

Explainable, Data-Efficient, Verifiable Representation Learning

Pasquale Minervini, UCL p.minervini@ucl.ac.uk

ICL, Nov 27th

DC

$\forall X, Y, Z$: grandFather(X, Y) \Leftarrow father(X, Z), parent(Z, Y)

Symbolic

$\forall X, Y, Z$: grandFather(X, Y) \Leftarrow father(X, Z), parent(Z, Y)

✓ Data-Efficient
 ✓ Interpretable and Explainable
 ✓ Easy to Incorporate Knowledge
 ✓ Verifiable

Symbolic

LOC

Symbolic and Sub-Symbolic Al

Sub-Symbolic/Connectionist

Neural Representation Learning, (Deep) Latent Variable Models..

 $\forall X, Y, Z$: grandFather(X, Y) \Leftarrow father(X, Z), parent(Z, Y)

 $()...)) = \begin{cases} 0.15 \equiv cat \\ 0.85 \equiv dog \end{cases}$

✓ Data-Efficient
 ✓ Interpretable and Explainable
 ✓ Easy to Incorporate Knowledge
 ✓ Verifiable

 $f_1(f_2(\ldots f_n($

Symbolic

Sub-Symbolic/Connectionist

Neural Representation Learning, (Deep) Latent Variable Models..

- ✓ Noisy, Ambiguous, Sensory Data
 ✓ Highly Parallel
- ✓ High Predictive Accuracy

 $\forall X, Y, Z$: grandFather(X, Y) \Leftarrow father(X, Z), parent(Z, Y)

 $()...)) = \begin{cases} 0.15 \equiv cat \\ 0.85 \equiv dog \end{cases}$

✓ Data-Efficient
 ✓ Interpretable and Explainable
 ✓ Easy to Incorporate Knowledge
 ✓ Verifiable

 $f_1(f_2(\ldots f_n($

Symbolic

Sub-Symbolic/Connectionist

Neural Representation Learning, (Deep) Latent Variable Models.. ✓ Noisy, Ambiguous, Sensory Data
 ✓ Highly Parallel
 ✓ High Predictive Accuracy

 $\forall X, Y, Z$: grandFather(X, Y) \Leftarrow father(X, Z), parent(Z, Y)

 $()...)) = \begin{cases} 0.15 \equiv cat \\ 0.85 \equiv dog \end{cases}$

✓ Data-Efficient
 ✓ Interpretable and Explainable
 ✓ Easy to Incorporate Knowledge
 ✓ Verifiable

 $f_1(f_2(\ldots f_n($

Symbolic

Knowledge Graphs

Knowledge Graph — graph structured Knowledge Base, where knowledge is encoded by relationships between entities.

Knowledge Graphs

Knowledge Graph — graph structured Knowledge Base, where knowledge is encoded by relationships between entities.

In practice — set of **subject-predicate-object** triples, denoting a relationship of type *predicate* between *subject* and *object*.

Knowledge Graphs

Imperial College London

Website	Directions	Save
Vebsite	Directions	Save

Public university in London, England · 2.8 mi

Imperial College London is a public research university located in London. In 1851, Prince Albert built his vision of an area for culture, including the Victoria and Albert Museum, Natural History Museum, Royal Colleges, Royal Albert Hall, and the Imperial Institute. Wikipedia

Address: South Kensington, London SW7 2AZ

Acceptance rate: 14.3% (2015)

Subsidiaries: Imperial College Business School, MORE

	popula	tion kensing		୍ ୟ ବ୍					
	Q Ali	🛋 Images	News	🕼 Maps	Shopping	: More	Settings	Tools	
	About 4	,410,000 resu	lts (0.57 seco	onds)					
	Royal Borough of Kensington and Chelsea / Population								
	156,197 (2018)								
-	200,000 — 150,000 —					-	 London Bord of Hammersi and Fulham 185,426 	ough mith	

Knowledge Graphs

Imperial College London

te Directions Save	Website
--------------------	---------

Public university in London, England · 2.8 mi

Imperial College London is a public research university located in London. In 1851, Prince Albert built his vision of an area for culture, including the Victoria and Albert Museum, Natural History Museum, Royal Colleges, Royal Albert Hall, and the Imperial Institute. Wikipedia

