
MEng Individual Project

Imperial College London

Department of Computing

HACR:
Hybrid Architecture for Concept Reasoning

Author:
Kexin Gu

Supervisor:
Prof. Alessandra Russo

Second Marker:
Dr. Krysia Broda

Abstract

The most basic way for humans to learn concepts is with our eyes. Simply by observing our
surroundings, we can understand complex scenarios. Then, when we see something similar
happen later, we can recognise the common concepts and reason about them with our
new knowledge. Such a process requires high-level cognition, including visual perception,
concept formation, and reasoning. In recent years, numerous machine learning approaches
have focused on learning from complex or multi-modality data to model human-level cogni-
tion. In particular, there has been a rising wave of neural-symbolic models that incorporate
symbolic representations into the architectures.

In this project, we develop a hybrid concept-learning pipeline called Hybrid Archi-
tecture for Concept Reasoning, or HACR for short. HACR is designed to learn from
a challenging Video Q&A dataset, TVQA+ dataset. We construct human-interpretable
symbolic representations by using pre-trained neural models to extract features from video
frames and text. A state-of-the-art symbolic learning system, ILASP, uses these feature
representations to search for general rules representing the concepts. Our evaluation shows
that HACR is able to learn robust and general rules to represent complex real-life concepts.
Furthermore, based on the learned rules, our pipeline can reason about concepts with high
accuracy and transparency, providing the feature extraction is sufficiently accurate. This
project paves the way for greater use of symbolic learning in neural-symbolic models in the
future.

Acknowledgements

I would like to express my gratitude to Prof. Alessandra Russo for all the precious time,
advice, insights, and help given to me throughout the project. It was a great pleasure to
be under your guidance, and I am looking forward to continuing working with you in my
PhD study.

I would like to thank Nuri Cingillioglu, Daniel Pace and Mark Law for all the inspiring
suggestions and discussions during our meetings and emails. Your support has helped me
tackle several technical issues and understand interesting experiment results throughout
the project.

I would like to thank my personal tutor, Dalal Alrajeh, who has guided me and sup-
ported me throughout my study at Imperial College London. Your advice and help have
encouraged me to go through all sorts of obstacles and helped me to decide the next step
after this degree.

I would like to thank my fiancé, Matthew Baugh, for all your company, love and care
when I am far away from home on my own. Your innovative ideas and suggestions on
computer vision have helped to improve the visual feature extraction in this project.

I would like to thank all my friends and coursemates. Thank you for all the support
and joy that made it an amazing four years of study. I wish everyone all the best with
your next step after university.

Finally, I would like to dedicate this project to my parents, Tao Gu and Jun Zhao. You
have been incredibly encouraging about my research passion and supported me throughout
my study in London, even from a country that is thousands of miles away.

Contents

1 Introduction 4
1.1 Motivations . 4
1.2 Objectives . 5
1.3 Challenges . 5
1.4 Contributions . 6

2 Background 7
2.1 ASP . 7
2.2 ILASP . 7
2.3 Event Calculus . 8
2.4 Abrupt Shot Transition . 9
2.5 Jaccard Similarity Coefficient . 10

3 HACR Overview 11
3.1 Targeted Concepts . 11
3.2 Dataset . 11
3.3 Architecture Design . 13

4 Pre-processor 15
4.1 Language Processing . 15

4.1.1 Dependency Parsing . 15
4.1.2 Synonym, Hypernym, and Hyponym Check 17

4.2 Frame Processing . 17
4.2.1 Object Detection . 18
4.2.2 Face Detection and Classification . 19
4.2.3 Abrupt Transition Detection . 22
4.2.4 Unused Component: Human Pose Estimation 23

4.3 Symbolic Representation Translation . 24

5 Symbolic Learning and Reasoning 27
5.1 HACR Symbolic Learning Task . 27
5.2 HACR Symbolic Reasoning Task . 33

6 Evaluation 36
6.1 Experiment Settings . 36
6.2 Pre-processing . 37

6.2.1 Object Detection . 37
6.2.2 Face Detection and Classification . 39
6.2.3 Abrupt Transition Detection . 41

6.3 Rule-learning . 42
6.4 Overall Pipeline . 43

2

7 Related Work 44
7.1 Neural Architectures for Video Q&A . 44
7.2 Neural-Symbolic Approaches . 48

7.2.1 Hybrid Systems . 48
7.2.2 Neural-Symbolic Frameworks . 52

8 Conclusions and Future Works 53
8.1 Achievements . 53
8.2 Future Works . 54
8.3 Ethical Considerations . 55

Bibliography 55

Appendices 61

A Pre-processing 62

3

Chapter 1

Introduction

The process of concept learning for humans involves observing examples and categorising
them based on their different attributes [1]. From just a few examples, humans can learn
concepts and then apply them to recognise objects and events, while also providing justi-
fication and explanation. Although massive progress has been made in statistical machine
learning in the past decades, these models still struggle with data hungriness and lack of
interpretability.

This project develops a neural-symbolic architecture that learns visual concepts, specif-
ically the concepts of ‘holding’ and ‘entering scene’, through video frames and question-
answer pairs. We integrate symbolic inductive learning with neural networks to perform
descriptive rule-based learning on spatial-temporal properties.

1.1 Motivations

Concept learning in complex environments is challenging for agents. They are required to
have strong generalisation, which is a necessary step towards the next generation of robust
AI [2]. Images and videos are both common and feature-rich mediums with concepts in
various forms and complexity level. Visual Question Answering (VQA) and Video Question
Answering (Video Q&A) are two benchmark tasks of complex learning that utilise these
mediums and have been widely studied in recent years. Both tasks fuse multiple AI-
complete tasks: natural language understanding, vision understanding, and knowledge
reasoning [3]. However, Video Q&A is considerably more challenging than VQA due to
the extra dimension of time (see Fig 1.1 as an example).

Time
00:10:01 0:10:75

Figure 1.1: Concept of ‘someone entering the scene’. Based on only one frame it’s impos-
sible to know if anyone enters the scene. (Images from The Big Bang Theory.)

Most approaches to these tasks are purely neural systems and incorporate various
novel learning mechanism such as attention. Although they can achieve high levels of per-
formance, it is extremely difficult to interpret both the internal representations and the
reasoning process. In recent years, some newly-emerged research on hybrid systems has

4

shown exceptional results on improving transparency while maintaining high performance.
The novel works include hybrid concept learners for VQA [4, 5], and the hybrid Video Q&A
architectures [6, 7]. Compared to pure statistical methods, these systems encode concept
representations as well as visual and textual features into functional programs, and then
execute the programs to obtain an answer. Yet, concept learning is still performed with
neural algorithms, which still lacks transparency. On the other hand, [8] has incorporated
an efficient symbolic paradigm, Answer Set Programming [9], to replace synthetic pro-
grams. This system is also equipped with background knowledge to model physics and
time, providing robust reasoning and high readability. However, the system does require
human engineering to encode concepts such as physical laws.

We believe that the next step for the neural-symbolic research would be to utilise
symbolic Inductive Learning systems to perform automated rule learning. Apart from
symbolic learning, the pipeline would also use symbolic reasoning paradigm ASP for sound
reasoning. Such neural-symbolic approaches would benefit from the accuracy of statistical
learning, as well as the robustness and high transparency of symbolic learning and reason-
ing. These systems can model the high-level cognitive functions in full better than classic
neural approaches [10]. Moreover, their ability to consolidate neural and symbolic learning
would be a significant step towards artificial general intelligence (AGI) [11].

1.2 Objectives

This project aims to improve existing frameworks of neural-symbolic pipeline by using
both symbolic learning and symbolic reasoning paradigm. Our approach explores the
capability of such a hybrid pipeline in learning concepts through Video Q&A, primarily
targeting TVQA+ dataset [12]. The following objectives are the key steps to achieve a
concept-learning pipeline that can answer questions based on video clips.

Objective 1: Extract features and represent them in Answer Set Programming [9]. Our
neural-symbolic approach should be able to handle unstructured data from the video frames
and question-answer pairs and encode them in Answer Set Programming (ASP) syntax.

Objective 2: Learn general symbolic rules that help with question answering. During
training time, our pipeline would encode the ground truth visual and textual features,
and use them to create examples for an inductive learner. Our pipeline will make use of
the state-of-the-art ASP programs learner ILASP[13], to learn rules that capture real-life
concepts the best.

Objective 3: Develop an integrated pipeline for learning and reasoning, and evaluate it.
At inference time, extracted knowledge from frames and texts should be combined with
learnt rules from ILASP to form a reasoning model. The model’s answer set(s) will include
the predicted answer(s) for the question. Each learned concept will be a general first-order
rule. Its performance will be evaluated by measuring how close the predicted answer is
compared to the ground truth answer.

1.3 Challenges

The two main challenges introduced by using the TVQA+ dataset [12] for our hybrid
concept learning task are:

• Video Q&A on real-life videos with editing: Video clips in the TVQA+ dataset
are selected from the TV series The Big Bang Theory. Compared to the synthetic
and angle-fixed videos in the CLEVRER dataset [6], the video clips in TVQA+ are
full of real-life objects, events and concepts. Cinematic techniques are also applied

5

when producing these videos. Apart from finding the relevant objects and characters
in a single frame, we also need to handle camera angle changes between frames.

• Character identification: All the questions refer to specific characters in the video
clips, so we cannot effectively answer the questions without first identifying the peo-
ple. Compared to the CLEVRER dataset, which only distinguishes physical objects
such as sphere and cylinder, humans have more complex feature. Moreover, the
appearance of humans when viewed from different camera angles varies much more
than that of simple 3D objects.

1.4 Contributions

The main contribution of this project to neural-symbolic research is a hybrid concept-
learning architectures on real-life video. Comparing to existing hybrid models such as
[6, 7, 8] that are created for synthetic video and reason about only physics concepts, our
project study human-involved concepts from real-life videos. To our knowledge, our hybrid
architecture would be one of the first hybrid systems that experiment with the TVQA+
dataset.

Additionally, this project provides an integration model of neural and symbolic learning.
Neural components extract features from unstructured data, and concepts are learned
through an Inductive Learning system. In contrast to existing works, our pipeline utilises
the symbolic paradigm ASP for both rule learning and reasoning, with minimum use of
human-engineered concept encoding. Moreover, compared to pure statistical approaches,
our symbolic learned concepts are easy to interpret, and symbolic reasoning offers more
transparency in the question-answering process.

6

Chapter 2

Background

In this chapter, we briefly introduce the technical background of our project. We focus on
the symbolic reasoning model Answer Set Programming [9], the inductive learning system
ILASP [13], and the event-based time formalisation Event Calculus [14]. Apart from
the symbolic basis of the project, we also introduce Abrupt Shot Transition and Jaccard
Similarity Coefficient that play important roles in our approach.

2.1 ASP

Answer Set Programming (ASP) [9] is a logic programming language that efficiently solves
problems in a declarative way. Given a problem and formalise it into a logic program,
solving this logic program is equivalent to solving the original problem. The solutions to
the logic program are called answer sets.

Normal rules are the basis of an ASP program. They are of the form
h :− b1, ..., bn, not c1, ..., cm, where h, bi and ci are atoms, and not is negation as failure.
We refer to h as the head of the rule and the conjunction on the right-hand side as the body
of the rule. A rule without a body is a fact that always holds. A rule without a head is a
constraint and rules out the candidate sets of atoms that satisfy the constraint’s body. All
ASP programs in this project are formed with normal rules, facts and constraints. Note
that many other forms of rules are not mentioned here but are available as part of the ASP
syntax.

A Herbrand interpretation is a set of ground atoms that are assigned to be true by
the interpretation [15]. A Herbrand interpretation I is a model of an ASP program P if
and only if every clause in the program can be satisfied by it. That is, for all r ∈ P , if I
satisfies the body or r, then I must also include the head of r.

Given a grounded ASP program P and a set of ground atoms X, we can compute
its reduct : PX := {head(r) ← body+(r) | r ∈ P, body−(r) ∩ X = ∅}. A Herbrand
interpretation I is an answer set of program P if and only if it is the subset-minimal model
of the reduct P I . We use AS(P) to denote the set of all answer sets of a program. In this
project, we use the ASP solver clingo [16] to compute the answer sets of a program.

2.2 ILASP

Learning from Anser Set (LAS) is a framework of Inductive Logic Programming (ILP),
which aims to learn a hypothesis from a set of examples encoded in ASP syntax that are
called partial interpretations [13]. A partial interpretation has two sets of ground atoms:
einc called inclusion set, and eexc called exclusion set. An interpretation I is called to
extend a partial interpretation e = 〈einc, eexc〉 if and only if einc ⊆ I and eexc ∩ I = ∅ [13].

7

A LAS task is formalised as a tuple T = 〈B,SM , 〈E+, E−〉〉, whereB is an ASP program
representing the background knowledge, SM is a set of ASP rules called the hypothesis space,
and E+ and E− are sets of partial interpretations called positive and negative examples
respectively [13]. A hypothesis H ⊆ SM is called to be an inductive solution of T if and
only if it satisfies the following conditions [13]:

∀e+ ∈ E+.∃A ∈ AS(B ∪H) such that A extends e+

∀e− ∈ E−.@A ∈ AS(B ∪H) such that A extends e−

ILASP [13] is a state-of-the-art ILP system following the LAS framework. Apart
from learning from partial interpretations, ILASP also supports its variation, weighted
context-dependent partial interpretations (WCDPIs) [17]. A WCDPI is defined as e =
〈eid, epen, epi, ectx〉, where eid is the example’s identifier, epen is the penalty, epi is a partial
interpetation, and ectx is an ASP program called context. ectx describe the ‘settings’ for
the example, and for a WCDPI e to be accepted by a program P , there must be an answer
set A ∈ AS(P ∪ ectx) such that A extends epi. Similar to partial interpretations, WCDPI
can be positive or negative. When learning from WCDPIs, ILASP searches for the optimal
hypothesis H∗ ∈ SM such that as many WCDPIs in E+ are accepted by B ∪H∗ and as
few WCDPIs in E− are accepted by B ∪ H∗. When a positive WCDPI is not accepted
or a negative WCDPI is accepted, we pay the penalty epi of that example. The optimal
hypothesis is the one with shortest length and least penalty.

2.3 Event Calculus

Event Calculus is an event-based formalisation of time using first-order predicates and
negation as failure. In this project, we use the Simple Event Calculus[14] that was based
on the original proposed Event Calculus in [18].

The basis of Event Calculus is fluents, which represent anything that might change
over time. The basic predicates in Table 2.1 are used together with fluents and are able to
describe a wide range of events and effects of actions that happen in a period of time.

Predicate Meaning
initiates(A,F, T) Action A at time T causes fluent F to start to hold
terminates(A,F, T) Action A at time T stops fluent F to hold
initially(F) Fluent F holds from time 0
happens(A, T) Action A happens at time T
holdsAt(F, T) Fluent F holds at time T
clipped(F, T) Fluent F is clipped at time T

Table 2.1: Predicates used in Simple Event Calculus, based on predicates in [14].

The following axioms are required to relate the predicates:

holdsAt(F, 0)← initially(F).

holdsAt(F, T + 1)← holdsAt(F, T), not clipped(F, T).

holdsAt(F, T + 1)← initates(A,F, T), not clipped(F, T).

clipped(F, T)← terminates(A,F, T).

Event Calculus is a declarative and robust model for reasoning about time with a few
simple predicates. In this project, we adjust the Simple Event Calculus for our use, and
our task-dependent ASP implementation of it is detailed in Section 5.1.

8

2.4 Abrupt Shot Transition

A shot is a sequence of uninterrupted frames over a time period [19]. Shot transitions are
commonly used as a cinematic technique in films and TV series. An abrupt shot transition,
or abrupt transition for short, is a sudden change between two shots that happens in one
frame [20]. For the TVQA+ dataset, most shot transitions used are abrupt transitions.
In this dataset, abrupt transition mostly happens when the camera angle changes in the
current scene, while it is also occasionally used to let the video move on to another scene.

It is vital to detect such an abrupt transition to reason about persistency. When
someone in the camera suddenly ‘disappears’ in the next frame, if it is angle changes that
causes the ‘disappearance’, then we know that the character is very likely still at the current
scene even we cannot see them. Figure 2.1 provides an example of that abrupt transition
occurs without affecting any persistency of the characters.

