113

NEGATION AS FAILURE

Keith L. Clark
Department of Computer Science & Statistics

Queen Mary College, London, England

ABSTRACT

A query evaluation process for a logic data base comprising a
set of clauses 1s described. It is essentially a Horn clause theo-
rem prover augmented with a special inference rule for dealing with
negation. This is the negation as failure inference rule whereby
~ P can be inferred if every possible proof of P fails. The chief
advantage of the query evaluator described is the effeciency with
which it can be implemented. Moreover, we show that the negation
as failure rule only allows us to conclude negated facts that could
be inferred from the axioms of the completed data base, a data
base of relation definitions and equality schemas that we consider
is implicitly given by the data base of clauses. We also show that
when the clause data base and the queries satisfy certain con-
straints, which still leaves us with a data base more general than
a conventional relational data base, the query evaluation process
will find every answer that is a logical consequence of the com-
pleted data base.

INTRODUCTION

Following Kowalski [1978] and van Emden {1978] we consider a
logic data base to comprise a set of clauses. The ground unit
clauses are the extensional component of the data base. They pro-
vide us with a set of instances of the data base relatiouns. The
remaining clauses constitute the intensional component, they are
the general rules of the data base. The general rules as well as
the explicit 'data' are to be used in the deductive retrieval of
information.

114

The shortcoming of such a data base is that, like a more con~-
ventional relational data base (Codd [1970]), it only contains in-
formation about true instances of relations. Even so, quite
straightforward queries make use of negation, and can be answered
only by showing that certain relation instances are false. Thus,
to answer a request for the name of a student not taking a par-
ticular course, C, we need to find a student, S, such that
Takes(S,C) is false. For his relational calculus (Codd [1972]),
Codd's solution to the problem is to assume that a tuple is in the
complement of the relation if it is not a given instance of the
relation. For a logic data base, where a relation instance which
is not explicitly given may still be implied by a general rule,
the analogous assumption is that a relation instance is false if
we fail to prove that it is true. The great advantage of such a
'solution to negation' is the ease with which it can be implemen-
ted. To show that P is false we do an exhaustive search for a
proof of P. If every possible proof fails, ~ P is 'inferred'.
This is the way that both PLANNER (Hewitt [1972]) and PROLOG
(Roussel [1975], Warren et al. [1977]) handle negation.

What we have here is a proof rule:

- ~ F—P infer - ~P

where the proof that P is not provable is always the exhaustive

but unsuccessful search for a proof of P. Let us call it the nega-
tion as failure inference rule. For pragmatic reasons this is
adopted as the sole inference rule for negated formulae. Is the
consequence that we have given "~" a new meaning as 'fail to
prove', or can we perhaps reconcile negation, operationally under-
stood as '"fail to prove'", with its truth functional semantics?

In other words, can we interpret a failure proof of ~ P as a

valid first order inference that P is false.

Note that to assume that a relation instance is false if it
is not implied, is to assume that the data base gives complete
information about the true instances of its relations. This is
the closed world assumption referred to by Reiter [1978] and
Nicolas and Gallaire [1978]. More precisely, it is the assumption
that a relation instance is true only if it is given explicitly
or else is implied by one of the general rules for the relation.
Thus, let us suppose that the data base contains just two instances
of the unmary relation, Maths-course:
Maths-course(C101)«
Maths-course(C301)«

and no general rules about this relation. For any course name C,

(L)

115

different from C10l and C301, Maths-course(C) is not provable. But
to conclude, in consequence, that Maths-course(C) is false, is to
assume that C101 and C301 are the only Maths-courses, and that C

is not an alternative name for either course. If we were to make

these assumptions explicit we would need to add to our data base .
the completion law:

(Vx) [Maths-course(x) - x=C101 V x=C301] (2)

and the inequality schemas:

Cl0l # C for all names C different from C101
C301 #C for all names C different from C301

Note that (1) and (2) are together equivalent to a definition
(Vx)[Mathé—course(x)++ x=C101 V x=C301]
of the Maths-course relation.