Address: South Kensington, London SW7 2AZ

Acceptance rate: 14.3% (2015)

Subsidiaries: Imperial College Business School, MORE

Link Prediction in Knowledge Graphs

Rule-Based Link Prediction

Rule-Based Link Prediction

Neural Link Prediction

Neural Link Prediction

Neural Link Prediction

Neural Link Prediction — Scoring Functions

Models	Scoring Functions	Parameters
RESCAL [Nickel et al. 2011]	$\mathbf{e}_{s}^{T}\mathbf{W}_{p}\mathbf{e}_{o}$	$\mathbf{W}_p \in \mathbb{R}^{k \times k}$
TransE [Bordes et al. 2013]	$- \left\ \mathbf{e}_{s} + \mathbf{r}_{p} - \mathbf{e}_{o} \right\ _{p}^{2}$	$\mathbf{r}_p \in \mathbb{R}^k$
DistMult [Yang et al. 2015]	$\langle \mathbf{e}_s, \mathbf{r}_p, \mathbf{e}_o \rangle$	$\mathbf{r}_p \in \mathbb{R}^k$
HolE [Nickel et al. 2016]	$\mathbf{r}_{p}^{T}\left(\mathscr{F}^{-1}\left[\overline{\mathscr{F}[\mathbf{e}_{s}]}\odot\mathscr{F}[\mathbf{e}_{o}]\right]\right)$	$\mathbf{r}_p \in \mathbb{R}^k$
ComplEx [Trouillon et al. 2016]	$Re\left(\langle \mathbf{e}_{s}, \mathbf{r}_{p}, \overline{\mathbf{e}}_{o} \rangle\right)$	$\mathbf{r}_p \in \mathbb{C}^k$
ConvE [Dettmers et al. 2017]	$f\left(\operatorname{vec}\left(f\left([\overline{\mathbf{e}_{s}};\overline{\mathbf{r}_{p}}]*\omega\right)\right)\mathbf{W}\right)\mathbf{e}_{o}$	$\mathbf{r}_p \in \mathbb{R}^k, \mathbf{W} \in \mathbb{R}^{c \times k}$

Neural Link Prediction — Scoring Functions

Models	Scoring Functions	Parameters
RESCAL [Nickel et al. 2011]	$\mathbf{e}_{s}^{T}\mathbf{W}_{p}\mathbf{e}_{o}$	$\mathbf{W}_p \in \mathbb{R}^{k \times k}$
TransE [Bordes et al. 2013]	$- \left\ \mathbf{e}_{s} + \mathbf{r}_{p} - \mathbf{e}_{o} \right\ _{p}^{2}$	$\mathbf{r}_p \in \mathbb{R}^k$
DistMult [Yang et al. 2015]	$\langle \mathbf{e}_s, \mathbf{r}_p, \mathbf{e}_o \rangle$	$\mathbf{r}_p \in \mathbb{R}^k$
HolE [Nickel et al. 2016]	$\mathbf{r}_{p}^{T}\left(\mathscr{F}^{-1}\left[\overline{\mathscr{F}[\mathbf{e}_{s}]}\odot\mathscr{F}[\mathbf{e}_{o}]\right]\right)$	$\mathbf{r}_p \in \mathbb{R}^k$
ComplEx [Trouillon et al. 2016]	$Re\left(\langle \mathbf{e}_{s}, \mathbf{r}_{p}, \overline{\mathbf{e}}_{o} \rangle\right)$	$\mathbf{r}_p \in \mathbb{C}^k$
ConvE [Dettmers et al. 2017]	$f\left(\operatorname{vec}\left(f\left([\overline{\mathbf{e}_{s}};\overline{\mathbf{r}_{p}}]*\omega\right)\right)\mathbf{W}\right)\mathbf{e}_{o}$	$\mathbf{r}_p \in \mathbb{R}^k, \mathbf{W} \in \mathbb{R}^{c \times k}$