Appear in the camera:
Howard (left 1), Leonard (left 2),
Sheldon (left 3)

At current scene/location:
Howard (left 1), Leonard (left 2),
Sheldon (left 3)

Appear in the camera:
Howard (left 1), Leonard (left 2)

At current scene/location:
Howard (left 1), Leonard (left 2),
Sheldon (not in camera)

Time

Appear in the camera:
Sheldon

At current scene/location:
Howard (not in camera),
Leonard (not in camera),
Sheldon

Abrupt
transition

Abrupt
transition

Figure 2.1: An example of abrupt transition that affects who is in the camera but does
not affect the knowledge of who is in the current scene.

9

2.5 Jaccard Similarity Coefficient

Jaccard similarity coefficient is a measure of how similar two sets are. It is defined as the
proportion of the intersection over the union:

J(A,B) =
|A ∩B|
|A ∪B|

(2.1)

This score is commonly used for evaluating object detection models. For this project,
we use it for evaluating the performance of the pipeline. The reason for choosing the
Jaccard score and the detail of the evaluation are described in Chapter 6.

10

Chapter 3

HACR Overview

This chapter provides an overview of our pipeline, Hybrid Architecture for Concept
Learning (HACR in short), for concept learning from Video Q&A, and the dataset we
use to solve the task. Due to the high complexity of real-life videos, our approach focuses
on two specific concepts while still being a challenging task overall.

3.1 Targeted Concepts

HACR focuses on learning two visual concepts:

1. Someone is holding something (‘holding’): The holding action in the dataset does
not limit to just having an object in one’s hand, but it can also be someone carrying a
bag over their shoulder. The main idea of holding is that a person supports an object,
and the object is not falling from them. This concept requires an understanding of
spatial relations between a person and an object.

2. Someone enters the scene (‘entering’): In general, the entering action involves lo-
cation changing. Our simplified ‘entering’ concept focuses on knowing that someone
who was not in the current scene beforehand appears next. The difference between
the two types of entering is shown in Figure 3.1. Only recognising the existing char-
acter in the frame is insufficient to learn our simplified concept of ‘entering the scene’.
It requires more complex temporal reasoning that relate properties and changes be-
tween frames (see Figure 1.1 as an example).

3.2 Dataset

The dataset for HACR is based on the TVQA+ dataset [12], a subset of the TVQA
dataset [21]. The videos clips from TVQA+ are collected from the TV series The Big
Bang Theory, and the questions are human created and have various types of annotations.
A sample in the dataset provides the QA pair, the ground truth answer, the ground truth
bounding boxes for relevant objects and the ground truth relevant time span for answering
the question. Within the scope of this project, we have created the following subsets of
the TVQA+ dataset:

1. ‘Holding’ questions: This is a subset of the TVQA+ questions, where the question
for each sample would be in the form of ‘What is someone holding’. We use
dependency parsing to filter out the questions that do not match the pattern (The
approach is detailed in Section 4.1 later). Our subset is slightly different in terms
of the wording of the questions. The symbolic representation highly depends on the

11

(a) Leonard (in green jacket) and Dennis (in red cardigan) entering
Sheldon’s office.

(b) Sheldon (in green shirt) entering the scene where Leonard (in grey jacket)
and Raj (in purple jacket) are right now.

Figure 3.1: (a) shows the case of people entering a location while staying in the scene
whole time. A lot of the ‘entering’ questions from the TVQA+ dataset fall into this type
of entering action. (b) is the situation where someone is not yet at the current scene and
enter later, which would be the concept HACR focuses on.

correctness and grammatical precision of the text. Therefore, we manually fix the
grammar mistakes and typos in the original texts to avoid unnecessary error and
model-irrelevant poor performance.

2. ‘Entering’ questions: The majority of ‘entering’ questions in the TVQA+ dataset
focus more on location change as shown in Figure 3.1a, instead of the change of
someone’s appearance. Thus for learning specifically ‘entering the scene’, we have
handcrafted 10 ‘Who enters the scene...’ questions. The questions are based on some
of the video clips in TVQA+ dataset. In the annotation, we include the relevant time
span to answer the question, the appearance periods for the characters and who are
already in the scene. We do not include any bounding boxes since the exact spatial
location is non-essential for answering the question. We also annotate the abrupt
transitions in the relevant time span. Figure 3.2 shows an example of the question
and its annotations that we create.

Time

Abrupt transition pair

07 08 11

... ...

In camera: Penny, Leonard In camera: Penny, Leonard In camera: Penny, Leonard,
Sheldon, Amy

Who enter the scene when Penny and Leonard are sitting on the
sofa?

a0: Howard and Bernadette
a1: Penny 's parents
a2: Sheldon and Amy
a3: Two strangers
a4: Raj and Emily

ts: [0, 4.03],
initial_in_scene: ["penny", "leonard"]
scene_change_pairs: [[7, 8]]

in_camera: {
 "amy": [
 [11, 13]
],
 "leonard": [
 [1, 13]
],
 "penny": [
 [1, 13]
],
 "sheldon": [
 [9, 13]
]
 },

Figure 3.2: An example of question we create for learning ‘entering the scene’.

12

3.3 Architecture Design

The neural-symbolic system introduced in this paper, namely the Hybrid Architecture
for Concept Reasoning (HACR), can be represented as the pipeline shown in Fig 3.3.
During training, we feed the question-answer pair with its ground truth annotations to the
pipeline. During inference, we only give the question, multiple choices, video frames, and
ground truth time span1to HACR. The pre-processing stage is shared during training and
inference, yet the data flow through symbolic components differently.

ASP
program

Labelled
WCDPI(s)

Pre-processor Symbolic
reasoner

 {
 'qid': 59566,
 'vid_name': 's06e21_seg02_clip_05',
 'q': 'What object is Leonard holding when he is
asking Penny how much she loved the movie ?',
 'ts': [14.43, 20.39],
 'a0': 'A bowl of popcorn .',
 ...

 "bbox": {
 "46": [
 {
 "img_id": 46,
 "top": 50,
 "height": 166,
 "width": 145,
 "label": "Leonard",
 "left": 156
 },
 ...
],
 ...
 }
 }

Video frames

Question json

Learnt
rules

ILASP

Predicted
answer(s)

Training
input

Inference
input

Figure 3.3: HACR architecture. Blue lines indicate data flow during training time, while
black lines indicate data flow during inference time. Note that we do not feed the subtitles
to the pipeline, as they are less relevant to our visual concept learning.

Pre-processing. The pre-processor utilises existing work on natural language process-
ing and computer vision to extract features from the given question and its corresponding
video frames. Extracted features vary from concepts to concepts. The pre-processing
stage also encodes the features for the symbolic components. It translates the features into
weighted context-dependent partial interpretations (WCDPIs) for training the symbolic
learner ILASP, or into an ASP program to be directly executed by the symbolic reasoner
to get an answer.

Training time - Symbolic learning with ILASP. HACR uses ILASP [13] for in-
ductive learning. In order to reason about the effect of events and persistency over time,
the background knowledge includes encoded general Event Calculus [14] rules for captur-
ing the frames problem. We construct weighted context-dependent partial interpretations
(WCDPIs) from ground truth annotations and let ILASP learn general rules representing
the concepts from the examples.

1Since the purpose of HACR is to learn concepts, we consider that predicting relevant time span to
answer the question is non-essential for the task. Our decision of giving the ground truth time span to our
pipeline is a very different decision from existing neural architectures, as they are not provided with the
ground truth during training or inference, but try to predict one themselves.

13

Inference time - Symbolic Reasoning with ASP. During inference, the reasoner
combines the rules learned during training with encoded question-specific features into one
ASP program. The fused program is then solved with clingo [16] to compute the answer
set of the program. The answer sets include predicates of the concept the question asks
for, and answers are extracted by matching a regular expression onto the predicates.

In Chapter 4 we describe the functions and design of the Pre-Processor. In Chapter 5
we introduce the two symbolic tasks of our pipeline, Symbolic Learning and Symbolic
Reasoning.

14

Chapter 4

Pre-processor

This chapter presents the pre-processing component of our HACR architecture. We sep-
arate the feature extraction based on the input type: image and text. While the two
processes handle the modalities differently, they come together in the last stage of trans-
lating features to symbolic representations. We first introduce the Language Processing
that manipulates text and then present the Frame Processing that deals with images, with
the description of the Symbolic Representation Translation component in the end.

4.1 Language Processing

TVQA+ dataset provides multiple types of text input, including questions, answers, ground
truth annotations of labels, and subtitles. The subtitle is less relevant for our visual concept
learning and thus not handled by our language processing. The rest is handled with our
language processing with the following steps:

• Dependency parsing: Most questions share a very similar pattern of wording for
the same concept. Instead of matching regular expressions on the questions, it is
more robust to extract the action, subject, and object through the dependency tree
of the questions, especially when the verbs are in past tense or other grammatical
tenses.

• Synonym, hypernym, and hyponym check: For the ‘holding’ concept, the ob-
ject we are interested in is usually a physical item. The label received through the
object detection often differs from the wording used in the question or answer, al-
though they refer to the same item. Checking whether two words are synonyms
could cover some cases, while hypernym and hyponym are required for less trivial
scenarios. For example, if the answer is a shirt and the object detector identifies a
T-shirt, this could be a potential answer, as ‘shirt’ is a hypernym of ‘T-shirt’.

4.1.1 Dependency Parsing

Dependency parsing aims to extract directed relationships between words [22]. Based on
the roles of the words, they are categorised into head and dependents. Figure 4.1 shows
an example of dependency parsing on a question. For our pipeline, we use the pre-trained
en_core_web_sm model in the spacy2 package to perform dependency parsing.

There would be only one root word that dominates the whole sentence, which usually
is the action word. With dependency parsing, we can easily extract the subject and object
associated with the action. These properties are used to filter the questions as well as

2https://spacy.io/usage/models

15

https://spacy.io/usage/models

Figure 4.1: A visualisation of dependency parsing on a ‘holding’ question, with displacy
from spacy.

constructing symbolic representation (detailed in Section 4.3). To see whether a question
fits the concept learning task, we check if the question’s root word is that action in the
concept, and has a person as its subject dependent – i.e., a name with a ‘nsubj’ dependency
tag. For example, in Figure 4.1, the root word is ‘holding’ and its noun subject dependent
is Penny. We also check if the person is in the set of characters that we can recognise
through our face detection module (detailed in Section 4.2.2). If not, we would ignore that
question. Table 4.1 shows the result of our training set question filtering for ‘holding’.

We construct the ‘entering’ training set ourselves: all questions follow the pattern of
having ‘enter’ as the root action, with all people mentioned included in the pre-defined
characters set. Therefore, further filtering is not required for the ‘entering’ learning task.

Count % of all Qs % of ‘Holding’ Qs
All questions 23545 100% –
‘Holding’ questions 908 3.86% 100%
+ parsed without error * 886 3.76% 97.6%
+ COCO answer obj. ** 91 0.386% 10.0%

Table 4.1: ‘Holding’ questions number and percentage in TVQA+ training set.
*Parsed without error: There are a few edge cases that would not pass the check we mention
above. For example, some questions involve multiple people as the action subjects. These
questions are simply ignored without furthur processing.
**COCO answer obj.: These are the questions that their answers’ objects are in the COCO
dataset category. The reason to check whether an object is in the COCO category is due
to our object detector, which is pre-trained on COCO dataset and can only detect objects
in its category. More details of the object detector is detailed in Section 4.2.1. Whether an
object is in the COCO category is verified by checking synonym, hypernym and hyponym.

Limitation

Accuracy when parsing specific names: In most cases, the en_core_web_sm model
returns the correct dependency tree. However, we notice that the model often mislabels
Raj as an ’adverbial modifier’ (advmod), as shown in Figure 4.2. The name Raj is short for
Rajesh, and the word Raj itself refers to‘the former British rule of the Indian subcontinent’
according to Merriam-Webster [23]. Under a perfect language model, we would only need
to check if an action word’s dependent is a noun or pronoun to decide if it can an action’s
subject or object. However, this inaccuracy in the pre-trained language model forces us
to include ‘advmod’ as another possible tag for a word to be considered. While including
the ‘advmod’ tag does not introduce any false positive for the current task, this does make
the code less trivial and potentially could introduce errors. For example, if an ‘advmod’
word that is not ‘Raj’ is a dependent of an action word, then the word would be wrongly

16

treated as an action’s subject or object.

Figure 4.2: Dependency parsing for sentence including the name ‘Raj’. While ‘Raj’ should
be the action subject with the dependency tag ‘nsubj’, it gets a label of ‘advmod’ (adverbial
modifier).

4.1.2 Synonym, Hypernym, and Hyponym Check

We use wordnet3 from the nltk package to perform synonym, hypernym and hyponym
checks. The wordnet interface provides a set of synonyms for each word, called synset.
When checking if word A and word B are synonyms of each other, we check if word A is
in word B’s synset or vice versa. wordnet also provides the hypernym or hyponym of a
synset. Thus, to check if word A is word B’s hypernym or hyponym, we check if word A
is a hypernym or hyponym of any word B’s synsets.

Limitation

While the above method helps us to identify pairs of words that linguistically mean the
same object in many cases, it cannot link two words with more complex relations. An
example is ‘cup’ and ‘mug’, which is a type of cup itself. Although ‘cup’ and ‘mug’ are
not linguistically linked via synonyms, hypernyms, or hyponyms under wordnet, because
of the type-subtype relation, a human would pick the answer ‘cup’ if knowing there is a
mug in the image and ‘mug’ is not an option. This lack of flexibility causes the pipeline
to eventually miss answers even if the object is detected and reasoned as being held by
someone.

4.2 Frame Processing

A single image provides stationary spatial attributes of objects, while consecutive frames
provide temporal information. For general concept learning, the frame processing module
should be capable of handling feature extraction for both cases. Focusing on ‘holding’ and
‘entering’, the frame processing stage for HACR is designed to achieve the following tasks:

• Object detection: We should be able to locate and label the objects (including
human) in each frame. While non-human objects are not required for learning ‘en-
tering’, detecting people in the frame is required for the later stage of identification.

• Face detection and classification: This is the stage of recognising a person in the
frame. The questions that HACR would try to answer requires precise knowledge of
the individual’s identity, making it mandatory to identify the person.

• Abrupt transition detection: Getting a false positive of someone entering the
scene is possible due to abrupt shot transition (see Figure 2.1). In order to avoid

3https://www.nltk.org/howto/wordnet.html

17

https://www.nltk.org/howto/wordnet.html

such problems, all abrupt transitions should be detected and passed to the symbolic
representation translator.

A summarised pipeline is shown in Figure 4.3. In this section, we detail in order the
design for each task mentioned above.

Human

Objects

Object detection Identified
individuals

Face detection and
classification

Transition
pair

Abrupt transition
detection

Symbolic
representation

translation

ASP programs/
WCDPI examples

Language processing resultsLanguage
processing

Figure 4.3: Frame processing overview. The symbolic representation translation is shared
with the language processing pipeline. The components are described in the rest of this
section.

4.2.1 Object Detection

One commonly-used two-stage object detection approach is Faster R-CNN [24]. We use
torchvision’s pre-trained Faster R-CNN with ResNet-50-PFN backbone4. The model is
already trained on the COCO train2017, and we use it for inference only without further
tuning. The model takes in images with flexible size and gives a list of object predictions
for each image. For each object, its prediction contains the coordinates of the bounding
box’s corners, the label of that object and the confidence score of the prediction. We filter
out the objects that the model are not confident about (i.e. having a low confidence score,
and in our case, the threshold is 0.7). Figure 4.4 shows the predictions from the model
after filtering.

Figure 4.4: A demonstration of object detection with torchvision’s pre-trained Faster
R-CNN with ResNet-50-PFN backbone.

4https://pytorch.org/vision/stable/models.html#faster-r-cnn

18

https://pytorch.org/vision/stable/models.html#faster-r-cnn

The kept objects are then categorised based on their type. The objects detected as
humans are passed onto the next step of face detection and classification. Physical objects
will be passed directly to the symbolic translator if we are learning the ‘holding’ concept.
In the case of learning ‘entering’, they are dropped.

Limitation

Type of objects: As mentioned, the model is pre-trained on COCO train2017, limiting
the objects that can be detected to objects in the COCO dataset5. Although some objects
would be recognised as in the COCO train2017 class after applying synonym check, the
majority are not recognised. This problem heavily affects the performance of the pipeline
when reasoning about the ‘holding’ concept. If an object is not recognised, the symbolic
representation would not be generated and pass to the symbolic reasoner. By solving the
ASP program, the pipeline either gives the wrong answer or no answers at all. Table 4.1
shows the total number of questions that is with the type of ‘What is someone holding...’
and the questions that their answers can be recognised to be in COCO class through
language processing. We can see that this problem drastically reduces the number of
questions HACR can give answers to.