As we might expect, every negated fact ~ Maths-course(C) that
we can 'infer' by showing that Maths-course(C) is not given, can
now be proved by a first order deduction using the completion law
and inequality schemas. More than that, the failure proof of
Maths-course(C) and the first order deduction are struecturally
almost identical (see Figure 1). The alternatives of the failed
proof space become explicit disjunctions in the first order deduc-
tion, match failures of the former become false equalities of the
latter. Thus the failure proof is essentially a structural repre-
sentation of a natural deduction style proof:

Maths-course(C) Maths-course(C)
alternative of v logical
or . .
search space disjunction
C match Cl101? C match €301? C=C101 C=C301
FAIL FAIL false false

Figure 1. First Order Deduction

| 116
Maths-course(C) < C=Cl0l1 V C=C301
<+ false V false

> false

. « ~ Maths=-course(C)

This suggests a way of reconciling negation as failure with
its truth functional semantics. We can assume that the clauses
that appear in a logic data base B comprise just the if-halves of
a set of if-and-only-if definitions of the data base relations,
the only-if half of each definition being a completion law for the
relation. The completed data base C(B) , implicitly given by the
clauses of B, comprises this set of definitions together with a
set of equality schemas which make explicit the convention that
different object names denote different objects. If we can show
that every failed attempt to prove P using just the data base of
clauses B, is in effect a proof of ~ P using the completed data
base C(B), then 'negation as failure' is just a derived inference
rule for deductions from C(B).

In this paper we present just such a validation of the nega-
tion as failure inference rule. The structure of the paper is as
follows. In the next section, Query Evaluation for a Data Base of
Clauses, we make precise what constitutes a data base of clauses,
a data base query, and the deduction process of query evaluation.
As we describe it, query evaluation is a non-deterministic process
for which every evaluation path either succeeds, or fails, or does
not terminate. A negated literal ~ P is evaluated by recursively
entering the query evaluator with the query P. If every possible
evaluation path for P ends in failure, we return with ~ P evaluated
as true. These recursively constructed failure proofs can be
nested to any depth.

In the section, Data Base.Completion, we define the comple-
tion of a data base of clauses. Then in the section, Correctness
of Query Evaluation, we give the formal results validating the use
of the negation as failure inference rule. We prove that a query
evaluation will only produce results that are implied by the com~
pleted data base. The proof is constructive. It gives us a method
for reformulating a query evaluation from the data base of clauses
as a deduction from the completed data base. In the last section,
Completeness of Query Evaluation, we address the issue of the
deductive completeness of the query evaluation process. That is,
we deal with the issue of whether or not there are answers to a
query implied by the completed data base which are not the answer
of any evaluation of the query. '

As a final word of introduction we should say something about

s ' 117

the relationship between the negation as failure inference rule
treated here and the deduction rules considered by Kramosil [1975].
Kramosil shows that the adoption of sound deduction rules of the
form

from |~A, ~}B . infer |-C

which contain preconditions such as n-%-B about unprovability of
certain formula, cannot extend the class of theorems that are
derivable in a first order theory. There are two differences
between the negation as failure rule

from | ~}P infer |—~P
and the rules to which Kramosil's result applies.

The first difference, which is not the major differemnce, is
that the single rule that we consider has a definite and proscribed
method for proving unprovability. It is, in fact, a relatively
weak rule, for the unprovability condition is so strong. Kramosil
leaves unspecified the means by which the unprovability of a for-
mula would be determined.

The second, and crucial difference, is that his formal result
applies only to inference rules that sit on top of a camplete in-
ference system for first order logic. However, the negation as
failure inference rule sits on top of a resolution inference pro-
cedure which, without the rule, can only cope with Horn clause re-
futations. In other words, it is used to extend the deduction
power of inference system that is pnot a complete deductive system
for first order logic. We show that the enrichment of a Horn
clause theorem prover with this inference rule is, at least when
seeking answers to a query logically implied by the axioms of a
completed data base, somewhat of an alternative to using a more
conventional deductive system which is not restricted to Horn
clauses.

QUERY EVALUATION FOR A DATA BASE OF CLAUSES

We assume a familiarity with the terminology of resolution
logic (but see Chang and Lee [1973] for an introduction). The
statements of the data base are a set of clauses each of which
contains a distinguished positive literal. The relation of this
literal is the relation that the clause is about. Using the nota-
tion of Kowalski [1978], the clauses are written as implications of
the form

R(tl’ n-,tn) + Ll

§Lo&...8L , m = 0 (3)

118

Here, R(tl,...,tn) is the distinguished positive literal (so the
clause is about the relation R), the Lys...sLp are all literals,
and each free variable is implicitly universally quantified over
the entire implication. In more conventional clause notation this
would be written as the disjunction

R(Ey,eeest) VLV owL, Voo Vo ~L (4)

1
Note that any other positive literal of the disjunctive form (4)
will appear as a negated precondition of the implication (3). When
m=0, we have a unit clause.