Neural Link Prediction — Scoring Functions

Models	Scoring Functions	Parameters
RESCAL [Nickel et al. 2011]	$\mathbf{e}_{s}^{T}\mathbf{W}_{p}\mathbf{e}_{o}$	$\mathbf{W}_p \in \mathbb{R}^{k \times k}$
TransE [Bordes et al. 2013]	$- \left\ \mathbf{e}_{s} + \mathbf{r}_{p} - \mathbf{e}_{o} \right\ _{p}^{2}$	$\mathbf{r}_p \in \mathbb{R}^k$
DistMult [Yang et al. 2015]	$\langle \mathbf{e}_s, \mathbf{r}_p, \mathbf{e}_o \rangle$	$\mathbf{r}_p \in \mathbb{R}^k$
HolE [Nickel et al. 2016]	$\mathbf{r}_{p}^{T}\left(\mathscr{F}^{-1}\left[\overline{\mathscr{F}[\mathbf{e}_{s}]}\odot\mathscr{F}[\mathbf{e}_{o}]\right]\right)$	$\mathbf{r}_p \in \mathbb{R}^k$
ComplEx [Trouillon et al. 2016]	$Re\left(\langle \mathbf{e}_{s}, \mathbf{r}_{p}, \overline{\mathbf{e}}_{o} \rangle\right)$	$\mathbf{r}_p \in \mathbb{C}^k$
ConvE [Dettmers et al. 2017]	$f\left(\operatorname{vec}\left(f\left([\overline{\mathbf{e}_{s}};\overline{\mathbf{r}_{p}}]*\omega\right)\right)\mathbf{W}\right)\mathbf{e}_{o}$	$\mathbf{r}_p \in \mathbb{R}^k, \mathbf{W} \in \mathbb{R}^{c \times k}$

Neural Link Prediction — Scoring Functions

Models	Scoring Functions	Parameters
RESCAL [Nickel et al. 2011]	$\mathbf{e}_{s}^{T}\mathbf{W}_{p}\mathbf{e}_{o}$	$\mathbf{W}_p \in \mathbb{R}^{k \times k}$
TransE [Bordes et al. 2013]	$- \left\ \mathbf{e}_{s} + \mathbf{r}_{p} - \mathbf{e}_{o} \right\ _{p}^{2}$	$\mathbf{r}_p \in \mathbb{R}^k$
DistMult [Yang et al. 2015]	$\langle \mathbf{e}_s, \mathbf{r}_p, \mathbf{e}_o \rangle$	$\mathbf{r}_p \in \mathbb{R}^k$
HolE [Nickel et al. 2016]	$\mathbf{r}_{p}^{T}\left(\mathscr{F}^{-1}\left[\overline{\mathscr{F}[\mathbf{e}_{s}]}\odot\mathscr{F}[\mathbf{e}_{o}]\right]\right)$	$\mathbf{r}_p \in \mathbb{R}^k$
ComplEx [Trouillon et al. 2016]	$Re\left(\langle \mathbf{e}_{s}, \mathbf{r}_{p}, \overline{\mathbf{e}}_{o} \rangle\right)$	$\mathbf{r}_p \in \mathbb{C}^k$
ConvE [Dettmers et al. 2017]	$f\left(\operatorname{vec}\left(f\left([\overline{\mathbf{e}_{s}};\overline{\mathbf{r}_{p}}]*\omega\right)\right)\mathbf{W}\right)\mathbf{e}_{o}$	$\mathbf{r}_p \in \mathbb{R}^k, \mathbf{W} \in \mathbb{R}^{c \times k}$

Neural Link Prediction — Accuracy

Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean Reciprocal Rank (MRR), Hits@k. In MRR and Hits@k, for each test triple:

- Modify its subject with all the entities in the Knowledge Graph,
- Score all the triple variants, and compute the rank of the original test triple,
- Repeat for the object.

$$\mathsf{MRR} = \frac{1}{|\mathcal{T}|} \sum_{i=1}^{|\mathcal{T}|} \frac{1}{\mathsf{rank}_i}, \quad \mathsf{HITS}@k = \frac{|\{\mathsf{rank}_i \le 10\}|}{|\mathcal{T}|}$$

From [Lacroix et al. ICML 2018]