Detecting small and partially covered objects: The pre-trained torchvision Faster-
RCNN struggles to detect small and partially covered objects in the frames. This problem
may lead to missing the key objects relevant to the question. Figure 4.5 shows a scenario
when the model fails to predict the small and partially covered remote control that is the
answer to the question. Again, without the key objects being detected and parsed into
ASP programs, the answer set will not include the answer even if we have a 100% accurate
learnt concept rule. This is another factor that influences the performance of the pipeline.

Figure 4.5: A example of failing to detect the small remote control that Leonard is holding,
which is the answer to the question.

4.2.2 Face Detection and Classification

Both ‘holding’ and ‘entering’ concepts are actions from a human subject, making human
detection and recognition essential for the pipeline to answer questions involving these
concepts. As the nature of the TVQA+ dataset, the video frames are collected from
The Big Bang Theory series, where people often change clothes between episodes or even
within a short video clip. Thus simply training a model to distinguish people based on

5The classes of objects in COCO can be found here: https://pytorch.org/vision/stable/models.h
tml#object-detection-instance-segmentation-and-person-keypoint-detection

19

https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection
https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection

their whole bounding boxes (i.e. including their body and clothes) would not be sufficient.
Facial features are generally unique between individuals, thus being an excellent fit to
classify different characters appearing.

The pipeline for confirming who appears in the scene, visualised in Figure 4.6, consists
of two processing stages while also relies on a collection task:

• Process 1 - face detection: From the object detector, we receive only the objects
that are humans and extract the parts of the image based on the bounding boxes.
The image fragments of humans are passed to a pre-trained Haar cascade model
from OpenCV6 to predict the face’s bounding box from it. We encode the detected
faces with a pre-trained facial feature encoder provided by the face_recognition
package7. Before feeding it into the encoder, we extract the face from the image and
resize it to match the encoder’s input size of 150 by 150.

• Collection - face samples collection: With the cascade model and the encoding
functionality, we collect all the faces of humans, encoding and their ground truth
names based on the labels in the TVQA+ dataset. We limit our face identification
process to recognise a particular set of 14 people. These are the main characters
in The Big Bang Theory and are frequently involved in the questions and answers.
The set of the characters can be found in Appendix A. There are in total 67305 face
samples collected, and Figure 4.7 shows a small portion of them.

• Process 2 - face classification: Using the collected face samples, we fit a k-nearest
neighbour (KNN) classifier8 from the face encodings, with the standard Euclidean
distance (

√∑
i (xi − yi)2) for the distance metric. When giving a prediction, the

classifier decides based on the closest five training examples. This predicted name
would replace the general label of ‘person’ of the object, which finishes the identifi-
cation process.

Person receive
from object detection

Haar
Cascade

Face
encoder

150 x 15080 x 80

[
-0.110597
0.00555679
0.0411653
...
]

128 x 1
face encoding

KNN
classifierFitFace sample

collection

Ground truth label:
Sheldon

Detect Resize

One sample

Prediction:
Sheldon

Figure 4.6: The pipeline for identifying a person in the frame. Green data flow and
components are used both during training and inference. Blue lines represent the flow of
collecting faces and labels and training the KNN classifier. Red lines are the classification
process during inference.

6https://docs.opencv.org/4.5.1/d1/de5/classcv_1_1CascadeClassifier.html
7https://github.com/ageitgey/face_recognition
8https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifi

er.html

20

https://docs.opencv.org/4.5.1/d1/de5/classcv_1_1CascadeClassifier.html
https://github.com/ageitgey/face_recognition
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Limitation

Appearance of unknown characters: Since we only collected the commonly appeared
characters, when a person out of the set appears, the face classifier would never predict
their actual name. Instead, it would try to label them as one of the 14 names it knows.
Moreover, we do not increase our collection of faces after the KNN classifier is trained, so
the classifier cannot learn new faces. This issue means that, eventually, the appearance
of unknown humans would be passed down as noise for the symbolic reasoning during
inference and could potentially affect the final answers produced.

Accuracy of Haar cascade model: As shown in Figure 4.7, a few non-face examples
are included in the collection. The Haar cascade model sometimes sees multiple horizontal
lines with pixel intensity changes as humans’ eyes, the bottom line of the nose or the
mouth. It could be hard to reduce the number of false detection due to the relatively low
resolution of people in the frames and that Haar features are sensitive to edges.

1: Penny 2: Penny 3: Penny 4: Leonard 5: Leonard 6: Leonard 7: Leonard 8: Leonard

9: Leonard 10: Penny 11: Penny 12: Leonard 13: Penny 14: Howard 15: Howard 16: Raj

17: Raj 18: Penny 19: Penny 20: Leonard 21: Howard 22: Raj 23: Sheldon 24: Sheldon

25: Leonard 26: Penny 27: Sheldon 28: Sheldon 29: Sheldon 30: Sheldon 31: Sheldon 32: Penny

33: Leonard 34: Sheldon 35: Penny 36: Leonard 37: Sheldon 38: Sheldon 39: Leonard 40: Leonard

Figure 4.7: Face collected from all the video clips in TVQA+ with the Haar cascade model
with the ground truth person name. There are a few anomalies being collected too.

21

4.2.3 Abrupt Transition Detection

This process aims to detect an abrupt shot transition between two consecutive frames to
avoid false positives of recognising characters’ sudden appearance as entering due to shot
transition. An abrupt shot transition causes a significant change between two consecutive
frames. Thus, in order to identify a possible abrupt transition, we first need to measure
the dissimilarity of a frame pair. There are multiple ways we experiment to quantify the
difference between two consecutive frames:

1. Sum of absolute difference (SAD): The most straightforward way to measure
the dissimilarity is to compare two frames pixel by pixel and sum the absolute values
of the differences across all pixel pairs. The computation is as follows:∑

c∈{r,g,b}

∑
i

|xc,i − x̂c,i|

2. Whole-image histogram difference (Hist-All): This method computes the his-
togram difference instead of pixel difference. A histogram for a specific channel is
constructed by counting the number of pixels with the same colour intensity value
and put them into a bin. For an RGB image, there are three histograms, each with
256 bins. We compute the three histograms on the whole image for the pair of con-
secutive frames, and this results in three pairs of consecutive histograms. For a pair
of histograms, we compare bin by bin for the absolute difference in count and sum
over all the bins for all three pairs. This approach is mathematically formulated as:

∑
c∈{r,g,b}

256∑
i=0

|binc,i − b̂inc,i|

3. Regional histogram difference (Hist-Reg): This algorithm is similar to the pre-
vious histogram difference, but we first segment the image into eight different regions
and compute the histogram for each region. This results in 24 pairs of histograms,
and we compute the difference for each pair and sum over the absolute values. The
formula is as follows:

8∑
s=1

∑
c∈{r,g,b}

256∑
i=0

|bins,c,i − b̂ins,c,i|

We collect the scores of differences between consecutive scenes with all three methods.
Table 4.2 shows for each method the number of videos we use and the total number of
frame pairs that we collect and compute a score for.

SAD Hist-All Hist-Reg
video clips 4199 1000 1000

pairs of consecutive frames 4364926 1853275 1853275

Table 4.2: Counts statistic for all three frame difference scoring method. All video clips
are used for collecting SAD score, while only 1,000 are used for histograms methods due
to heavier computation in fixed execution time.

Since all the scores have no labels of whether it is an abrupt transition or not, we
fit k-means clustering and Gaussian mixture models on the data to perform unsupervised
learning. Both models have two clusters or components, representing the abrupt transition
case and the smooth camera movement case. We assume that all scores should share the

22

same label as score 0 (i.e. no change at all) if it is not an abrupt transition, and this
assumption is also used in the evaluation and inference.

We notice that the unsupervised model sometimes gives consecutive labels representing
abrupt transition (i.e. different label from the score 0’s label). It is almost impossible to
have such cases of continuous abrupt shot changes in a TV show. Therefore, We apply
non-maximum suppression (NMS) to avoid such issues. For a dissimilarity score labelled
differently as score 0 (i.e. indicating a prediction of abrupt transition), we compare it with
its two immediate neighbour values and suppress it to value 0 if it is not the largest value
in the triplet. After NMS, the scores of all the frame pairs would be given to the model
again to generate the final predicted labels.

The performance evaluations of all models with and without applying NMS are detailed
in Section 6.2.3. We choose the k-means clustering model trained on the Hist-All scores
with NMS applied for our HACR pipeline. During inference, we compute the Hist-All
score for each consecutive frame pair in the relevant time span and get a label from the
model. Furthermore, based on these initial scores and predicated labels, we apply NMS
and generate the final labels for all pairs. If it gets the same cluster label as score 0, it
would be predicted as not an abrupt transition; otherwise, it would be an abrupt transition.

Limitation

Computation of Hist-All and Hist-Reg scores: Hist-All and Hist-Reg both need to
iterate through all pixels first to construct three histograms and then iterate through the
bins, while SAD only needs to iterate through the pixels. This extra step of computation
makes a big difference in computation time when the input of frame pairs are in tens of
thousands. Fewer examples are collected in the same amount of time, as shown in Table 4.2.
Moreover, the performance of the unsupervised learning models might be further improved
if given more data.

4.2.4 Unused Component: Human Pose Estimation

Apart from the processes mentioned above, we also experiment with human pose esti-
mation in each frame. Human pose estimation is the task of locating human joints in
frames. Through localising joints, we hope to identify characters’ hand positions and legs
movements that could help with learning the concept of holding and entering.

We only try to estimate the pose of the identified characters in each frame, i.e. people
with their names known either through face classification during inference or ground truth
bounding box during training. The estimation is done with a ResNet-50 model from [25]9,
pre-trained on the MPII dataset [26]. The model takes in a square input, and thus we
extract the person from the image based on their bounding box and align them in the
centre of a square background. The reason to align it is that the model assumes that the
main character is in the centre of the image. The square is then resized to 256 by 256 to
match the dimension of the model input. The final output contains 16 joints of the body
and their confidence score, and the relevant pairs are connected for each body part.

The performance of the model is overall unreliable due to how the characters appear
on camera in the dataset. As shown in Figure 4.8, while predictions are accurate when
the character’s entire body is shown in the frame, the result is inadequate for our purpose
when only half of the body is in the frame. The model seems to attempt to fit the whole
body onto the partial body appearing in the frame, giving misleading predictions. Because
of its unstable performance and the fact that the key characters’ bodies are not entirely in
the camera for many clips, we have to discard this component from the HACR pipeline.

9The implementation of the paper that we use is at https://github.com/microsoft/human-pose-es
timation.pytorch

23

https://github.com/microsoft/human-pose-estimation.pytorch
https://github.com/microsoft/human-pose-estimation.pytorch

Figure 4.8: Human pose estimation on TVQA+ data. The blue sticks represent the limbs
and body chunk, while the circles represent the joints.
On the left, Sheldon’s whole body is shown and the prediction is accurate. However, on
the right, only half of Leonard’s body is shown and the prediction is wrong and confusing.

4.3 Symbolic Representation Translation

Receiving the results from language processing and frame processing, we translate them
into symbolic representations to be used by the later task of learning or reasoning. In this
section, we define our chosen representation language. We divide the predicates into three
categories based on whether they relate to the concepts of ‘holding’ and ‘entering’: general
predicates used by both concepts, predicates related to ‘holding’, and predicates related to
‘entering’.

General predicates

• time(T), T ∈ N: This predicate defines all the time values in a ground truth time
span. It defines the timestamp which the learner/reasoner should focus upon.

• person(P), P ∈ pre-defined set: From face detection and classification, we can iden-
tify a person and be specific to their name. This term defines an identified person
in a video clip. The pre-defined set is the same as the set we used to collect all the
faces (see Appendix A for the characters’ names).

Predicates related to ‘holding’

• current_time(T), T ∈ N: To learn if someone is holding something, we observe the
video frame by frame. This predicate specifies the exact timestamp and frame we
are looking at.

• object(O): This term defines the items picked up by the object detector. Although
people would be detected via object detection, they are not represented as objects
but as instances of the person(P) predicate.

• bbox(T, L, Top_left_x, Top_left_y,Width,Height), where
T, Top_left_x, Top_left_y,Width,Height ∈ N: This defines the bounding box’s
properties for each physical item or person at certain time T . The bounding box’s
label L should also exist in either object(L) or person(L).

24

• bbox_intersec(T, L1, L2, P), T, P ∈ N: Based on the bounding boxes between two
objects (including humans), this predicate defines the proportion of the overlap be-
tween two boxes. For bounding box 1 of label L1, the percentage P of its intersection
with box 2 of label L2 is calculated as:

P = int(
area of intersection

area of bounding box 1
∗ 100)

(The calculation for the intersection between two boxes is trivial and hence put in
Appendix A.) The order of L1 and L2 is crucial for the meaning of the predicate:
the percentage is calculated with respect to the first box, thus putting the first box’s
label before the second one.

• holding(P,O): This predicate represents the concept of holding and is essential for
constructing positive WCDPI examples for learning and ASP programs for reasoning.
Through incorporating Event Calculus, we can describe that at time T , person P is
holding some object O in the form of holdsAt(holding(P,O), T), where ‘holding’ is
considered now to be a time-dependent fluent.

Below is an example of symbolic representation translation for answering a ‘holding’
question during inference. For each frame, we identify the people and objects in it and
provides frame with frame processing. We encode all their bounding boxes and intersection
proportion in the ASP program. We assign an identifier to each object after their class
name (1_1 in the example). If there are multiple objects with the same class in the frame,
we can still distinguish between instances based on the identifier.

Figure 4.9: Frame 94 for ‘holding’
question with qid 13712

time(94).
time(95).
bbox(94, amy, 378, 45, 171, 310).
bbox(94, penny, 130, 34, 158, 321).
bbox(94, cup1_1, 235, 240, 34, 47).
bbox(94, book1_1, 528, 314, 35, 45).
bbox(94, bowl1_1, 0, 240, 39, 27).
bbox_intersec(94, amy, book1_1, 1).
bbox_intersec(94, book1_1, amy, 58).
bbox_intersec(94, penny, cup1_1, 3).
bbox_intersec(94, cup1_1, penny, 100).
person(amy).
person(penny).
object(book1_1).
object(cup1_1).

Predicates related to ‘entering’

• abrupt_transition(T, T +1), T ∈ N: This term encodes any detected abrupt transi-
tion between two consecutive frames. Although T theoretically can take any natural
number, as we are only reasoning in a specific time span, both T and T + 1 should
fall into that time interval.

• in_camera(P): This represents the event of someone currently being in the camera.
With Event Calculus, we can specify at which time T this property holds in the
format of holdsAt(in_camera(P), T). The P in this term should be a detected
person, i.e. person(P) should hold.

• at_curr_location(P): Different from being in the camera, a person can be at the
current location without being included in the scene due to video editing and camera

25

changing (see Figure 2.1 as an example). This term describes someone being at
the current place, assuming that the location has not changed. This assumption is
automatically satisfied in our ‘entering the scene’ concept’s training set.

Below is an example of symbolic representation translation for answering ‘entering’
question during inference. We identify the people in each frame with frame processing to
construct in_camera(P) at each timestamp. From the question sub-clause, we extract the
people at the current location from the beginning of the time span, Raj and Leonard. Since
the symbolic learning and reasoning tasks incorporate Event Calculus to capture time (de-
tailed in Chapter 5), the predicates are combined with our Event Calculus implementation
for that task before given to the symbolic components.

Time

Who enters the scene when Raj and
Leonard finish talking to each other

Figure 4.10: Frame sequence of ‘entering’
question with qid 25625601

time(71..101).
abrupt_transition(74, 75).
abrupt_transition(95, 96).
holdsAt(in_camera(leonard), 72).
holdsAt(in_camera(leonard), 74).
holdsAt(in_camera(raj), 75..95).
holdsAt(in_camera(sheldon), 96..101).
holdsAt(in_camera(stuart), 100).
holdsAt(in_camera(leonard), 101).
person(leonard).
person(raj).
person(sheldon).
person(stuart).
holdsAt(at_curr_location(raj), 71).
holdsAt(at_curr_location(leonard), 71).