Examplé Data Base

Table 1 gives the clauses of a micro logic data base. The unit
clauses, which are all ground, are the explicitly given relation
instances. The single non-unit clause is a general rule for the
relation Non-maths-major. Since the variable y appears only in the
antecedent of this clause we can read it as

Anything x is a Non-maths-major if there is a Maths-course y
which x does not take.

The functor "." is simply a data constructor, constructing a com-
pound name "J.Brown' from the initial "J" and the surname "Brown".
Every functor of a logic data base has this data constructor role.
In logic parlance, the functors implicitly have their free or Her-
brand interpretation. In our example data base, if we required to
refer to the surnmame or initial of a name separately, we would
include the general rules:

Initial(x.y,x)<«
Surname(x.y,y)+

Table 1. Micro Data Base

Student (J.Brown)<+
Takes (J.Brown,Cl01)<«
Student (D.Smith)+
Takes (D.Smith,Cl01l)«
Takes(D.Smith,C301)«
Maths~course(C1l01)«"
Maths~course(C301)+
Non-maths-major(x) « Maths-course(y) & ~ Takes(x,y)

119

Queries
A query is a conjunétion of literals written as
«Ll&...'&Ln

1f X1, .. +sXg are the variables appearing in the query we interpret
this as a request for a constructive proof that

(3x) Lp&...8L_

1"."Xk
constructive in the sense that the proof should find a substitution
9 = {xl/el,xz/ez,...,xk/ek}
such that
(Ll&...&Lu)e
is a logical consequence of the completed data base. 8 is an answer
to the query. For the time being we ignore the more general query
which asks for the set of all answers.

Example Queries

The following are queries for the logic data base of Table 1.

(i) «~Student(x) & Takes(x,Cl0l)
(ii) +Student (x) & Non-maths-major(x)
(1ii) «Student (x) & ~ Non-maths-major (x)

The first is a request for the name of a student who takes
course C1l0l; the second is a request for a student who is a non-
maths-major, for a student who does not take all the maths courses;
in contrast the third is a request for a student who is not a non-
maths-major, for a student who does take all the maths courses.

In the relational calculus, or a more elaborate query notation,
such a condition on the data to be retrieved would be expressed by
the formula

(iv) «Student(x) & VYy[Maths-course(y):~* Takes(x,y)]

in which the free variable x refers to the data to be retrieved.
There is no reason why the user query language should not allow
such general form queries. For, by the simple expedient of intro-
ducing clauses about auxiliary relations, we can tramnslate such a
query into our standard form of a conjunction of literals. Thus,
the expression of query (iv) is equivalent to

120
+<Student(x) & ~3y [Maths-course(y) & ~ Takes(x,y)]
which is equivalent to
+Student (x) & ~ Non-maths-major(x)
where
Non-maths-major(x) <> 3y [Maths~course(y) & ~ Takes(x,y)]

The if-halve of the definition of Non-maths-major is the clause
about the relation that we included in the micro data base of Table
1. It was because of this that we were able to express query (iv)
directly as the standard form query (iii). As we shall see, the
presence of this single clause about Non-maths-major is tantamount
to giving it to the above definition in the completed data base.

The Query Evaluation Process

The query evaluation process is essentially a linear resolu-
tion proof procedure with negated literals 'evaluated' by a failure
proof. However we shall view the alternate derivations of the
search space as different paths of a non-deterministic evaluation
which can SUCCEED, FAIL or not terminate. A path terminates with
SUCCESS if its terminal query is the empty query. The binding of
the variables of the initial query induced by a successful evalua-
tion is an answer to the query. A path terminates with FAILURE
if the selected literal of its terminal query does not unify with
the consequent literal of the selected data base clause. The
literal is selected using a prescribed selection rule, but the sub-
sequent selection of a data base clause, and the attempted unifica-
tion, is a non-deterministic step of the evaluation. Finally, a
non-terminating evaluation path comprises an infinite sequence of
queries each of which is derived from the initial query as des-
cribed below.