	Model	WI	N18	WN	18RR	FB	15K	FB15K-237		YAGO3-10	
		MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
al	CP-FRO	0.95	0.95	0.46	0.48	0.86	0.91	0.34	0.51	0.54	0.68
roc	CP-N3	0.95	0.96	0.47	0.54	0.86	0.91	0.36	0.54	0.57	0.71
cip	ComplEx-FRO	0.95	0.96	0.47	0.54	0.86	0.91	0.35	0.53	0.57	0.71
Re	ComplEx-N3	0.95	0.96	0.48	0.57	0.86	0.91	0.37	0.56	0.58	0.71

Convolutional 2D Knowledge Graph Embeddings

Idea — use ideas from *computer vision* for modeling the interactions between latent features.

Subject Embedding

Predicate Embedding

Convolutional 2D Knowledge Graph Embeddings

Idea — use ideas from *computer vision* for modeling the interactions between latent features.

Convolutional 2D Knowledge Graph Embeddings

Idea — use ideas from *computer vision* for modeling the interactions between latent features.

Convolutional 2D Knowledge Graph Embeddings

Idea — use ideas from *computer vision* for modeling the interactions between latent features.

✓ Scalable✓ State-of-the-art Results

Convolutional 2D Knowledge Graph Embeddings

Idea — use ideas from *computer vision* for modeling the interactions between latent features.

✓ Efficiency via parameter sharing
 ✓ State-of-the-art Results

Interpreting Knowledge Graph Embeddings

Quite hard to understand the *semantics* of the learned representations...

 Real Part
 Imaginary Part

 hypernym
 1.0
 3.0
 -3.1
 2.5
 -2.7
 3.2
 2.9
 1.7
 -3.0-3.0

Interpreting Knowledge Graph Embeddings

Quite hard to understand the *semantics* of the learned representations...

.. but we can use their geometric relationships for identifying — and *incorporating* — semantic relationships between them.

Regularising Knowledge Graph Embeddings

Quite hard to understand the *semantics* of the learned representations...

.. but we can use their geometric relationships for identifying — and *incorporating* — semantic relationships between them.

Regularising Knowledge Graph Embeddings

Quite hard to understand the *semantics* of the learned representations...

.. but we can use their geometric relationships for identifying — and *incorporating* — semantic relationships between them.

 \times is $a(x, y) \land$ is $a(y, z) \Rightarrow$ is a(x, z)

Idea — adversarial training process where, iteratively:

Idea — adversarial training process where, iteratively:

• An *adversary* searches for inputs where the model violates constraints

e.g. x, y, z such that

is $a(x, y) \wedge is a(y, z) \wedge \neg is a(x, z)$

Idea — adversarial training process where, iteratively:

- An *adversary* searches for inputs where the model violates constraints
- The model is *regularised* to correct such violations.

Idea — adversarial training process where, iteratively:

- An adversary searches for inputs where the model violates constraints,
- The model is *regularised* to correct such violations.

Formally:

$$\begin{array}{l}
\text{e.g. } S = \{x, y, z\} \text{ such that} \\
\text{is } a(x, y) \land \text{is } a(y, z) \land \neg \text{is } a(x, z) \\
& \underset{\Theta}{\text{min }} \mathscr{L}_{\text{data}}(D \mid \Theta) + \lambda \max_{S} \mathscr{L}_{\text{violation}}(S, D \mid \Theta) \\
& \underset{S}{\text{ormally:}}
\end{array}$$

Incorporating Background Knowledge via Adversarial Training

Idea — adversarial training process where, iteratively:

- An adversary searches for inputs where the model violates constraints,
- The model is *regularised* to correct such violations.

Formally:

$$\begin{array}{l}
\text{e.g. } S = \{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\} \text{ such that} \\
\text{is } a(\mathbf{e}_x, \mathbf{e}_y) \land \text{is } a(\mathbf{e}_y, \mathbf{e}_z) \land \neg \text{is } a(\mathbf{e}_x, \mathbf{e}_z) \\
& \text{is } a(\mathbf{e}_x, \mathbf{e}_y) \land \text{is } a(\mathbf{e}_y, \mathbf{e}_z) \land \neg \text{is } a(\mathbf{e}_x, \mathbf{e}_z) \\
& \Theta \end{array}$$

- Inputs S can be either *input space* or *embedding space*
- In most interesting cases, *max* has <u>closed form solutions</u>
- <u>Constraints are guaranteed to hold everywhere</u> in embedding space.

