termd(Y, X)
mnship HITS@3 0.37 0.815 0.850 0.707 0.812 term13(X,Y) - terml3(X, Z), terml0(Z, Y)
HITS@10 0.57 0.958 0.959 0.912 0.924 term2(X,Y) - termd(X, Z), term7(Z, Y)

[Minervini et al. AAAI 2020]



End-to-End Differentiable Reasoning
with Natural Language

We can embed facts from the KG and facts from text in a shared
embedding space, and learn to reason over them jointly:

5
Recurse
encoder
* AND
a N\ (
rz .......... r? =] ’? =
<
<
| KBRep. J| Text Representatlons ) | Rule Group p(X, Y) q(Y, X) Rules Rule Group P(X Y) Q(X 2),r(Z,Y)
containedIn(River “London is located in the UK” “[X] is located in the [Y]"(X, Y) :- locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y)
Thames, UK) locatedIn(X, Y)

“London is standing on the
River Thames”

[Minervini et al. AAAI 2020]



End-to-End Differentiable Reasoning
with Natural Language

We can embed facts from the KG and facts from text in a shared
embedding space, and learn to reason over them jointly:

Control Myself record label Jam Recordings
record label(X, Z) « p; (X, Y)

P1(X, Z) « pa(X,Y) A p3 (Y,2)

Control Myself [...] is a song by american rapper [...] Ell
Ell cools 1989 album [...] was released by [...] Jam Recordings

[Welbl et al. ACL 2019, Minervini et al. AAAI 2020]



End-to-End Differentiable Reasoning
with Natural Language

We can embed facts from the KG and facts from text in a shared
embedding space, and learn to reason over them jointly:

Thrasyvoulos F.C. country Greece

/

country(X, Z) <« p; (X, Y)

P1(X, Z) « pa(X,Y) A p3 (Y,2)

\

Thrasyvoulos Fylis is a football club based in Fyli, Attica [...]
Fyli Is a town and a municipality in the northwestern part of Attica, Greece

[Welbl et al. ACL 2019, Minervini et al. AAAI 2020]



Thank you!