26

Chapter 5

Symbolic Learning and Reasoning

This chapter discusses the two symbolic tasks of our HACR pipeline: learning at training
time, and reasoning at inference time. All spatial and temporal features either from ground
truths or from the video frames, and the textual features from the question-answer pair,
should have already been extracted and translated to symbolic representation from the
pre-processing stage. The symbolic components focus on utilising the knowledge to learn
general rules and construct ASP programs.

5.1 HACR Symbolic Learning Task

We aim to learn a symbolic definition of our event-based concept using the inductive
learning system ILASP[13]. Our learning task is context-dependent with noisy examples
that consist of three parts:

• Background knowledge B

• Hypotheses space SM defined with mode bias

• A positive set of weighted context-dependent partial interpretations (WCDPIs) E+

Our learning task does not focus on learning constraints and thus we do not construct
negative WCDPIs.

In the following section, we discuss in order each part’s construction. At the end of
this section, we show the hypotheses obtained by ILASP for both concepts. These rules
are later on used in the reasoning task during inference.

Background Knowledge

The time representation Event Calculus is independent of context and thus is included in
the background knowledge. For our use case, we encode Event Calculus in ASP syntax.
These rules are the concept-independent axioms and are used for learning both concepts.
The actual implementations are yet slightly different between the two concepts.

The encoding for ‘entering’ is relatively straight forward, where we formalise ‘entering’
as action, and we encode people’s appearances as events with two fluents:
fluent(in_camera(P)) and fluent(at_curr_location(P)). We also encode the relevant
Event Calculus axioms introduced in 2.3:

holdsAt(F, T + 1) :−
time(T), time(T + 1), f luent(F),

initiates(A,F, T), not clipped(F, T).

(5.1)

27

holdsAt(F, T + 1) :−
time(T), time(T + 1), f luent(F),

holdsAt(F, T), not clipped(F, T).

(5.2)

clipped(F, T) :− time(T), f luent(F), terminates(A,F, T). (5.3)

More tweaks are applied when constructing the background for ‘holding’. As the action
of holding lasts over time, we formalise it as a fluent instead of continuous action. Thus
we have fluent(holding(P,O)) in the background knowledge. We omit the action that
initiates the ‘holding’ event, and simplify initiates(A,F, T) and terminates(A,F, T) to
initiatedAt(F, T) and terminatedAt(F, T), and also discard the use of clipped() and use
terminatedAt() directly in the rules:

holdsAt(F, T + 1) :−
time(T), time(T + 1), f luent(F),

initiatedAt(F, T), not terminatedAt(F, T).

(5.4)

holdsAt(F, T + 1) :−
time(T), time(T + 1), f luent(F),

holdsAt(F, T), not terminatedAt(F, T).

(5.5)

Apart from encodings of Event Calculus, we specifically create a rule that describes
the spatial relation between a person and an object that would be useful for knowing if
someone is holding something. It uses the predicate bbox_intersec(T,O, P, Percentage)
representing how much intersection is taking place with respect to the object:

happensAt(close(P,O, Threshold), T ime) :−
person(P), object(O), bbox(Time, P,_,_,_,_), bbox(Time,O,_,_,_,_),

bbox_intersec(Time,O, P, Intersection), holding_threshold(Threshold),
Intersection >= Threshold.

(5.6)
Lastly, there are two constraints specifically added for ‘holding’. They are used together

with predicate goal() included in the WCDPI’s context, and force any holdsAt() that is
in goal() to be included in the answer set.

:− current_time(T − 1), not holdsAt(F, T), goal(holdsAt(F, T)).

:− current_time(T − 1), holdsAt(F, T), not goal(holdsAt(F, T)).
(5.7)

The constraints impose strong requirements so that no holdsAt(F, T) different from
the goal is included in the answer set. They essentially enforce the learner to find an rule
that can accurately exclude all fluents that should be false from the answer set.

Hypotheses Space

The search spaces of hypotheses differ for the two concepts, while both are defined with
mode declarations.

For ‘holding’, the hypothesis should represent some spatial relationship between objects
and humans that triggers ‘holding’ to happen. Therefore, the goal is to let ILASP find the
optimal threshold in Rule 5.6, which decides if an item and a human happen to be close
enough. The mode declarations for this task is then:

28

#modeh(initiatedAt(holding(var(person), var(object)), var(time))). (5.8)

#modeb(1, holdsAt(holding(var(person), var(object)), var(time))). (5.9)

#modeb(1, happensAt(close(var(person), var(object),

const(holding_threshold)), var(time))).
(5.10)

#constant(holding_threshold, 1..100). (5.11)

Body Declaration 5.10 with specified Constant 5.11 together describe a search of thresh-
old from 1..100. We also include Body Declaration 5.9 and expect it to be used as a negated
term to represent that the event of a person holding a certain item does not hold when we
want to initiate it. Note that ILASP automatically consider negated terms for every mode
body in the hypotheses space. Overall, we expect to see a hypothesis similar to:

initiatedAt(holding(P,O), T) :−
happensAt(close(P,O, i), T), not holdsAt(holding(P,O), T).

where: i ∈ N, i ∈ [1, 100]

(5.12)

Rule 5.12 describes that if a person is not holding an object at time T and yet they are
close enough that their bounding boxes have a large portion of overlay, then we initiate
the fluent ‘holding’ at time T (although that fluent still will not hold at time T due to
Rule 5.4).

The entering concept requires more temporal reasoning. The action initiates the fluent
of someone who was not in the scene being at the place now. And any changes in ap-
pearances on camera due to shot transition should not affect the existing characters’ state.
Thus we set the mode declarations as follows:

#modeh(initiates(enter(var(person)),

at_curr_location(var(person)), var(time))).
(5.13)

#modeb(holdsAt(in_camera(var(person)), var(time))). (5.14)

#modeb(holdsAt(at_curr_location(var(person)), var(time))). (5.15)

#modeb(abrupt_transition(var(time), var(time))). (5.16)

#modeb(next_time(var(time), var(time))). (5.17)

We construct the rule next_time(T, T + 1) :− time(T), time(T + 1), so that the
predicate next_time(T1, T2) can be used in 5.17. This is to represent the increment in
time that currently could not be generated with an arithmetic ‘+’ in mode declarations by
ILASP version 4.

The expected rule learnt should be similar to the follows:

initiates(enter(P), at_curr_location(P), T) :−
not holdsAt(in_camera(P), T2), holdsAt(in_camera(P), T),
not abrput_transition(T2, T), next_time(T2, T),
not holdsAt(at_curr_location(P), T).

(5.18)

29

This expected rule 5.18 gives the following conditions for an entering action to happen:

• A person is not in the camera at time T − 1 but shows up at time T ;

• The change of frame T − 1 to frame T is not an abrupt transition;

• The person is not at this scene/location at time T .

If all conditions are satisfied, then the action happens and we initiate the fluent of a
person being at the current location.

Weighted Context-Dependent Partial Interpretations (WCDPIs)

The purpose of using weighted context-dependent partial interpretations is to tolerate
noises in the examples by assigning a penalty to each of them. The creation of the WCDPI’s
identifier and its penalty is very similar for both concepts. We use the question id (qid),
with the current timestamp if learning ‘holding’, as the example id. All examples’ contexts
are constructed from ground truth annotations, thus having equal penalties.

For the holding action, as the ground truth bounding boxes are grouped by timestamp,
we create a WCDPI for each unique timestamp. The number of WCDPIs depends on
the number of timestamps that has bounding boxes annotation, and this varies between
questions. On average, we can generate 3 WCDPIs for one question-answering sample. The
context consists of humans, objects, their bounding boxes and any intersections. These
spatial features from the training data are directly converted into logical facts through the
symbolic translation component. We also specify the current time and the goal holding
action that answers the question. These facts are obtained after parsing the questions’
and answers’ text and are to be used together with Constraints 5.7. By parsing the text,
we can also construct the inclusion and exclusion set of the WCDPIs. The person in the
question would be in the inclusion set and holding the answer object, while any other
characters in the same frame should fall into the exclusion set. The exclusion set might
not have included all possible combinations of grounded holding() predicates that are not a
goal and have to be false. However, Constraints 5.7 in our background knowledge enforce
that all negative combinations must be excluded. Thus, with these constraints in the
background knowledge, exclusion set not being complete would not affect the learning.

Below is an example of translating ground truth bounding boxes at time 13 (shown in
Figure 5.1) to a WCDPI:

"a0": "Purse .",
...
"answer_idx": "0",
"q": "What was
Penny holding
when Sheldon was
talking ?

{
 "height": 113,
 "img_id": 13,
 "label": "Purse",
 "left": 126,
 "top": 76,
 "width": 63
}

{
 "height": 291,
 "img_id": 13,
 "label": "Penny",
 "left": 120,
 "top": 35,
 "width": 89
}

{
 "height": 223,
 "img_id": 13,
 "label": "Sheldon",
 "left": 439,
 "top": 22,
 "width": 62
}

Figure 5.1: Question 67301’s ground truth annotation at frame 13.

#pos(p_67301_13@10, {
holdsAt(holding(penny, purse), 14)

30

}, {
holdsAt(holding(sheldon, purse), 14)

}, {
goal(holdsAt(holding(penny, purse), 14)).
current_time(13).
person(sheldon).
person(penny).
object(purse).
bbox(13, penny, 120, 35, 89, 291).
bbox(13, sheldon, 439, 22, 62, 223).
bbox(13, purse, 126, 76, 63, 113).
bbox_intersec(13, penny, purse, 28).
bbox_intersec(13, purse, penny, 100).

}).

The construction of WCDPI examples for learning ‘entering’ is relatively simple, with
one example per video clip. Apart from putting the relevant time span of the questions
given by TVQA+ into the context, we also add which characters are in-camera and the
timestamps for their appearance, who are already in the scene when the period starts,
and the abrupt shot transitions in the interval. Entrances of people in the answer should
be wrapped in an initiates() predicate and be put in the inclusion set. Any characters
that are already at the current location at the start of the period would not enter the
scene at any point unless they leave and re-enter in the time span. Such edge case are not
selected for any clip used in the entering learning task. Thus, the exclusion set contains the
initiates() predicate for every already-in-scene character at all timestamps. An example
of WCDPI constructed from ground truth for ‘entering’ task is as follows:

"leonard": [
 [3, 26]
]

"sheldon": [
 [6, 26]
]

"howard": [
 [21, 26]
]

in_camera
scene_change_pairs

[]
initial_in_scene:

["leonard"]

"a0": "Sheldon",
...
"answer_idx": "0",
"q": "Who entered the kitchen
before Leonard placed his
bag ?"

Figure 5.2: Frame sequence and ground truth annotations of question 25625604.

#pos(p_25625604_0@10, {
initiates(enter(sheldon), at_curr_location(sheldon), 6)

}, {
initiates(enter(leonard), at_curr_location(leonard), 3..26)

}, {
time(3..26).
person(howard).
holdsAt(in_camera(howard), 21..26).
person(leonard).
holdsAt(in_camera(leonard), 3..26).

31

person(sheldon).
holdsAt(in_camera(sheldon), 6..26).
holdsAt(at_curr_location(leonard), 3).

}).

Learned Rules

With the background knowledge B and the set of positive WCDPIs E+, ILASP searches
through the hypotheses space SM for the optimal hypothesisH that gives the least penalties
when trying to cover as many e ∈ E+ as possible.

Training with the ‘holding’ subset we create from TVQA+, ILASP learns the following
hypothesis:

initiatedAt(holding(P,O), T) :− happensAt(close(P,O, 75), T). (5.19)

The threshold varies with different number of WCDPIs provided, in a range of [54, 75].
From Figure 5.3 we can see that the threshold is lower when more examples are provided,
and there are multiple choices for the same number of WCDPIs while resulting in the same
penalties. But in general, a lower threshold is needed for accepting more WCDPIs.

225.0 227.5 230.0 232.5 235.0 237.5 240.0 242.5
of WCDPIs

71.0

71.5

72.0

72.5

73.0

73.5

74.0

74.5

75.0

Th
re

sh
ol

d

(a)

1660 1670 1680 1690 1700 1710 1720 1730 1740
of WCDPIs

54

56

58

60

62

Th
re

sh
ol

d

(b)

Figure 5.3: Threshold against number of WCDPI examples plots. (a): Threshold-against-
WCDPIs-count plot for subset of ‘holding’ questions with COCO objects as answer, gen-
erated during 5-fold cross validation. (b): Threshold-against-WCDPIs-count plot for all
‘holding’ questions, generated during 5-fold cross validation.

Compare to our expectation 5.12, Hypothesis 5.19 omit not holdsAt(holding(P,O), T).
This is a more general rule than 5.12, but as Section 6.3 shows later on in the report, this
general rule is sufficient for our task. The reason that ILASP learns a more general rule
could be due to the fact that we construct the WCDPIs only on two consecutive times-
tamps. If using longer time interval in WCDPIs, ILASP should pinpoint the exact times-
tamp that initiates holding, as after the fluent is initiated, there is no need to initiate again.
The hypothesis would not need to care about multiple initiations of ‘holding’ if there are
only two timestamps to reason about, and could just omit not holdsAt(holding(P,O), T).
If two rules have the same penalties, the shorter rule would be optimal. Thus ILASP picks
Hypothesis 5.19.

When training for the ‘entering’ concept, ILASP learns a consistent hypothesis regard-
less of the number of WCDPIs provided (8 when training for cross-validation on train set,
10 when training for evaluation on validation set):

32

initiates(enter(P), at_curr_location(P), T) :−
holdsAt(in_camera(P), T), not holdsAt(at_curr_location(P), T).

(5.20)

In 5.18, we expect the use of not abrupt_transition(T1, T2) to prevent false posi-
tives of recognising entering action. However, ILASP decides it is sufficient to cover most
WCDPIs without using it and gives a more general hypothesis 5.20. One explanation is
that not holdsAt(at_curr_location(P), T) subsumes abrupt_transition(): once we know
that someone is not at the current scene and appears at the current timestamp, knowing
whether there is an abrupt transition becomes unnecessary. On the other hand, by looking
at the video clips in detail, many ‘entering’ moments happen right at an abrupt shot tran-
sition in our training samples. If using our human-expected rule 5.18, the ‘entering’ action
would never be satisfied and this would mean that a WCDP would not be covered with
the hypothesis. While human perception under common sense is not completely accurate
in this scenario, ILASP has made the optimal decision based on the nature of the video
clips.

5.2 HACR Symbolic Reasoning Task

We construct and execute ASP programs during inference, and by parsing the answer sets,
we obtain the predicates relevant to the question and extract the answer from it.

To create the ASP program, we inject the rules learnt with ILASP into the background
knowledge to form the base program. Since some rules or constraints are used only for
learning, they are discarded for simplification; for example, Constraints 5.7 are omitted.
The final ASP program is built upon the base program with symbolic representations of
spatial and temporal properties. These representations form the context program. The
context program is constructed by extracting visual and textual features with frame pro-
cessing and language processing respectively. Similar to the base program, non-essential
predicates like goal() for the ‘holding’ learning task are not included in the context pro-
gram. We provide some examples of the base and context programs for ‘holding’ and
‘entering’ in the following:

Base program for ‘holding’ concept:

fluent(holding(P, O)) :- person(P), object(O).
happensAt(close(P, O, Threshold), Time) :-

person(P), object(O),
bbox(Time, P,_,_,_,_),
bbox(Time, O,_,_,_,_),
bbox_intersec(Time, O, P, Intersection),
holding_threshold(Threshold),
Intersection >= Threshold.

holdsAt(F,T + 1) :-
fluent(F), time(T), time(T + 1),
initiatedAt(F,T), not terminatedAt(F, T).

holdsAt(F,T + 1) :-
fluent(F), time(T), time(T + 1),
holdsAt(F,T), not terminatedAt(F,T).

next_time(T, T+1) :- time(T).
holding_threshold(1..100).
initiatedAt(holding(V3,V2),V1) :- happensAt(close(V3,V2,72),V1).

33

Context program for ‘holding’ concept:

time(109).
time(110).
bbox(109, penny, 142, 31, 157, 328).
bbox(109, person_1, 334, 45, 166, 307).
bbox(109, cup1_1, 185, 191, 36, 46).
bbox(109, bowl1_1, 14, 241, 67, 25).
bbox(109, book1_1, 595, 309, 20, 50).
bbox_intersec(109, penny, cup1_1, 3).
bbox_intersec(109, cup1_1, penny, 100).
person(penny).
object(cup1_1).