Evaluation Algorithm

Until an empty query is derived, and the evaluation succeeds,
proceed as follows:

Using the selection rule, select a literal Ly from the current
query <+Lj&...&L, . The selection rule is constrained so that a
negative literal is only selected if it contains no variables.

Case 1. '
Li is a positive literal R(tl,...,tn)

Non-deterministicaily choose a database clause

..... ' 121
R(ti,...,ta) + Li&...&Lé

about R and try to unify L,, with R(tj,...,tH). If there are
several data base clauses Tabout R, the selection of a clause to-
gether with the attempted unification is a non-deterministic step
in the evaluation. Each of the other clauses offer an alternmative
evaluation path. If L4 does not unify with R(ti,...,tﬁ), FAIL
(this path). If Ly does unify, with most general unifier 6 , re-
place the current query with the derived query

t]
+{L1&...&Li_1 & Ll&"'&Lm & Li+1&'°‘&Ln}e
Should there be no data base clauses about the relation of the
selected literal, we consider that there is just one next step to
the evaluation of the query

+L1&...&Ln'
which immediately FAILS.
Case 2.

L; is a negative ground literal ~ P. There is just one next
step for the evaluation. This is the attempt to discover whether
~ P can be assumed as a lemma. To do this we recursively enter the
query evaluation process with <P as a query.)

If the evaluation of <P SUCCEEDS, FAIL.

If the evaluation of <P FAILS for every path of its nondeter-
ministic evaluation, assume ~ P as a lemma. Hence replace the cur-
rent query by

Ll&...&L &...&Ln .

1-1 Lyq

Remarks

(1) Note that in the special case that no negative literals appear
in the query evaluation what we have described is essentially LUSH
resolution (Hill [1974]), a linear resolution inference procedure
for Horn clauses.

(2) Only the distinguished positive literal of each clause of the
data base is a candidate for unification with a query literal.
Other positive literals of the clause (that appear as negated pre-
conditions of the implication) are never resolved upon; they can
only be deleted after a failure proof.

(3) The different possible selections of a literal in a query do
not provide alternatives for the evaluation process. However any

122

rule for selecting the literal can be used. The PROLOG selection
rule is - always choose the leftmost literal in a query.

(4) The constraint that a negative literal should only be selected
if it is ground is not a significant restriction. It just means
that every variable appearing in a negated condition should have
its 'range' specified by some unnegated condition. This is just
the constraint that Codd imposes on the use of negation in his
relational calculus.

(5) Let €7,...,6, be the sequence of unifying substitutions of
a successful evaluation of some query Q. Let 6 be the composition

61 o 92 o SR Bn

of these unifying substitutions. The subset of 8 which gives the
substitutions for variables of the query Q, augmented with the
identity substitution for any variables of Q not bound by 8 , is
the answer given by the evaluation. If Q has no variables, the
answer is true. On the other hand, if every evaluation path of the
query Q ends with FAIL, the answer is false.

(6) Suppose that for some selection rule every branch of the eval-
uation tree rooted at a query Q terminates with a SUCCESS or FAIL.
By Kdnig's Lemma (see Knuth [1968]), the evaluation tree contains a
finite number of queries. Hence, by back-tracking when the non-
deterministic evaluation succeeds or fails, we can find every ans-
wer of the evaluation tree. In the section, Completeness of Query
Evaluation, we shall consider constraints which guarantee finite
evaluation trees.

(7) Using Boyer and Moore [1972] structure sharing methods a back-
tracking search for a successful evaluation can be achieved by
manipulating a stack of activation records as in a more convention-
al computation. Broadly speaking, the currently derived query is
represented by the entire stack. The i'th activation record on the
stack records the subset of literals that were introduced at the
i'th resolution step but which have not yet been deleted by a sub-
sequent resolution. These literals are represented implicitly by

a pointer to the data base clause that was used and a tuple of sub-
stitutions - the binding enviromment for this activation of the
data base clause. The activation record also contains information
about the data base clauses that have not yet been used to resolve
on its literals. This information is used for back-tracking.
Should one of these literals have a relation R that is extensional-
ly characterised by a large set of unit clauses, the back-tracking
information might be a pointer into a file of R-records. In which
case a back-tracking search for a clause that matches the literal
is just a search through the file. We can of course index the file
to speed up the search, This is a very brief and slightly simpli-

123

fied description of the implementation possibilities. For more de-
tails the reader can consult Warren et al. [1977]. However, with
the query evaluation process implemented using such techniques we
can justly claim that its execution is a computational retrieval of
information.