Idea — adversarial training process where, iteratively:

- An adversary searches for inputs where the model violates constraints,
- The model is *regularised* to correct such violations.

=ormally:

$$\begin{array}{l}
\text{e.g. } S = \{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\} \text{ such that} \\
\text{is } a(\mathbf{e}_x, \mathbf{e}_y) \land \text{is } a(\mathbf{e}_y, \mathbf{e}_z) \land \neg \text{is } a(\mathbf{e}_x, \mathbf{e}_z) \\
\text{is } a(\mathbf{e}_x, \mathbf{e}_y) \land \text{is } a(\mathbf{e}_y, \mathbf{e}_z) \land \neg \text{is } a(\mathbf{e}_x, \mathbf{e}_z) \\
\end{array}$$

✓ Incorporates Background Knowledge
 ✓ Verifiable

Incorporating Background Knowledge via Adversarial Training

Incorporating Background Knowledge in Natural Language Inference Models

Natural Language Inference — detect the type of relationship, *i.e. entailment*, *contradiction*, *neutral*, between two sentences.

Incorporating Background Knowledge in Natural Language Inference Models

Natural Language Inference — detect the type of relationship, *i.e. entailment*, *contradiction*, *neutral*, between two sentences.

If a stentence \mathbf{x} contradicts \mathbf{y} , then also \mathbf{y} contradicts \mathbf{x} . If \mathbf{x} entails \mathbf{y} , and \mathbf{y} entails \mathbf{z} , then \mathbf{x} also entails \mathbf{z} .

Incorporating Background Knowledge in Natural Language Inference Models

Natural Language Inference — detect the type of relationship, *i.e. entailment*, *contradiction*, *neutral*, between two sentences.

If a stentence \mathbf{x} contradicts \mathbf{y} , then also \mathbf{y} contradicts \mathbf{x} . If \mathbf{x} entails \mathbf{y} , and \mathbf{y} entails \mathbf{z} , then \mathbf{x} also entails \mathbf{z} .

x) A man in uniform is pushing a medical bed.
y) A man is pushing carrying something.

Incorporating Background Knowledge in Natural Language Inference Models

Natural Language Inference — detect the type of relationship, *i.e. entailment*, *contradiction*, *neutral*, between two sentences.

If a stentence \mathbf{x} contradicts \mathbf{y} , then also \mathbf{y} contradicts \mathbf{x} . If \mathbf{x} entails \mathbf{y} , and \mathbf{y} entails \mathbf{z} , then \mathbf{x} also entails \mathbf{z} .

x) A man in uniform is pushing a medical bed.
y) A man is pushing carrying something.

$$P(\mathbf{x} \xrightarrow{\text{entails}} \mathbf{y}) = 0.72$$

$$P(\mathbf{y} \xrightarrow{\text{contradicts}} \mathbf{x}) = 0.93$$
$$\mathscr{L}_{\text{violation}}(\{\mathbf{x}, \mathbf{y}\}) : 0.01 \rightsquigarrow 0.92$$

Incorporating Background Knowledge in Natural Language Inference Models

End-to-End Differentiable Reasoning

End-to-End Differentiable Reasoning

Core idea — we can combine *neural networks* and *symbolic models* by re-implementing classic reasoning algorithms using end-to-end differentiable (neural) architectures.

(Black-Box) Neural Models 🗲

- •Can generalise from noisy and ambiguois modalities
- •Can learn representations from data
- SOTA on a number of tasks

- Data efficient
- Interpretable
- Explainable
- Verifiable
- •Can incorporate background knowledge and constraints

Symbolic Reasoning Models

Reasoning via Backward Chaining

Backward Chaining — start with a list of *goals*, and work backwards from the *consequent* Q to the *antecedent* P to see if any data supports any of the consequents.

$$q(X) \leftarrow p(X)$$

$$p(a) \qquad q(a)?$$

$$p(b)$$

$$\dots$$

You can see backward chaining as a *query reformulation strategy.*

Reasoning via Backward Chaining

Backward Chaining — start with a list of *goals*, and work backwards from the *consequent* Q to the *antecedent* P to see if any data supports any of the consequents.

$$q(X) \leftarrow p(X)$$

$$p(a) \qquad q(a)?$$

$$p(b) \qquad p(a)$$

You can see backward chaining as a *query reformulation strategy.*

Reasoning via Backward Chaining

Backward Chaining — start with a list of *goals*, and work backwards from the *consequent* Q to the *antecedent* P to see if any data supports any of the consequents.