Base program for ‘entering’ concept:

fluent(in_camera(P)) :- person(P).
fluent(at_curr_location(P)) :- person(P).
holdsAt(F, T + 1) :-

time(T), time(T + 1), fluent(F),
initiates(A, F, T), not clipped(F, T).

holdsAt(F, T + 1) :-
time(T), time(T + 1), fluent(F),
holdsAt(F, T), not clipped(F, T).

clipped(F, T) :-
fluent(F), time(T),
terminates(A, F, T).

next_time(T1, T1 + 1) :- time(T1), time(T1 + 1).
initiates(enter(V1),at_curr_location(V1),V2) :-

holdsAt(in_camera(V1),V2); not holdsAt(at_curr_location(V1),V2).

Context program for ‘entering’ concept:

time(71..101).
abrupt_transition(74, 75).
abrupt_transition(95, 96).
holdsAt(in_camera(leonard), 72).
holdsAt(in_camera(leonard), 74).
holdsAt(in_camera(raj), 75..95).
holdsAt(in_camera(sheldon), 96..100).
holdsAt(in_camera(stuart), 100).
holdsAt(in_camera(sheldon), 101).
holdsAt(in_camera(leonard), 101).
person(leonard).
person(raj).
person(sheldon).
person(stuart).
holdsAt(at_curr_location(raj), 71).
holdsAt(at_curr_location(leonard), 71).

We combine the base and context program to get the full ASP program for answering a
question. We solve this combined ASP program with clingo [16] to get the answer set. For
each concept, we only focus on the primary predicates representing the concepts, which

34

are holdsAt(holding(P,O), T) and initiates(entering(P), at_curr_location(P), T). We
match regular expressions onto them to get the answers to the questions: the object
O in holdsAt(holding(P,O), T) for ‘What is someone holding...’, and the person P in
initiates(entering(P), at_curr_location(P), T) for ‘Who enters the scene...’.

35

Chapter 6

Evaluation

In this chapter, we detail the evaluation process of our HACR pipeline. We first list out
our experiment settings, including the machine’s spec, evaluation methods, and datasets.
Then we present our evaluation results on individual components used in the approach,
following with the overall pipeline.

6.1 Experiment Settings

All the experiments are run on a 64-bit Ubuntu 20.04.2 machine with 32GiB memory and
a 6-core-12-thread Intel ® Core™ i7-8700 CPU @ 3.20GHz. The GPU used is NVIDIA
GeForce GTX 1060 with 6GB memory.

There are two general principles for our evaluation process:

1. Use 5-fold cross-validation if evaluating on a training set: We randomly split the
training data into 5 folds, 4 folds of data for actual training and the rest for evaluation,
and repeat this 5 times with different fold for evaluation. The overall performance
would be the average of all folds’ result.

2. Train on all training data if evaluating on a validation set: If any data not in the
training set is used for evaluation, we should train the pipeline on the whole training
data and evaluate for the final result.

Below are the names of the data we collect for training/evaluating individual compo-
nents or overall pipeline:

• ABT-Test: This test set is constructed with 10 randomly selected videos from the
TVQA+ data, and we manually annotate all the abrupt shot transitions in each clip.

• Train-Hold-ALL: This training set is selected from the TVQA+ training set by
checking the question’s root action word to be ‘hold’ (detail in Section 4.1.1). We
also remove the edge cases of questions that cause parsing error, resulting in 886
samples in total.

• Train-Hold-OD: This is a subset of Train-Hold-ALL with 91 samples. For each
question, its answer object must be in the COCO category. The constraint is due to
the object detector pre-trained on the COCO dataset (more detail in Section 4.2.1).

• Val-Hold: With the same selection process as Train-Hold-ALL, we collect 104 sam-
ples from the TVQA+ validation set. We do not further filter the questions with
COCO objects in order to get a more general view of the pipeline’s performance.

36

• Train-Enter-HACR: This is the hand-crafted training set with 10 questions for
learning ‘entering the scene’, as mentioned in Section 3.2. As the format is slightly
different from the TVQA+ data, this dataset cannot be fed into other existing neural
pipelines directly.

• Val-Enter-TVQA+: We select 3 samples from the TVQA+ validation set. These
questions are not exactly in the form of ‘Who enters the scene...’ but ask ‘Who
enters location...’ and do not involve any location changes when a new character
enter. We consider them very similar to our ‘entering the scene’ concept and use
them to construct the validation set. We also annotate the abrupt transitions, which
characters appear in each frame and are initially at the location.

Most existing neural approaches on the TVQA+ dataset are evaluated on the whole
TVQA+ validation or test sets. Since our work only focuses on a proportion of the con-
cepts, we can only assess our pipeline on subsets of the TVQA+ dataset or our own sets,
making our result incompatible with neural architectures’ evaluation results. Therefore, we
run the pre-trained iPerceive Video Q&A model [27]10 on our subsets to ensure a fair com-
parison. While we tried to produce results for iPerceive Video Q&A with their best model
configuration, we could not enable the common-sense reasoning component of the original
work due to missing file from their GitHub repository. However, as shown in Table 7.4 in
the later chapter, the common-sense reasoning boosts QA accuracy by only around 1%,
and thus this missing component issue should not significantly worsen the performance of
this neural approach.

6.2 Pre-processing

We evaluate the individual components in the frame processing with the ground truth
annotations either from the TVQA+ dataset or us. Since language processing is used
together with other processes, we do not evaluate it individually but together with the
pipeline.

6.2.1 Object Detection

We use the analysis tool introduced in [28]11 to evaluate our pre-trained Faster R-CNN
from torchvision. The tool provides computation of the common metrics for object
detections: Average Precision (AP). This is defined as:

AP =

∫ 1

0
ρ(r)dr

where ρ(r) is the Precision-Recall curve
(6.1)

The Precision-Recall curve usually has a zig-zag pattern and is smoothed down by
interpolation to simplify the calculation. The interpolation is defined as:

ρinterpolation(rn+1) = max
r̃:r̃≥rn+1

ρ(r̃)

where ρ(r̃) is the value of the precision value at recall r̃
(6.2)

Based on the interpolation, AP is calculated by summing up the area underneath the
smoothed curve:

AP =
∑

(rn+1 − rn)ρinterpolation(rn+1) (6.3)

10The implementation of their work is at https://github.com/amanchadha/iPerceive
11The implementation is at https://github.com/rafaelpadilla/Object-Detection-Metrics

37

https://github.com/amanchadha/iPerceive
https://github.com/rafaelpadilla/Object-Detection-Metrics

Figure 6.1 from [28]’s GitHub repository provides visual demonstrations of the calcu-
lation of AP.

(a) (b)

Figure 6.1: Object-Detection-Metrics [28] official demonstration of AP calculation, cited
from their GitHub repository12. (a): Precision-Recall curve with interpolation. (b):
Precision-Recall curve with AP calculation.

We randomly sample 100 samples from our Hold-ALL training set. For each video, the
ground truth annotation provides the bounding boxes at a few timestamps, and we feed
the frame of each time value to the pre-trained model. Object-Detection-Metrics compares
the outputs and ground truth per frame per video and computes each class’s AP score
across all test instances. Table 6.1 shows the performance of the model on some of the
unique classes and the overall performance. As we can observe, the detection performance
is not impressive. The mAP score, which measures the average AP score across all classes,
is significantly dragged down by the vast majority of classes with a 0 AP score.

Example classes Basket Bowl Person
AP 0.00% 0.00% 9.75%

Total number of classes 93
Number of classes with 0.00% AP 84

HACR mAP 0.18%
STAGE[12] mAP 25.22%

Table 6.1: Evaluation for object detection using Object-Detection-Metrics [28]. There are
in total 93 classes in the subset we tested and we list out 3 classes’ AP scores and the
overall mAP (mean Average Precision). We also compare our pre-trained object detector
with the STAGE architecture proposed in [12] with attention mechanism. The significant
difference shows that the pre-trained object detector is the main bottleneck of our approach
and needs to be fine-tuned and more specific.

As mentioned in the Limitation part of Section 4.2.1, the model could only recognise
objects that fall in the COCO category and struggles with finding small and partially
covered items. The first class, ‘Basket’, is not included in the COCO dataset, making the
model unable to detect it at all. Bowl is one of the objects included in the COCO dataset,
yet the model still results in a 0 AP score. Figure 6.3 shows the case of the object detector
failing to identify the yellow bowl held by Leonard and also covered by a kettle. This is

12GitHub: https://github.com/rafaelpadilla/Object-Detection-Metrics

38

https://github.com/rafaelpadilla/Object-Detection-Metrics

(a) (b)

Figure 6.2: Precision-Recall curve for ‘bowl’ and ‘person’.

(a) (b)

Figure 6.3: Model prediction and ground truth for a frame with a person and a bowl, with
the left coming from model prediction and the right coming from ground truth annotation.
There is a false negative for class ‘bowl’ (not detecting it) and also a false positive for class
‘person’ (detect something when there is not).

a false negative and also the only instance of ‘bowl’ in the 100 samples. The tool records
every true positive and false positive to generate the precision-recall curve, and thus the
false negative is not used for plotting the graph, resulting in a 0% AP score.

For the ‘person’ class, the ground truth from TVQA+ annotates characters by their
names. To match our more general predictions, we change the ground truth labels to
‘person’ for every name included in the set of characters we define. This way, we evaluate
the performance of object detector on humans without using face classification. Precision
goes down when the number of false positives increases. We expect some precision drops
since there are names in the ground truth labels that we could not recognise and translate
to ‘person’. However, as shown in Figure 6.2b, the precision of the ‘person’ class decreases
significantly at 0 recall, indicating performance problem on the object detector’s side apart
from just mislabelling.

6.2.2 Face Detection and Classification

The TVQA+ dataset does not provide specific face localisation annotations, and we do not
annotate the dataset further for evaluating the OpenCV Haar cascade model. However,
we can still observe from Figure 4.7 that there are 3 instances of false localisation in the 40
examples, which provides some insight into the pre-trained model’s performance. In most
cases, the model gives the correct localisation while it could mistake horizontal clothes

39

wrinkles as human facial features. As our face collection relies on the Haar cascade model,
these wrong localisations introduce noises in the collected data.

For the classification, we evaluate the KNN classifier with 5-fold cross-validation on our
face samples collection. For each fold, we use 80% of the data to train the classifier and
20% for testing, and the predictions are compared to the ground truth labels. Table 6.2
presents the accuracy for each fold and the average, and Figure 6.4 is the confusion matrix
of the the first fold in the cross-validation.

Fold Acc. 0.899 0.898 0.900 0.898 0.900
Train set size 53628
Test set size 13407
Avg. Acc. 0.899

Table 6.2: 5-fold cross-validation result for KNN face classifier, accuracy to 3 s.f.

le
on

ar
d

sh
el

do
n wi
l

be
rn

ad
et

te

za
ck

pe
nn

y

ba
rry

ho
wa

rd ra
j

am
y

st
ua

rt

em
ily

Predicted label

leonard

sheldon

wil

bernadette

zack

penny

barry

howard

raj

amy

stuart

emily

Tr
ue

 la
be

l

0.9 0.0008 0.0032 0.0008 0.013 0.027 0.014 0.008 0.035 0 0 0

0.03 0.7 0.03 0 0.03 0.091 0 0 0.12 0 0 0

0.023 0 0.85 0.0017 0.023 0.014 0.04 0.012 0.035 0.0035 0 0

0 0 0.041 0.65 0 0 0.18 0.061 0.061 0 0 0

0.018 0 0.011 0.0018 0.85 0.035 0.013 0.029 0.039 0.0009 0 0

0.018 0 0.007 0.00093 0.026 0.85 0.022 0.017 0.056 0.0028 0 0.00046

0.015 0 0.0059 0.00045 0.011 0.03 0.9 0.0086 0.024 0.00045 0 0

0.011 0 0.0061 0.00076 0.02 0.02 0.017 0.89 0.033 0.0015 0.00076 0

0.008 0.00066 0.0035 0 0.0066 0.014 0.0091 0.006 0.95 0.00044 0 0

0.044 0 0.0073 0 0.044 0.022 0.029 0.022 0.18 0.65 0 0

0 0 0 0 0 0.038 0 0.077 0.23 0 0.65 0

0.04 0 0 0 0.08 0.12 0.12 0 0.08 0 0 0.56

0.0

0.2

0.4

0.6

0.8

Figure 6.4: Confusion matrix for face classification over 12 classes of characters for the
first fold in the 5-fold cross-validation.

The performance of the face classifier is overall stable and reliable. However, we can
still observe poorer performance for certain characters. This issue could be caused by
the imbalanced dataset, as the frequency of characters appearance varies in the dataset,
making some people having more samples than others.

40

6.2.3 Abrupt Transition Detection

We use the ABT-Test subset we annotated to evaluate our abrupt transition detection
process. We compute the dissimilarity score with one of the SAD, Hist-All and Hist-Reg
methods for all the consecutive frame pairs in a given video clip.

Since there is no ground truth label associated with the score, we train two unsupervised
models, the k-means cluster model and Gaussian mixture model, to fit the data. The
number of training samples collected with each scoring approach is listed in Table 4.2,
where more SAD training samples are available. Each fitted model gives a label to a
dissimilarity score at test time. We expect the models to label a score with 0 value as a
non-abrupt transition since this value indicates no transition. The label for score 0 would
be picked as a negative class label, and a predicted label that shares the same label as score
0 is treated as a non-abrupt transition prediction. Otherwise, the frame pair is predicted as
an abrupt transition. We also evaluate whether non-maximum suppression (NMS) affects
the performance of the models.

We compute two metrics to measure the performance of the overall detection process:

• Normalised Jaccard score: We gather all the predicted pairs of abrupt transitions
in a video clip and compute the Jaccard coefficient index score with respect to the
ground truth pairs. We normalise the Jaccard score across all video clips.

• Normalised binary classification accuracy: The number of abrupt transitions in
a given video clip is significantly smaller than that of non-abrupt transitions. There-
fore, we balance the data so that the same number of pairs is picked for both abrupt
and non-abrupt transitions. We select all the abrupt pairs from the ground truth
for each video clip and randomly sample the same number of non-abrupt transition
pairs. These together become the test sample pairs for a video clip, and we compute
the average accuracy across all clips.

Binary classification accuracy provides an insight into how well the model would per-
form under a general setting where dissimilarity scores are randomly given. In contrast, the
Jaccard score shows how similar the model’s prediction of a whole video clip is compared
to the ground truth.

k-means cluster model Gaussian mixture model
SAD 0.170 0.259

Hist-All 0.974 0.406
Hist-Reg 0.867 0.333

Table 6.3: Normalised Jaccard score of all abrupt transition detection models without
applying non-maximum suppression, to 3 d.p.

k-means cluster model Gaussian mixture model
SAD 0.338 0.413

Hist-All 0.982 0.632
Hist-Reg 0.936 0.084

Table 6.4: Normalised Jaccard score of all abrupt transition detection models with non-
maximum suppression applied, to 3 d.p.

41

k-means cluster model Gaussian mixture model
SAD 0.861 0.879

Hist-All 0.924 0.970
Hist-Reg 0.994 0.500

Table 6.5: Normalised binary classification accuracy across of all abrupt transition detec-
tion models with non-maximum suppression applied, to 3 d.p.

By comparing Table 6.3 and 6.4, we can see increases in normalised Jaccard score for
most models, showing that applying NMS improves the performance. Table 6.4 and 6.5
shows the performance of models with NMS applied, measured in normalised Jaccard score
and binary classification accuracy respectively. Generally, k-means clustering models out-
perform Gaussian mixture models, and using histogram-based scoring gives more reliable
results than SAD, even with fewer training samples. We can observe that SAD models
perform well when randomly giving a score but poorly as a whole when evaluated on a
video clip. Hist-ALL k-means cluster and Hist-Reg k-means cluster have very similar and
impressive results. We choose to use Hist-ALL k-means cluster with the higher normalised
Jaccard score, indicating better predictions of the entire video clip.

6.3 Rule-learning

For both ‘holding’ and ‘entering’ concept learning, our training examples for ILASP are
constructed from ground truth annotations. This approach removes the unnecessary noises
that could prevent ILASP from learning a general and precise hypothesis that covers most
real-life cases. The learned rule combines with the background knowledge to form the
base program. Apart from the base, the context program representing the visual features
from the frames is required to answer a question. To evaluate purely just how accurate
the learned rule is, we minimise the inaccuracy in symbolic representations in the context
program by using direct translations from ground truth annotations instead of constructing
from scratch with our frame processing. We obtain the answer set by using clingo to solve
the combined ASP program of the base program and context program with ground-truth
features.