DATA BASE COMPLETION

Remember we are going to validate the query evaluation process
as an inference not from the data base of clauses, but from the
completed data base, the data base of definitions and equality
schemas implicitly given by the set of clauses.

Suppose that
R(tl, ceesty) € Lokl 8L (5)

- is a data base clause about relation R. Where = is the equality
relation, and X1s.+..5X, are variables not appearing in the clause,
it is equivalent to the clause

R(Xl,...,xn) “ xl=tl&...&xn=tn&L

Finally, if Fys»eeesy are the variables of (5), this is itself equi-
valent to P)

l&...&Lm

R(xl,...,xn) + (Byl,...,yp)[xlﬂtl&x2=t2&...&xn=tn&L1&...&Lm]
(6)

We call this the genmeral form of the clause.

Suppose there are exactly k clauses, k>0, in the data base
about the relation R. Let

R(xl,...,xn) “ E1
:)
R(xl,...,xn) “ Ek
be the k general forms of these clauses. Each of the E, will be an

existentially quantified conjunction of literals as in i(6). The
definition of R, implicitly given by the data base, is

(Vkl,...,xn)[R(xl,.:.,xn)**-El v E, V...V Ek]

The if-half of this definition is just the k general form
clauses (7) grouped as a single implication. The only-if half is
the completion law for R.

124

Should there be no data base clauses for R, the definition
implicitly given by the data base, is

(¥, o erx) RCRy s o ooy x) o False]
Example

Suppose

P(a)<

P(b)«

P(£(y)) « B(y)

are all the clauses about a unary relation P. Its disjunctive
definition is

(Vx) [P(x) ++x=a V x=b V Jy[x=f(y)&P(y)]1] @

In moving to the disjunctive definitions from the original
clauses we have been forced to introduce equalities. Thus the onus
is upon us to say something about the equality relation for the
objects of the data base. That is we need to state explicitly that
the constants and functors have their free interpretation. The
following schemas suffice. Each schema is implicitly universally
quantified with respect to its variables.

¢ #c¢' c,c' any pair of distinct constants (8)

f(xl,...,xn) # g(yl,...,ym) f,g any pair of distinct
functors (9)

f(xl,...,xn) = f(yl,...,yn)+'x1=yl&...&xn=-yn f any functor

(10)
f(xl,...,xn) £ c f any functor, c any constant (1)
T(x) # x T7(x) any term structure in which x is free (12)

Schema (8) tells us that different constants denote different ob-
jects. Schema (9) tells us that different functors are different
data constructors, and (10) tells us that constructed objects are
equal only if they are constructed from equal components. Axioms
(11) and (12) together tell us that the data constructors always
generate new objects., '

The above axioms, together with the following general axioms
for equality:

125
X =X
X=y>y=x
X=2y &y =2 >x=2
Substitution schema:
x =y > [Wx)W(y)], Wany wff
we call the identity theory for a completed data base.
The identity theory, together with the set of relation defini-

tions implicitly given by a logic data base, constitute the com-
pleted data base.

Example.

The definitions and axioms of Table 2 are the completed data
base of Table 1. 1In the definitions each free variable is impli-
citly universally quantified.

CORRECTNESS OF QUERY EVALUATION

In this section we give the formal results that validate query
evaluation from a data base of clauses as a first order inference
from the completed form of the data base. The main results are
Theorems 2 and 3. Theorem 2 is the validation of negation as fail-
ure. It is the proof that whenever for some selection rule every
branch of the query evaluation tree ends in a failure, then the

Table 2. Completed Data Base of Table 1.

Student (x) <+ x=J.Brown V x=D.Smith
Maths-course(x) +*+ x=C101 Vv x=X301
Takes(x,y) «*x=J.Brown & y=Cl0l V x=D.Smith & y=Cl0l

vV x=D.Smith & y=C301
Non-maths-major(x) +* (3y) [Maths-course(y) & ~ Takes(x,y)]

For any other relation, a definition that it is always
false.