You can see backward chaining as a *query reformulation strategy.*

End-to-End Differentiable Reasoning

End-to-End Differentiable Reasoning

Knowledge Base:

End-to-End Differentiable Reasoning

Knowledge Base:

End-to-End Differentiable Reasoning

Knowledge Base:

End-to-End Differentiable Reasoning

Knowledge Base: grandPaOf(abe, bart) fatherOf(abe, homer) parentOf(homer, bart) $\theta_1(X, Y) \Leftarrow \theta_2(X, Z), \theta_3(Z, Y)$ fatherOf(abe, homer) parentOf(homer, bart) proof score S_1 proof score S_2 grandFatherOf(X, Y)fatherOf(abe,Z) Subgoals: X/abe Y/bartΖ Train via fatherOf(abe, Z)proof score S_3 proof score S_4 parentOf(Z, bart) **Self-Supervision:** fatherOf(abe, homer) $\sum \log p^{KB\setminus F}(F)$ proof score S_5 $F \in K$ $\log p^{KB}(\tilde{F})$

 $\tilde{F} \sim corr(F)$

End-to-End Differentiable Reasoning

Knowledge Base:

End-to-End Differentiable Reasoning

Knowledge Base:

End-to-End Differentiable Reasoning

	Query	Score S_{ρ}	Proofs / Explanations
	p_{2} rt $o_{2} f(conco \times 0.3)$ (01)	0.995	<pre>part_of(X, Y) :- has_part(Y, X) has_part(AFRICA.N.01, CONGO.N.03)</pre>
WN18	parc_or(condo.n.os, AFRICA.N.or)	0.787	<pre>part_of(X, Y) := instance_hyponym(Y, X) instance_hyponym(AFRICAN_COUNTRY.N.01, CONGO.N.03)</pre>
	$h_{\rm WDODW}$ (EVTINGUISH V 04 DECOURTE V 03)	0.987	hyponym(X, Y) :- hypernym(Y, X)
	hypollym(ExTindoISH. V.04, DECOUPLE. V.05)	0.920	hypernym(SNUFF_OUT.V.01, EXTINGUISH.V.04)
	<pre>part_of(PITUITARY.N.01, DIENCEPHALON.N.01)</pre>	0.995	has_part(DIENCEPHALON.N.01, PITUITARY.N.01)
	has_part(TEXAS.N.01, ODESSA.N.02)	0.961	<pre>has_part(X, Y):-part_of(Y, X) part_of(ODESSA.N.02, TEXAS.N.01)</pre>
	hyponym(SKELETAL_MUSCLE, ARTICULAR_MUSCLE)	0.987	hypernym(ARTICULAR_MUSCLE, SKELETAL_MUSCLE)
	<pre>deriv_related_form(REWRITE, REWRITING)</pre>	0.809	<pre>deriv_related_form(X, Y) :- hypernym(Y, X) hypernym(REVISE, REWRITE)</pre>
~	$(T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T$	0.962	<pre>also_see(X, Y) :- also_see(Y, X)</pre>
WN18RI	also_see(IRUE.A.01, FAITHFUL.A.01)	0.590	also_see(CONSTANT.A.02, FAITHFUL.A.01)
	also_see(GOOD.A.03, VIRTUOUS.A.01)	0.962 0.702	also_see(VIRTUOUS.A.01,GOOD.A.03) also_see(RIGHTEOUS.A.01,VIRTUOUS.A.01)
	instance_hypernym(CHAPLIN,FILM_MAKER)	0.812	instance_hypernym(CHAPLIN,COMEDIAN)

[Minervini et al. AAAI 2020]