For the ‘holding’ concept, we parse the predicates to get all possible objects held by
the character of the question. We try to match the objects with all the choices by checking
synonyms, hyponyms or hypernyms. If an object matches one of the choices, we select
that as our answer. Sometimes multiple objects are being matched, and thus the pipeline
might select more than one answer. Similarly, for ‘entering’ concept learning, we parse the
answer set to get all possible people who are concluded that have entered the scene. We
match the people’s names with all choices by simply comparing the exact names.

QA accuracy is the commonly-used metric to measure how well the model answers
the multiple-choice question. Since we do not have confidence scores associated with the
objects/people or a further heuristic to select a specific one as the final answer, we store
all options selected by our symbolic reasoning in a list regardless of the number. This
implementation choice means that we could have multiple predicted answers to a question,
making QA accuracy incompatible with our model. Instead of using the accuracy, we
adopt the Jaccard index score to measure the performance. For each question, the closer
the Jaccard score is to 1, the closer our prediction is to the ground truth answer.

In Table 6.6, the column ‘HACR With g.t. annot.’ shows the general performance of
HACR’s rule learning ability. Our approach outperforms the iPerceive Video Q&A model
with higher normalised Jaccard scores in all evaluation configuration for both concepts.
This result shows the impressive generalisation and learning ability of the inductive learning

42

system. Moreover, the symbolic concepts representations are human-readable, showing
higher interpretability compared to the neural model.

6.4 Overall Pipeline

In order to evaluate the overall pipeline, instead of translating ground truth annotations
into the context program, we construct the context program based on features extracted
through our frame processing. Like evaluation on rule learning, we keep all matched objects
after synonym/hyponym/hypernym checking and use the Jaccard score as our metric.
Column ‘HACR with o.d./f.c.’ in Table 6.6 shows the result of the overall architecture for
all test configurations.

Concept Test name Eval
method # of Qs

iPerceive
Video
Q&A*

HACR
With
o.d./f.c.

With g.t.
annot.

Holding

Train-
Hold-OD 5-fold 91 0.791 0.724 0.875

Train-
Hold-ALL 5-fold 886 0.729 0.161 0.741

Val-Hold Train on
Hold-OD 104 0.539 0.143 0.793

Entering
the scene

Train-
Enter-HACR 5-fold 10 – 0.633 0.933

Val-
Enter-TVQA+

Train on
Enter-HACR 3 0.667 0.333 1

Table 6.6: ‘Holding’ and ‘Entering the scene’ concept learning evaluation, performance
measured in avg. Jaccard score.
iPerceive Video Q&A*: As we mentioned in Section 6.1, the model we run the experiments
on is slightly different from the model reported in [27], since we could not enable the
common-sense reasoning component. But the performance should be very close to the best
model in [27].

For the task of ‘holding’, we can observe a significant drop in performance of the
whole pipeline when moving from our Hold-OD dataset to Hold-ALL dataset. In contrast,
the pipeline without any frame processing shows minor effects. The change in dataset
introduces noises into the context program due to the use of frame processing. As discussed
in Section 6.2.1, our object detector has very limited ability to provide reliable detection
of various types of items and sometimes outputs false positives of human detection. Even
when testing on Hold-OD where the answer objects fall into the COCO category, there is
still a big gap of performance between the pipeline using object detector to get context
programs and the pipeline using ground truth annotations. Similar observations are found
for the ‘entering’ learning task: the pipeline with the object detector performs poorly
compared to iPerceive Video Q&A and the pipeline that uses ground truth annotation
in the context programs. These observations in both cases prove that the current object
detector is the bottleneck for our pipeline, preventing the learned rule from being utilised
fully.

43

Chapter 7

Related Work

In this chapter, we discuss existing models relevant to concept learning and Video Q&A.
We first present pure statistical machine learning models focusing on the TVQA [21] and
TVQA+ [12] datasets. As limited research is done on hybrid learning, we include archi-
tectures that aim for concept learning and Video Q&A problem, as well as some oracles in
the field of neural-symbolic learning.

7.1 Neural Architectures for Video Q&A

Majority of the works on Video Q&A use neural architecture. While many models are
developed, we only present the ones tested against TVQA dataset [21] or TVQA+ dataset
[12] or both. Table 7.5 shows an overview and comparison of all models that we consid-
ered. We sperate these models into three main milestones, with the group of MSAN [29]
and DHTCN [30] as a branch of the first milestone. We list out inspirational techniques
introduced in each milestone. For more details of the models, we direct the avid readers
to their original papers. We also discuss the neural approach’s strengths and weaknesses
in general at the end of this subsection.

Two-stream [21], PAMN [31], and Multi-Task [32]

These three models set the first milestone as TVQA [21] was first proposed, sharing some
similar design features:

• Feature fusion. All three models implemented feature fusion involving different at-
tention mechanism. Two-stream and multi-task models use context-query attention
layer [33, 34], while PAMN uses dynamic modality fusion (explained more in the sec-
ond point) based on dual memory embedding after progressive attention mechanism.

• Modality alignment. Both multi-task model and PAMN incorporate components
specifically for modality alignment. Multi-task model uses a modality alignment
network to match video with strongly supporting subtitle, with additional supervi-
sion. PAMN performs dynamic modality fusion to increase more relevant feature’s
contribution to the final output.

• Temporal localisation. To locate temporally relevant parts for question answering,
multi-task model adds extra supervision via a temporal localisation network. PAMN
achieves it during its progressive attention mechanism.

As the first few attempts with relatively simple architecture, these models perform
reasonably worse in the comparison in Table 7.5. However, the design presented in them
are highly influential and become fundamental building blocks for later works.

44

Figure 7.1: STAGE architecture, cited from [12]

STAGE [12]

TVQA+ dataset [12] is a subset of TVQA dataset [21] with moment localisation and object
grounding annotation. STAGE became the second milestone with the addition annotations
in TVQA+ and a more sophisticated design:

• Convolutional encoder. Consisting of positional encoding, CNN and layer nor-
malisation, convolutional encoder acts as a recurrent network replacement. STAGE
applies convolutional encoders to encode raw inputs as well as internal feature fusion.

• QA awareness. For each question-answer combination from one video clip, its
encoding is used to compute attention score with visual features and subtitle features
respectively. Feature fusion is then applied to these QA-aware representations.

• Span prediction and span proposal. Span predictor computes the probability of
each fused input being the start and end of the time span. Dynamic programming
[33] then makes several span proposals based on these probabilities.

• Local and global features for question answering. Generated by span propos-
als, local representations are combined with global representation to compute each
answer’s score.

• Spatial and temporal supervision. STAGE performs spatial-temporal supervi-
sion with the ground truth time span and object grounding boxes. In Table 7.3, we
see that temporal supervision improves the model’s overall performance, and spatial
supervision brings a dramatic upgrade in object grounding precision.

"what" "who" "where" "why" "how"
Question type percentage 60.52 10.24 9.68 9.55 9.05
QA Acc. 72.34 74.11 74.32 76.39 67.03

Table 7.1: TVQA+ val set results by question type [12].

With various enhancements on the original two-stream [21] architecture shown in Ta-
ble 7.2, STAGE significantly outperforms its ancestor, providing a strong foundation for

45

future work. Furthermore, STAGE presents strong performance in "why" and "how" ques-
tions (Table 7.1), indicating some reasoning power in this architecture.

Model QA Acc. Grd. mAP Temp. mIoU ASA
STAGE (video) 52.75 26.28 10.9 2.76
STAGE (subtitles) 67.99 - 30.16 20.13
two-stream [21] 68.13 - - -
silkage* 72.14 - 30.68 20.99
Alchemistyui* 72.67 - 32.03 22.94
Anonymous_129* 73.80 - - -
lft3324581* 74.34 - 31.53 21.77
STAGE 74.83 27.34 32.49 22.23
Human 90.46 - - -

Table 7.2: TVQA+ test set results comparison. Models without labels and their metrics
are cited from [12]. Models labelled with * and their metrics come from TVQA+ Codalab
competition13.
QA Acc. = QA performance accuracy; Grd. mAP = object grounding mean Average
Precision; Temp. mIoU = span prediction temporal mean Intersection-oven-Union; ASA
= Answer-Span joint accuracy

Model QA Acc. Grd. mAP Temp. mIoU ASA
baseline 65.79 2.74 - -
+ CNN 67.25 3.16 - -
+ Aligned fusion (backbone) 68.31 7.31 - -
+ Temp. Sup. 71.40 10.86 30.77 20.09
+ Spat. Sup. 71.99 24.10 31.16 20.42
+ Local feature (STAGE) 72.56 25.22 31.67 20.78
STAGE with ground truth span 73.28 - - -

Table 7.3: Ablation analysis of STAGE on TVQA+ val set [12].

MSAN [29] and DHTCN [30]

These two models were proposed at a similar time as STAGE [12]. With less similarity with
STAGE, MSAN and DHTCN were created based on architectures from the first milestone,
but with advanced attention mechanism to improve overall performance.

• Multi-head attention mechanism. DHTCN adopts this mechanism from [35]
to align different modalities. The aligned representation is then combined with bi-
LSTM to form a component named AttLSTM. By applying it periodically in the
pipeline, AttLSTM helps to generate fused representations in different scales.

• Heterogeneous attention mechanism (HAM). Introduced together with MSAN,
HAM combined three primary attentions (self-attention, context-to-query attention,
and context-to-context attention) to seek modalities interactions. It acted as the core
feature fusion unit in MSAN.

Although both models outperform STAGE, the improvement is marginal. Thus, we
consider this group more an improved branch of the first milestone than its own milestone.
However, the powerful attention mechanisms inspire the next group of models deeply.

13https://competitions.codalab.org/competitions/22705#results

46

https://competitions.codalab.org/competitions/22705#results

hstar14[36] and iPerceive [27]

These third milestone models are highly influenced by the architecture of STAGE [12] and
use dense caption as an additional modality to improve performance further:

• Dense caption. Dense caption encodes actions of objects, providing another way to
correlate object and time. hstar and iPerceive each have a dense caption generator.
hstar uses the pre-trained model from [37]. iPerceive’s dense caption generator (iPer-
ceive DVC) is built upon [38] with a common-sense reasoning model (more detailed
in the third point).

• Dual-level attention with multi-head self-attention. Both architectures utilise
this module. Dual-level attention generating process consists of two steps. QA-aware
subtitle and visual features are first computed with word/object-level attention.
These two attended representations are then aligned onto frames with frame-level
attention. Dual-level attention is applied twice to generate frame-level attentions for
video and dense caption. They are finally fused via multi-head self-attention.

• Common-sense reasoning. Based on causality reasoning in [39], iPerceive utilise
common-sense generation in both dense caption generation and fusion with visual
features. Table 7.4 shows that baseline iPerceive performs better with common-sense
reasoning than with additional dense caption. It suggests that reasoning may be
more critical in Video Q&A than additional modality.

As state-of-the-art in TVQA dataset, iPerceive utilises additional modality and a neu-
ral reasoning component, which provides a direction of incorporating reasoning in next-
generation models.

Common-sense reasoning iPerceive dense caption QA Acc.
7 7 74.20
7 3 75.42
3 7 75.55
3 3 76.97

Table 7.4: Ablation analysis of iPerceive VideoQA on validation set[27].

In summary, neural approaches’ power has shown to be growing and showing promising
results for Video Q&A. The current trend consists of applying additional spatial-temporal
supervision, and modality fusion with attention mechanism. Furthermore, iPerceive sug-
gests that common sense reasoning is more likely in improving the overall performance.

However, all these models are not interpretable and suffer low transparency, especially
decomposability [40]. Each component and internal representations lack instinctive expla-
nations. For example, common-sense reasoner in iPerceive outputs vector representation
of knowledge, making it hard for humans to interpret.

Another problem is that the reasoning power of neural modules does not seem to be
robust enough. Due to poor interpretability, we cannot verify if the models are reason-
ing correctly. But evidence could be found in the ablation study of STAGE and iPer-
ceive. The ASA metric in [12] is calculated as the probability P (Predicted span IoU ≥
0.5 | correct answer prediction). In Table 7.2 and 7.3, STAGE’s ASA results are gener-
ally low, suggesting that the model might not be correctly reasoning based on temporal
features. On the other hand, the improvement of common sense reasoning is marginal in

14Although hstar is the name of [36]’s submission name on CodaLab, the authors didn’t give the model
a name and we choose to use hstar to distinguish the model from the technique of dense caption.

47

iPerceive’s ablation analysis (Table 7.4). While some may argue that the QA performance
is a strong indication of reasoning, we still believe that symbolic learner with transparency
and interpretability would be a more robust approach.

Model Text
Feat.

Video
Feat.

Additional su-
pervision

Attention Val.
set
Acc.

test-
public
(w/o
times-
tamp)
Acc.

two-stream
[21]

GloVe vcpt,
reg,
img

- context-
to-query
attention

65.85 66.46

PAMN [31] GloVe vcpt - progressive at-
tention

66.38 66.77

multi-task [32] GloVe vcpt,
img

temporal,
modality
alignment

C2Q attention 66.22 67.05

STAGE [12] BERT reg temporal, spa-
tial

hard attention 70.50 70.23

MSAN [29] BERT vcpt,
acpt

- Heterogeneous
Attention
Mechanism

70.79 71.13

DHTCN [30] BERT vcpt - multi-head at-
tention

71.15 71.48

hstar [36] Glove,
RoBERTa

reg temporal, spa-
tial

dual-level,
multi-head

74.20 74.09

iPerceive [27] Glove,
RoBERTa

reg temporal, spa-
tial, common
sense reason-
ing

dual-level,
multi-head

76.97 75.15

Table 7.5: Various models comparison on TVQA dataset. Follow the convention in [29],
"img", "reg", "vcpt", "acpt" mean ImageNet feature, regional feature, visual concept
feature and action concept feature respectively.

7.2 Neural-Symbolic Approaches

Neural-symbolic approaches have gained more attention in the last three years. We cat-
egorise current relevant works into two main categories: hybrid systems and integrated
frameworks. We first introduce hybrid models targeting at either concept learning or
Video Q&A. We then discuss existing neural-symbolic computation frameworks Deep-
ProbLog [41] and NSL [42]. We direct the avid readers to the models’ original papers
for detailed implementations. Advantages and drawbacks for each category are discussed
separately in its section.

7.2.1 Hybrid Systems

To our knowledge, there is no direct baseline for hybrid approach on TVQA and TVQA+.
However, there are several inspirational hybrid systems in Visual Question Answering on

48

CLEVR dataset [43] and Video Question Answering on CLEVRER dataset [6]. All models
provide some level of technical background towards a high-cognition hybrid model.

NS-VQA [44] and NS-CL [5]

CLEVR dataset [43] consists of synthetic images of simple objects with controlled bias and
detailed annotations. The overall architecture of NS-VQA is relatively simple, with only
three components: scene parser, question parser and program executor.

• Scene parser. A Mask R-CNN [45] first generates object segment proposals. A
ResNet-34 [46] then extracts spacial properties based on the segment proposals and
the original image.

• Question parser. The parser plays the role of program synthesis in the pipeline.
It is implemented as an attention-based sequence to sequence model in an encoder-
decoder style. The parser takes in the question text and output token sequence that
shares the same representation as [43].

• Program executor. The program executor contains the logic operations for the
questions. The tokens from question parser are translated into functional modules
and executed sequentially on the spatial representations from scene parser. The last
function module outputs the answer to the question.

Model Type Count Exist Compare
Number

Compare
Attribute

Query
Attribute

Overall

Humans [43] - 86.7 96.6 86.4 96.0 95.0 92.6
DDRprog* [47] Neural 96.5 98.8 98.4 99.0 99.1 98.3
MAC* [48] Neural 97.1 99.5 99.1 99.5 99.5 98.9
TbD+reg+hres*
[49]

Neural 97.6 99.2 99.4 99.6 99.5 99.1

NS-VQA (270
prgrams) [44]

Hybrid 99.7 99.9 99.9 99.8 99.8 99.8

Table 7.6: CLEVR models comparison. * indicates that the model is trained on all program
annotations.