The identity theory

. 126

construction of the tree is in effect a proof that there are no
answers to the query. Theorem 3 is a generalisation of this result
for an evaluation tree every branch of which terminates with a
failure or a success. It tells us that the set of answers given by
the success branches are provably the only answers to the query.
Each of these theorems relies on Theorem 1. Roughly speaking, this
tells us that a query Q is equivalent to the disjunction of the
queries derivable from Q by resolving on any positive literal.
This, .in turn, relies on the fact that by using the identity theory
we can emulate unification by inference about equalities:

Lemma .
(1) 1If R(tl,...,tn) unifies with R(t',...,t;) with m.g.u.
6 = {xl/el,...,xk/ek}

then, using the identity theory of the completed data base,
the conjunction of equalities

=T, =t !
tl =1 &ounk tn tn

is provably equivalent to

x1=ek &oeook xk=ek

(2) 1f R(tl,...,tn) does not unify with R(ti,...,té) then, using
the identity theory,

!)
tl—tl &n'u& tn tn

is provably equivalent to false.

Proof

For brevity we simply sketch the proof. What is needed is an
induction on the number of steps of an attempt to unify the two
literals. Schema (10) of the identity theory is used to infer e=e'
where e and e' are corresponding sub-terms which differ. 1If e is
a variable and e' a term in which the variable does not appear,
we use the substitution schema for equality to 'apply' the substi-
tution {e/e'}. Otherwise, one of the inequalities (8), (9), (11)
or (12) gives us the contradiction.

Our first theorem is a direct application of this lemma and
the fact that the completed data base defines a relation as the
disjunction of antecedents of its general form clauses. To state
it we need the concept of the general form of a derived query.

127

Definition.

Let Q' be the query derived from some query Q by selecting a
positive literal R(tli...,tn) and resolving with a data base clause
C. The general form of the resolvent Q' is

(3yl, . ..,yp) [zl=e1&. L&z e, & Q']

Where {zj/ej,...,2}/er} 1s the subset of the m.g.u. 8 which applieé
to variables of Q, and Y1s++-sYp are the variables of data base
clause C that remain in ej},...,ex or Q'. B

Theorem 1

Let Q be a query which contains the positive literal R(ti,...,
tn). Suppose Qys-..,Qy are all the alternative queries that
are derivable from Q by resolving on R(tj;,...,ty) with some data
.base clause about R. If Gl,...,Gj are the general forms of these
derived queries

QG VG V.. VGy
is a theorem of the completed data base. If j=0, i.e., there are
no queries derivable from Q by resolving on R(tl,...,tn), then

Q ~ false
is a theorem of the completed data base.

The proof of this theorem is quite straightforward. We are
now in a position to establish our first main result. We want to
show that the comstruction of a failure evaluation tree - an evalu-
ation tree every branch of which terminates with a failure - is
tantamount to a first order proof that the root query has no solu-
tions.

Figure 2 gives the structure of such a failure evaluation
tree. Every branch of the tree, every evaluation path, ends at a
terminal query Q' whose off-springs are all failure nodes. We
want to prove that whenever some query Q is the root of a failed
evaluation tree :

Q<+ false
or, equivalently
~ (321,...,zn)Q

where z.,...,2_ are the free variables of Q, is a theorem of the
completed data"base.

A |

128

As a special case let us consider a failure tree T which re-
cords the top-level structure of a failure proof that does not de-
pend on any subsidiary failure proofs. For such a failure tree the
selected literal of the root query Q must be a positive literal
R(tjsecestn), with Q,...,Qs the set of resolvents with the data
base clauses about R. But Theorem 1 tells us that

Q<+G, V .. VG,

1 hi

where Gj,...,G3 are the general forms of Ql"“’Qj' Clearly, if

each of the Q; is provably equivalent to false so is its general

form. What we need therefore is an induction of the structure of
T.

The above use of Theorem 1 is our induction step. The base
case of the induction is established by considering the two single
query failure trees of Figure 3 and Figure 4.

Theorem 1 again covers the case of Figure 3. When T is as de-
picted in Figure 4 it records a failure proof of the root query
because the recursively entered evaluation of <P has succeeded.

But in this case the successful evaluation of +P will be a resolu-
tion proof of P. It would be other than a straightforward resolu-
tion proof only if it involved the failure proof of some negated
literal. However we have discounted this possibility by our assump-
tion that the failure tree records a failure proof that does not

Q
Q;:\\‘\\]
,.-fail
fail
Q « v o . Qj

fail ... fail

Figure 2. Failure Evaluation Tree

129
....&R(tl,...,tn)&....