End-to-End Differentiable Reasoning

			Test-I				Test-II				Test-ALL			
			Hi	lits@N(%) MPP		Hits@N (%) MI			MRR	Hits@N(%)		%)	MPP	
			3	5	10	WINK	3	5	10	WIIXIX	3	5	10	WINK
		KALE-Pre (Guo et al. 2016)	35.8	41.9	49.8	0.291	82.9	86.1	89.9	0.713	61.7	66.2	71.8	0.523
L	S	KALE-Joint (Guo et al. 2016)	38.4	44.7	52.2	0.325	79.7	84.1	89.6	0.684	61.2	66.4	72.8	0.523
/itl	ule	ASR-DistMult (Minervini et al. 2017)	36.3	40.3	44.9	0.330	98.0	99.0	99.2	0.948	70.7	73.1	75.2	0.675
×,	Z	ASR-ComplEx (Minervini et al. 2017)	37.3	41.0	45.9	0.338	99.2	99.3	99.4	0.984	71.7	73.6	75.7	0.698
		KBLR (García-Durán and Niepert 2018)	_	_	_	_	_	-	-	_	74.0	77.0	79. 7	0.702
it		TransE (Bordes et al. 2013)	36.0	41.5	48.1	0.296	77.5	82.8	88.4	0.630	58.9	64.2	70.2	0.480
nor.	es	DistMult (Yang et al. 2015)	36.0	40.3	45.3	0.313	92.3	93.8	94.7	0.874	67.4	70.2	72.9	0.628
lith	Ku	ComplEx (Trouillon et al. 2016)	37.0	41.3	46.2	0.329	91.4	91.9	92.4	0.887	67.3	69.5	71.9	0.641
3		GNTPs	33.7	36.9	41.2	0.313	(98.2	99.0	99.3	0.977)	(69.2	71.1	73.2	0.678)

					Models				
Datasets		Metrics	NTP ³	GNTP		NeuralLP	MINERVA	Rules Learned by GNTP	
				Standard	Attention				
Countries	S1 S2 S3	AUC-PR	$\begin{array}{c} 90.83 \pm 15.4 \\ 87.40 \pm 11.7 \\ 56.68 \pm 17.6 \end{array}$	$\begin{array}{c} 99.98 \pm 0.05 \\ 90.82 \pm 0.88 \\ 87.70 \pm 4.79 \end{array}$	$\begin{array}{c} \textbf{100.0} \pm \textbf{0.0} \\ \textbf{93.48} \pm \textbf{3.29} \\ \textbf{91.27} \pm \textbf{4.02} \end{array}$	$\begin{array}{c} \textbf{100.0} \pm \textbf{0.0} \\ 75.1 \pm 0.3 \\ 92.20 \pm 0.2 \end{array}$	$\begin{array}{c} \textbf{100.0} \pm \textbf{0.0} \\ 92.36 \pm 2.41 \\ \textbf{95.10} \pm \textbf{1.20} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Kinship		MRR HITS@1 HITS@3 HITS@10	0.35 0.24 0.37 0.57	0.719 0.586 0.815 0.958	0.759 0.642 0.850 0.959	0.619 0.475 0.707 0.912	0.720 0.605 0.812 0.924	term0(X, Y) := term0(Y, X) term4(X, Y) := term4(Y, X) term13(X,Y) := term13(X, Z), term10(Z, Y) term2(X,Y) := term4(X, Z), term7(Z, Y)	

[Minervini et al. AAAI 2020]

End-to-End Differentiable Reasoning with Natural Language

We can embed facts from the KG and facts from text in a *shared embedding space*, and learn to reason over them *jointly:*

[Minervini et al. AAAI 2020]

End-to-End Differentiable Reasoning with Natural Language

We can embed facts from the KG and facts from text in a *shared embedding space*, and learn to reason over them *jointly:*

[Welbl et al. ACL 2019, Minervini et al. AAAI 2020]

End-to-End Differentiable Reasoning with Natural Language

We can embed facts from the KG and facts from text in a *shared embedding space*, and learn to reason over them *jointly:*

[Welbl et al. ACL 2019, Minervini et al. AAAI 2020]

Thank you!