As shown in Table 7.6, NS-VQA outperforms other neural models and even humans
with almost perfect accuracy in all question types among existing models. The model also
generalises well in other datasets. In [44], the model is tested against a Minecraft dataset,
still showing overwhelming performance with a small number of annotated programs (ac-
curacy of 87.3% at 500 programs).

Studying on the same dataset, NS-CL focuses on visual concept learning. With simi-
lar components in the pipeline, NS-CL learns connections between visual representations
with concepts based on functional program execution. Visual representation learning is
optimised via backpropagation from the program executor. While the semantic parsing is
not differentiable, NS-CL uses REINFORCE [50] to optimise its performance.

Although the task of VQA is more straightforward than Video Q&A, these two hybrid
models laid down solid foundations for models on CLEVRER dataset.

NS-DR [6], DCL [7], and HySTER [8]

These three models study another popular Video Q&A dataset CLEVRER [6]. Inspired by
CLEVR [43], CLEVRER dataset consists of artificial videos of simple objects and collision

49

events. It tests out physical and causal reasoning abilities based on spatial and temporal
features.

NS-DR is the pioneer model for Video Q&A and neural-symbolic learning, proposed
together with CLEVRER dataset. Compared to neural models presented in Section 7.1,
NS-DR has a much simpler overall architecture built upon NS-VQA [44], shown in Fig-
ure 7.2. Visual and textual features are extracted separately without further fusion. The
question parser is very similar to the one in NS-VQA. The visual parser is changed to
a Mask R-CNN [45] based parser with ResNet-50 FPN [51] backbone. The output from
video parser is passed down to the neural dynamic predictor to learn underlying physical
concepts. The predictor is implemented with Propagation Network (PropNet) [52], and
its output encodes object states and relations throughout the video. A hand-crafted pro-
gram executor takes in the functional programs from question parser and executes them
on event traces from the neural dynamic predictor. NS-DR significantly improved the ac-
curacy in answering explanatory, predictive and counterfactual performance compared to
neural architectures before it, as shown in Table 7.7. NS-DR also provides some level of
transparency as the answering process in the symbolic executor is human-interpretable.

Figure 7.2: NS-DR architecture, cited from [6]

DCL adds more components on top of NS-DR’s architecture to perform object track-
ing and trajectory refinement. Based on object detection, objects in consecutive frames
are linked together to form trajectories. The dynamic predictor utilises the trajectory to
optimise concept embeddings without labels on collision prediction. Furthermore, based
on input video and trajectories, DCL extract three feature representations for object at-
tributes, unary events and collision events, respectively. Finally, the symbolic executor
runs the generated program from question parser on the features to predict an answer.
From Table 7.7, we can see that trajectory prediction improves the overall DCL’s perfor-
mance, making it the state-of-the-art hybrid models. Moreover, DCL has shown to learn
a new physical concept of ‘falling’ in real videos in [7]’s extension experiment.

The fundamental difference between HySTER from the previous two is its reasoning
paradigm. Both NS-DR and DCL use PropNet [52] to learn underlying physics for collision
events, whereas HySTER’s reasoner uses symbolic rules implemented in Answer Set Pro-
gramming (ASP) programs [9] and Event Calculus [14] for temporal reasoning. The video
parser extracts object properties with spatial coordinates and encode them as facts. The
predicate on_camera is used to encode spatial information of an object being in the frame
at a certain time. Question parser translates questions into logic queries. The reasoner
takes the scene representations and queries and combines them with encoded physics rules
and task-specific event detection rules. The combined ASP program is solved by clingo
[16] to get the final answer. Despite not being as accurate as DCL, HySTER has better
interpretability compared to NS-DR and DCL. HySTER’s collision rules learnt by the rea-

50

soner is encoded human-interpretable logic, whereas the PropNet’s output is a collection of
object states. Some may argue that it could be encoded with a direct graph where vertices
represent objects and edges represent relations. However, what PropNet learns and how it
learns is still hard to explain due to its neural architecture.

Figure 7.3: HySTER architecture, cited from [8]

Model Symbolic
component Descriptive Explanatory Predictive Counterfactual
component per

opt.
per
ques.

per
opt.

per
ques.

per
opt.

per
ques.

STAGE
[12]

- 72.0 63.3 23.7 70.3 48.9 53.9 4.1

MAC(V+)
[48]

- 86.4 70.5 22.3 59.7 42.9 63.5 25.1

NS-DR [6] Program
executor

88.1 87.6 79.6 82.9 68.7 74.1 42.2

DCL-
Oracle
[7]

Program
executor

91.4 89.8 82.0 90.6 82.1 80.7 46.9

HySTER-
2(2D)
[8]

ASP,
Event
Calculus

88.3 90.9 83.0 79.5 61.5 79.4 47.1

DeepMind
Neural
Model [53]

- 94.0 - 96.0 - 87.5 - 75.6

Table 7.7: Neural-symbolic models comparison on CLEVRER. The DeepMind model is
used as baseline comparison.

Performance-wise, these three hybrid models show dominant performance over the clas-
sic neural Video Q&A models, until DeepMind’s model with self-supervision, self-attention
and soft (quasi)-discretisation came out recently [53]. Moreover, it requires much human-
engineering to create the symbolic components, either the program executor or the back-
ground knowledge for ASP in HySTER. However, this does not suggest that neuro-symbolic
architecture is not worth researching. ASP as an efficient model for collision events gives

51

us a direction of causal reasoning Video Q&A with hybrid systems. The system should
utilise symbolic AI techniques such as Inductive Logic Programming (ILP) [54] that can
learn while still maintains interpretability.

To summarise, the hybrid systems show decent causal reasoning and generalisation
with better interpretability at the same time. However, the reasoning mechanism is not
strong enough, and the system requires a large amount of human engineering. Both these
aspects could be potentially improved by adopting symbolic learning paradigms like ILP.

7.2.2 Neural-Symbolic Frameworks

Neural-symbolic frameworks aim to provide a more general structure for different tasks.
While various translation approaches could achieve neural-symbolic computation [10], lots
of prior research is done on encoding logic into neural networks. Recent years, the focus
has moved to combine neural and symbolic components in a hybrid way to enable learning
and reasoning [55]. Both DeepProbLog [41] and NSL [42] fall into the category of hybrid
framework.

• DeepProbLog [41]. DeepProbLog framework extents the ProbLog language with
ground neural annotated disjunctions (nADs) to support neural networks. Its infer-
ence follows ProbLog’s inference, with the special case of encountering neural predi-
cates during grounding. In that situation, DeepProbLog performs a forward pass on
the neural network to obtain the probabilities for the ground AD. One distinct prop-
erty of DeepProbLog is its end-to-end differentiability. The loss of a DeepProbLog
program w.r.t a query and its desired probability is calculated with the learning from
entailment setting [56]. ProbLog program is transformed into an aProbLog program
to compute the gradients and update parameters for probabilistic facts and ADs.
Gradient descent in the neural network is done via traditional gradient optimisers.
DeepProbLog combines symbolic, neural and probabilistic computation with an end-
to-end manner. However, the logic rules are manually created then learned by the
system itself. The framework might not scale well in Video Q&A, where the dynamics
are exceptionally complicated to be fully covered with human-engineered rules.

• NSL [42]. In contrast, NSL uses scalable ILP system FastLAS [57] to learn rules
from training data. NSL generates weighted context-dependent partial interpreta-
tion (WCDPI) examples based on features extracted by pre-trained neural component
from unstructured data. The confidence of neural prediction is used as the penalty
of a WCDPI example. NSL defines a penalty scoring function for FastLAS to max-
imise coverage and minimise hypothesis length at the same time. NSL also utilises
FastLAS’s ability to learn from noisy data and shown to be able to obtain robust
rules in perturbed training data. Compared to DeepProbLog, although NSL is not
end-to-end differentiable, it has outstanding scalability and data-efficiency due to the
use of FastLAS, with little human-engineering. However, the neural component is
required to be pre-trained and is not tunable during training. This property suggests
that NSL might not be ideal for Video Q&A if we want to improve span proposal
based on rules learned by the symbolic learner.

Although these frameworks might not be good fits for Video Q&A, it still addresses
the robustness of logical reasoning as another reason for using neural-symbolic models.

52

Chapter 8

Conclusions and Future Works

We developed a neural-symbolic pipeline that learns and reasons about concepts through
question answering on real-life videos. In this chapter, we first summarise our project’s
achievements and then discuss possible future works that could improve the system. Fi-
nally, we point out some ethical considerations of this project.

8.1 Achievements

In summary, our project has accomplished the followings:

1. Multi-modality feature extraction: Our frame processing extracts visual fea-
tures from real-life videos such as people, objects and shot transitions. We obtain
core events/actions related to the concept from text and recognise the relationship
between words through language processing.

2. Feature translation: Features from both pre-processing and ground truth annota-
tions can be translated into ASP programs. Translation of the ground truth is used
to train and evaluate rule learning, while translation of the extracted features from
video frames is used for reasoning during inference.

3. Inductive rule learning: We formalise the concept learning tasks into ILASP
learning tasks. Apart from Event Calculus axioms, we provide little or no extra
background knowledge to the system, and ILASP learns general hypotheses that
capture the concepts. This learning process minimises human engineering in the
symbolic component of the pipeline.

4. Symbolic reasoning for question answering: By combining symbolic feature
representations, background knowledge and learned concepts at inference time, we
extract the possible objects/characters from the answer set of the combined program.
Finally, objects/characters that match with given choices are selected as part of the
final answer to the question.

Although the overall HACR pipeline does not outperform existing neural approaches
due to the object detection bottleneck, it has brought several exciting findings and im-
provements to the neural-symbolic research:

• Automated symbolic rule learning: Using the inductive learning system ILASP,
we have learned accurate and general rules to represent concepts. Using these rules,
HACR shows impressive performance if using ground truth features instead of pre-
processing. This observation proves that ILASP offers powerful generalisation and
high accuracy that can compete or even outperform statistical learning.

53

• High interpretability and transparency: Our internal representations and learned
rules are all human-readable. Furthermore, our reasoning process is explainable.
Compared to existing neural architectures, our approach has far more interpretabil-
ity and transparency.

• Ability to learn from real-life videos: We show that the hybrid model is capable
of handling Q&A on real-life videos, expanding on previous works that purely used
synthetic videos. This further proves that neural-symbolic models have the ability
of modelling human-like cognitive function in high-complexity environments.

8.2 Future Works

From the evaluation, we can see several issues with the current pipeline. Possible areas of
improvement could be the followings:

• Use a more fine-tuned object detector with more types of objects sup-
ported: The pre-trained object detector has become the main bottleneck of our
pipeline. Its poor performance has prevented accurate features from being extracted
and passed to the symbolic reasoner. Moreover, it could only detect a small set of
objects, meaning that it is impossible for our pipeline to answer a question if the
answer is outside of that set. To overcome this obstacle, we would need a robust
model, either fine-tuned from a pre-trained model or newly constructed, that can de-
tect most classes of objects in the dataset. However, such a model could be extremely
hard to develop and train due to the wide variety of objects in the videos.

• Use a more accurate face detection: The pre-trained Haar cascade model used
to localise a person’s face sometimes struggles to distinguish face features from hor-
izontal clothes wrinkles. We could swap it for a pre-trained neural model to reduce
the false positives and obtain more precise face samples for training our face classifier.
We could potentially fine-tune the complete neural pipeline in the face-recognition
package to handle detection, encoding and classification for our task.

• Associate words that are connected by common sense: Our language process-
ing component uses WordNet to detect semantic relations between words by checking
synonyms, hypernyms and hyponyms. This approach cannot associate words that are
not semantically connected. For example, it fails to understand that mug is a type of
cup. What we would need is a model that can incorporate common sense knowledge
when relating words. The word knowledge graph, ConceptNet, provides 36 complex
relations that go beyond semantics relation, such as RelatedTo and FormOf [58]. It
successfully associates mug and cup by the relation ‘mug is related to cup’. Using
ConceptNet, the pipeline would be able to relate more words, thus avoiding the case
of no answer being selected when the object detected and the choice both represent
the same item but are not semantically connected.

Apart from improvements on individual components, there are a few general areas of
future research based on our current approach:

• Learning general ‘entering’ concept: HACR currently focuses on a specific type
of entering action: people who were previously not in the scene appear. A broader
definition of ‘entering’ could be described as a person’s location changes from one to
another in a certain period. While the fluent and time changes could be handled by
Event Calculus without further changes, we would require to more precise location
representation rather than just ‘current scene’. A model that can detect backgrounds

54

and distinguish two different environments would be needed to extract such spatial
features.

• Learning complex concepts beyond visual concepts: Our approach is targeted
towards learning visual concepts from video frames. Besides video clips, the TVQA+
dataset also offers each clip’s subtitles that are not used in our current pipeline, as
there are generally irrelevant. If incorporating subtitles, we would be able to learn
other interesting real-life concepts such as ‘speaking’, which involves detecting a
character’s mouth movements and speech.

8.3 Ethical Considerations

This project utilises a subset of the TVQA+ dataset [12] for training and inference. The
video frames in TVQA+ datasets are collected from the TV series The Big Bang Theory,
created by Chuck Lorre, Bill Prady and Steven Molar and produced by Chuck Lorre
Productions and Warner Bros. Television. The dataset is copyright under the TVQA
team from the University of North Carolina at Chapel Hill (UNC). UNC provides access
to the dataset under an agreement, which we have signed and strictly follow. The dataset
is used by us only and for research purpose only. There are a few questions that we created
during the project. Despite not being part of the original TVQA+ dataset questions, they
are based on the frames in the TVQA+ dataset and share a similar format with the original
questions.

As mentioned in Chapter 1, this project’s result could be beneficial for stepping towards
robust AI systems with sound reasoning and general knowledge [2]. Moreover, the human-
readability of symbolic learner would increase the transparency of the hybrid pipeline.
While improving specific aspects of AI safety, there remain potential harms caused by such
hybrid architecture. For example, using biased training data, hybrid models might show
bias towards specific objects, people or concepts. There exists research on traing robots
on Video Q&A for visually impaired people [59]. If a hybrid Video Q&A model is applied
to such robots and gives unsafe answers or judgement, it could put their owners’ safety
at risk. Researchers and users still need to consider AI ethics [60] when developing and
applying neural-symbolic agents.

55

Bibliography

[1] Jerome S. Bruner, Jacqueline J. Goodnow, and George A. Austin. A Study Of Think-
ing, chapter 3. New York: Wiley, 1956.

[2] Gary Marcus. The next decade in ai: Four steps towards robust artificial intelligence.
ArXiv, abs/2002.06177, 2020. URL https://arxiv.org/abs/2002.06177.

[3] Stuart C. Shapiro. Artificial intelligence. In Encyclopedia of Artificial Intelligence,
pages 54–57. John Wiley & Sons, Inc., USA, 2nd edition, 1992. ISBN 0471503053.

[4] Chi Han, Jiayuan Mao, Chuang Gan, Josh Tenenbaum, and Jiajun Wu. Vi-
sual concept-metaconcept learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https:
//proceedings.neurips.cc/paper/2019/file/98d8a23fd60826a2a474c5b4f5811
707-Paper.pdf.

[5] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu.
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences
From Natural Supervision. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rJgMlhRctm.

[6] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba,
and Joshua B. Tenenbaum. CLEVRER: Collision events for video representation
and reasoning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HkxYzANYDB.

[7] Zhenfang Chen, Jiayuan Mao, JiajunWu, Kwan-Yee KennethWong, Joshua B. Tenen-
baum, and Chuang Gan. Grounding physical concepts of objects and events through
dynamic visual reasoning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=bhCDO_cEGCz.

[8] Theophile Sautory, Nuri Cingillioglu, and Alessandra Russo. Hyster: A hybrid spatio-
temporal event reasoner. CoRR, abs/2101.06644, 2021. URL https://arxiv.org/
abs/2101.06644.

[9] Vladimir Lifschitz. Answer Set Programming. Springer International Publishing,
Cham, 2019. ISBN 978-3-030-24658-7. doi: 10.1007/978-3-030-24658-7_2. URL
https://link.springer.com/book/10.1007/978-3-030-24658-7.

[10] Tarek R. Besold, Artur S. d’Avila Garcez, Sebastian Bader, Howard Bowman, Pe-
dro M. Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luís C. Lamb, Daniel Lowd,
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, and Ger-
son Zaverucha. Neural-symbolic learning and reasoning: A survey and interpretation.
CoRR, abs/1711.03902, 2017. URL http://arxiv.org/abs/1711.03902.

56

https://arxiv.org/abs/2002.06177
https://proceedings.neurips.cc/paper/2019/file/98d8a23fd60826a2a474c5b4f5811707-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/98d8a23fd60826a2a474c5b4f5811707-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/98d8a23fd60826a2a474c5b4f5811707-Paper.pdf
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=HkxYzANYDB
https://openreview.net/forum?id=bhCDO_cEGCz
https://arxiv.org/abs/2101.06644
https://arxiv.org/abs/2101.06644
https://link.springer.com/book/10.1007/978-3-030-24658-7
http://arxiv.org/abs/1711.03902

[11] Kai-Uwe Kühnberger Pascal Hitzler. Facets of artificial general intelligence. Künstliche
Intelligenz, pages 58–59, 2009. ISSN 0933-1875. URL https://daselab.cs.ksu.edu
/sites/default/files/publications/AGI-KI2009.pdf.

[12] Jie Lei, Licheng Yu, Tamara Berg, and Mohit Bansal. TVQA+: Spatio-temporal
grounding for video question answering. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 8211–8225, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.730.
URL https://www.aclweb.org/anthology/2020.acl-main.730.

[13] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set
programs. In Eduardo Fermé and João Leite, editors, Logics in Artificial Intelli-
gence, pages 311–325, Cham, 2014. Springer International Publishing. ISBN 978-3-
319-11558-0.

[14] Murray Shanahan. The event calculus explained. In Artificial intelligence today, pages
409–430. Springer, 1999.

[15] Leo Bachmair, Harald Ganzinger, David McAllester, and Christopher Lynch. Chapter
2 - resolution theorem proving. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, Handbook of Automated Reasoning, pages 19–99.
North-Holland, Amsterdam, 2001. ISBN 978-0-444-50813-3.

[16] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo
= ASP + control: Preliminary report. CoRR, abs/1405.3694, 2014. URL https:
//arxiv.org/abs/1405.3694.

[17] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set
programs from noisy examples. CoRR, abs/1808.08441, 2018. URL http://arxiv.
org/abs/1808.08441.

[18] Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, Mar 1986. ISSN 1882-7055. doi: 10.1007/BF03037383. URL
https://doi.org/10.1007/BF03037383.

[19] Robert Sklar. Film: An International History of the Medium, page 526. Prentice Hall,
1993. ISBN 9780133280142. URL https://books.google.co.uk/books?id=zLkkAQ
AAMAAJ.

[20] J. Cabestany, I. Rojas, and G. Joya. Advances in Computational Intelligence:
11th International Work-Conference on Artificial Neural Networks, IWANN 2011,
Torremolinos-Málaga, Spain, June 8-10, 2011, Proceedings, page 521. Advances in
Computational Intelligence: 11th International Work-conference on Artificial Neu-
ral Networks, IWANN 2011, Torremolinos-Málaga, Spain, June 8-10, 2011. Springer,
2011. ISBN 9783642215001. URL https://books.google.co.uk/books?id=iEmt4q
x7xVQC.

[21] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L. Berg. TVQA: localized, com-
positional video question answering. CoRR, abs/1809.01696, 2018. URL http:
//arxiv.org/abs/1809.01696.

[22] NLP-progress. https://github.com/sebastianruder/NLP-progress/blob/master
/english/dependency_parsing.md, 2021.

[23] Merriam-Webster. Raj. In Merriam-Webster.com. Merriam-Webster, Jun 2021. URL
https://www.merriam-webster.com/dictionary/raj.

57

https://daselab.cs.ksu.edu/sites/default/files/publications/AGI-KI2009.pdf
https://daselab.cs.ksu.edu/sites/default/files/publications/AGI-KI2009.pdf
https://www.aclweb.org/anthology/2020.acl-main.730
https://arxiv.org/abs/1405.3694
https://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1808.08441
http://arxiv.org/abs/1808.08441
https://doi.org/10.1007/BF03037383
https://books.google.co.uk/books?id=zLkkAQAAMAAJ
https://books.google.co.uk/books?id=zLkkAQAAMAAJ
https://books.google.co.uk/books?id=iEmt4qx7xVQC
https://books.google.co.uk/books?id=iEmt4qx7xVQC
http://arxiv.org/abs/1809.01696
http://arxiv.org/abs/1809.01696
https://github.com/sebastianruder/NLP-progress/blob/master/english/dependency_parsing.md
https://github.com/sebastianruder/NLP-progress/blob/master/english/dependency_parsing.md
https://www.merriam-webster.com/dictionary/raj

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-
time object detection with region proposal networks. IEEE transactions on pattern
analysis and machine intelligence, 39(6):1137–1149, 2016.

[25] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation
and tracking. In Proceedings of the European conference on computer vision (ECCV),
pages 466–481, 2018.

[26] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human
pose estimation: New benchmark and state of the art analysis. In Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14,
page 3686–3693, USA, 2014. IEEE Computer Society. ISBN 9781479951185. doi:
10.1109/CVPR.2014.471. URL https://doi.org/10.1109/CVPR.2014.471.

[27] Aman Chadha, Gurneet Arora, and Navpreet Kaloty. iperceive: Applying common-
sense reasoning to multi-modal dense video captioning and video question answering.
ArXiv, abs/2011.07735, 2020. URL https://arxiv.org/abs/2011.07735.

[28] Rafael Padilla, Wesley L. Passos, Thadeu L. B. Dias, Sergio L. Netto, and Eduardo
A. B. da Silva. A comparative analysis of object detection metrics with a companion
open-source toolkit. Electronics, 10(3), 2021. ISSN 2079-9292. doi: 10.3390/electron
ics10030279. URL https://www.mdpi.com/2079-9292/10/3/279.

[29] Junyeong Kim, Minuk Ma, Trung X. Pham, Kyungsu Kim, and Chang D. Yoo.
Modality shifting attention network for multi-modal video question answering. CoRR,
abs/2007.02036, 2020. URL https://arxiv.org/abs/2007.02036.

[30] Fei Liu, Jing Liu, Xinxin Zhu, Richang Hong, and Hanqing Lu. Dual Hierarchical
Temporal Convolutional Network with QA-Aware Dynamic Normalization for Video
Story Question Answering, page 4253–4261. Association for Computing Machinery,
New York, NY, USA, 2020. ISBN 9781450379885. URL https://doi.org/10.1145/
3394171.3413649.

[31] Junyeong Kim, Minuk Ma, Kyungsu Kim, Sungjin Kim, and Chang D. Yoo. Pro-
gressive attention memory network for movie story question answering. CoRR,
abs/1904.08607, 2019. URL http://arxiv.org/abs/1904.08607.

[32] Junyeong Kim, Minuk Ma, Kyungsu Kim, Sungjin Kim, and Chang D. Yoo. Gaining
extra supervision via multi-task learning for multi-modal video question answering.
CoRR, abs/1905.13540, 2019. URL http://arxiv.org/abs/1905.13540.

[33] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirec-
tional attention flow for machine comprehension. CoRR, abs/1611.01603, 2016. URL
http://arxiv.org/abs/1611.01603.

[34] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad
Norouzi, and Quoc V. Le. Qanet: Combining local convolution with global self-
attention for reading comprehension. CoRR, abs/1804.09541, 2018. URL http:
//arxiv.org/abs/1804.09541.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

[36] Hyounghun Kim, Zineng Tang, and Mohit Bansal. Dense-caption matching and frame-
selection gating for temporal localization in videoqa. ArXiv, abs/2005.06409, 2020.
URL https://arxiv.org/abs/2005.06409.

58

https://doi.org/10.1109/CVPR.2014.471
https://arxiv.org/abs/2011.07735
https://www.mdpi.com/2079-9292/10/3/279
https://arxiv.org/abs/2007.02036
https://doi.org/10.1145/3394171.3413649
https://doi.org/10.1145/3394171.3413649
http://arxiv.org/abs/1904.08607
http://arxiv.org/abs/1905.13540
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2005.06409

[37] Linjie Yang, Kevin D. Tang, Jianchao Yang, and Li-Jia Li. Dense captioning with
joint inference and visual context. CoRR, abs/1611.06949, 2016. URL http://arxi
v.org/abs/1611.06949.

[38] Vladimir Iashin and Esa Rahtu. Multi-modal dense video captioning. CoRR,
abs/2003.07758, 2020. URL https://arxiv.org/abs/2003.07758.

[39] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru Sun. Visual commonsense
r-cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10760–10770, 2020.

[40] Zachary Chase Lipton. The mythos of model interpretability. CoRR, abs/1606.03490,
2016. URL http://arxiv.org/abs/1606.03490.

[41] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and
Luc De Raedt. Deepproblog: Neural probabilistic logic programming. CoRR,
abs/1805.10872, 2018. URL http://arxiv.org/abs/1805.10872.

[42] Daniel Cunnington, Alessandra Russo, Mark Law, Jorge Lobo, and Lance Kaplan.
NSL: hybrid interpretable learning from noisy raw data. CoRR, abs/2012.05023, 2020.
URL https://arxiv.org/abs/2012.05023.

[43] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence
Zitnick, and Ross B. Girshick. CLEVR: A diagnostic dataset for compositional
language and elementary visual reasoning. CoRR, abs/1612.06890, 2016. URL
http://arxiv.org/abs/1612.06890.

[44] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B.
Tenenbaum. Neural-symbolic VQA: disentangling reasoning from vision and language
understanding. CoRR, abs/1810.02338, 2018. URL http://arxiv.org/abs/1810.0
2338.

[45] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision, pages 2961–
2969, 2017.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[47] Joseph Suarez, Justin Johnson, and Fei-Fei Li. Ddrprog: A CLEVR differentiable
dynamic reasoning programmer. CoRR, abs/1803.11361, 2018. URL http://arxiv.
org/abs/1803.11361.

[48] Drew A. Hudson and Christopher D. Manning. Compositional attention networks for
machine reasoning. CoRR, abs/1803.03067, 2018. URL http://arxiv.org/abs/18
03.03067.

[49] David Mascharka, Philip Tran, Ryan Soklaski, and Arjun Majumdar. Transparency by
design: Closing the gap between performance and interpretability in visual reasoning.
CoRR, abs/1803.05268, 2018. URL http://arxiv.org/abs/1803.05268.

[50] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3):229–256, 1992. doi: 10.1007/BF0099
2696. URL https://doi.org/10.1007/BF00992696.

59

http://arxiv.org/abs/1611.06949
http://arxiv.org/abs/1611.06949
https://arxiv.org/abs/2003.07758
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1805.10872
https://arxiv.org/abs/2012.05023
http://arxiv.org/abs/1612.06890
http://arxiv.org/abs/1810.02338
http://arxiv.org/abs/1810.02338
http://arxiv.org/abs/1803.11361
http://arxiv.org/abs/1803.11361
http://arxiv.org/abs/1803.03067
http://arxiv.org/abs/1803.03067
http://arxiv.org/abs/1803.05268
https://doi.org/10.1007/BF00992696

[51] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan,
and Serge J. Belongie. Feature pyramid networks for object detection. CoRR,
abs/1612.03144, 2016. URL http://arxiv.org/abs/1612.03144.

[52] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and
Russ Tedrake. Propagation networks for model-based control under partial observa-
tion. In 2019 International Conference on Robotics and Automation (ICRA), pages
1205–1211. IEEE, 2019.

[53] David Ding, Felix Hill, Adam Santoro, and Matt M. Botvinick. Object-based attention
for spatio-temporal reasoning: Outperforming neuro-symbolic models with flexible
distributed architectures. CoRR, abs/2012.08508, 2020. URL https://arxiv.org/
abs/2012.08508.

[54] Stephen Muggleton. Inductive logic programming. New generation computing, 8(4):
295–318, 1991.

[55] Artur S. d’Avila Garcez, Marco Gori, Luís C. Lamb, Luciano Serafini, Michael
Spranger, and Son N. Tran. Neural-symbolic computing: An effective methodology
for principled integration of machine learning and reasoning. CoRR, abs/1905.06088,
2019. URL http://arxiv.org/abs/1905.06088.

[56] L. De Raedt, K. Kersting, S. Natarajan, and D. Poole. Statistical Relational Artificial
Intelligence: Logic, Probability, and Computation. Synthesis Lectures on Artifici.
Morgan & Claypool, 2016. ISBN 9781627058414. URL https://books.google.co.
uk/books?id=NYgHkAEACAAJ.

[57] Mark Law, Alessandra Russo, Elisa Bertino, Krysia Broda, and Jorge Lobo. Fastlas:
Scalable inductive logic programming incorporating domain-specific optimisation cri-
teria. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2877–2885. AAAI Press,
2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/5678.

[58] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilin-
gual graph of general knowledge. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAI’17, page 4444–4451. AAAI Press, 2017.

[59] Haozheng Luo and Ruiyang Qin. Open-ended multi-modal relational reason for video
question answering. ArXiv, abs/2012.00822, 2020. URL https://arxiv.org/abs/20
12.00822.

[60] David Leslie. Understanding artificial intelligence ethics and safety: A guide for the
responsible design and implementation of AI systems in the public sector, June 2019.
URL https://doi.org/10.5281/zenodo.3240529.

60

http://arxiv.org/abs/1612.03144
https://arxiv.org/abs/2012.08508
https://arxiv.org/abs/2012.08508
http://arxiv.org/abs/1905.06088
https://books.google.co.uk/books?id=NYgHkAEACAAJ
https://books.google.co.uk/books?id=NYgHkAEACAAJ
https://aaai.org/ojs/index.php/AAAI/article/view/5678
https://arxiv.org/abs/2012.00822
https://arxiv.org/abs/2012.00822
https://doi.org/10.5281/zenodo.3240529

Appendices

61

Appendix A

Pre-processing

handbag

reticule shoulder bag

container

purse

Level 1

Level 2

Level 3

Figure A.1: An example of hypernym and hyponym. Level 2 words are Level 1 word’s
hyponyms; Level 1 word is Level 2 words’ hypernym. Similarly, Level 3 words are Level 2
word’s hyponyms; Level 2 word is Level 3 words’ hypernym.

Character set

The set of characters we collect for face classification are:
Sheldon, Leonard, Howard, Raj, Penny, Bernadette, Amy, Stuart, Emily, Barry, Zack,

and Wil.

Calculation for bounding box intersection

Assume bounding boxes b1 and b2. The top left corner of b1 has a coordinate of (x1,0, y1,0)
and the bottom right corner of it has a coordinate of (x1,1, y1,1). Similarly, the two coor-
dinates for b2 are (x2,0, y2,0) and (x2,1, y2,1). To calculate the area of the intersection, we
first calculate the top left and bottom right coordinates of the intersection:

xi,0 = max(x1,0, x2,0)

yi,0 = max(y1,0, y2,0)

xi,1 = min(x1,1, x2,1)

yi,1 = min(y1,1, y2,1)

With the coordinates of the opposite corners, we can calculate the area of intersection
as:

62

AI = (xi,1 − xi,0)× (yi,1 − yi,0)

box 1

box2

intersection

Figure A.2: An example of bounding box intersection calculation, where (xi,0, yi,0) =
(x1,0, y2,0) and (xi,1, yi,1) = (x2,1, y1,1).

63

	Introduction
	Motivations
	Objectives
	Challenges
	Contributions

	Background
	ASP
	ILASP
	Event Calculus
	Abrupt Shot Transition
	Jaccard Similarity Coefficient

	HACR Overview
	Targeted Concepts
	Dataset
	Architecture Design

	Pre-processor
	Language Processing
	Dependency Parsing
	Synonym, Hypernym, and Hyponym Check

	Frame Processing
	Object Detection
	Face Detection and Classification
	Abrupt Transition Detection
	Unused Component: Human Pose Estimation

	Symbolic Representation Translation

	Symbolic Learning and Reasoning
	HACR Symbolic Learning Task
	HACR Symbolic Reasoning Task

	Evaluation
	Experiment Settings
	Pre-processing
	Object Detection
	Face Detection and Classification
	Abrupt Transition Detection

	Rule-learning
	Overall Pipeline

	Related Work
	Neural Architectures for Video Q&A
	Neural-Symbolic Approaches
	Hybrid Systems
	Neural-Symbolic Frameworks

	Conclusions and Future Works
	Achievements
	Future Works
	Ethical Considerations

	Bibliography
	Appendices
	Pre-processing