RN

fail _fail

-~ -
T . - — - -

R(tl,...,tn) fails to unify with any data base

clause about R.

Figure 3. Single Failure Tree

depend on any subsidiary failure proofs. Moreover, a resolution
proof of P from the data base of clauses is also a proof that

~P+>rfalse

from the completed data base. Hence the root query is again prova-
ble equivalent to false.

We now need to establish the result for a failure tree T whose
construction may depend on auxiliary failure proofs. Since the
number of such auxiliary proofs must be finite, we do this by an
induction on the number, n, of these auxiliary failure proofs.

The above argument establishes the base case, n=0, of this
induction. Let us now assume that the root query of a failure
tree whose construction depends on less than n subsidiary failure
proofs is provably equivalent to false. Let T be a failure tree
whose construction depends on at most n failure proofs n > 0.

occo&~P&.noa

fail

A query evaluation for <P succeeds.

P is a ground literal

Figure 4. Single Failure Tree

130

As above, we show that the root query of T is provably equi-
valent to false by a secondary induction of the structure of T.
~ Again the base cases of this structural induction are as depicted
in Figures 3 and 4. As before, Theorem 1 covers the case of Figure
3. However, this time the single query tree of Figure 4 records a
successful evaluation of <P which may depend on a failure proof of
some negated literal ~ L, this failure proof being the construction
of a failure tree rooted at L. But such a failure proof can it-
self make use of at most n-1 subsidiary failure proofs. By the
induction hypothesis

L+ false
and hence
~L

is a theorem of the completed data base. This applies to any fail-
ure proved negated literal selected in the evaluation of «P. The
deletion of such a negated literal can therefore be regarded as a
resolution step which uses a lemma ~ L of the completed data base.
Since every other step in the evaluation of <P is just a resolu-
tion with a data base clause, we have again that

~ P+ false.
is a thoerem of the completed data base.

The induction step of our structural induction on T is just a
slight elaboration of the argument for the special case failure
tree that required no subsidiary failure proofs. This time we must
also consider the failure tree structure depicted in Figure 5.

Here the root query has a single off-spring derived by deleting a
negated literal ~ L, which has been failure proved. But again the
failure proof of ~ L

Q' Q' is Q with negated
literal ~ L deleted

failure tree

Figure 5. Failure Trees

131

can itself depend on at most n-1 failure proofs, so ~ L is a theo-
rem of the completed data base. Therefore

Q+Q'

is also a theorem. But Q' is the root of a‘sub~tree which 1is a
failure tree, so

Q' +false
and hence
Q<+ false
as required. We have proved:

Theorem 2.

If for some literal selection rule every branch of the evalua-
tion tree of a query «Q terminates with failure, then

~(3X1, .o ~9xk)Q

where Xj,...,X, are the free variables of Q, is a theorem of the
completed data base. M

Let us now look at the case of a successful query evaluation.
By the above theorem, any failure evaluation of a negated literal
~ L that it might use can be viewed as the derivation from the
completed data base of a lemma ~ L. Thus the whole evaluation can
be viewed as a linear resolution proof using the data base clauses
(the if-halves of the relation definitions) and a set of negated
ground literal lemmas. Suppose that the answer given by the suc-
cessful evaluation is

B = {xllel,...,xi/ei,xi+1/xi+l,...,xk/xk}
X}s+++»Xi being the subset of the free variables X1y +-0sXg of the

query Q that are bound by the evaluation. By the soundness of
resolution

(V2 g0 ee %) (W, oY 008

where ¥j,...,yn are the extra free variables of Q6 introduced by
‘the substitution 6 , is a theorem of the completed data base.

It follows that

(Vxl,...,xi,xi+1,.,xk)(Vyl,...,yn)[x1=e1&...&xi=ei -+ Q]

132

is also a theorem. Finally, since yl,..,yn were introduced by 6
and do not appear in Q, this is equivalent to

(Vxl,...,xk)[(ayl,...,yn)(xl=el&...&xi=ei) + Q]

Let us call the antecedent of this conditional the general form of
the answer 6, and denote it by 8.

Suppose now that there are exactly j successful evaluations of
the query <Q with answer substitutions el,...,ej . Then we know
that

(Vx5 - 000 [8; > Q)

(Vxl,...,xk) [6j + Q]

are all theorems of the completed data base. Suppose further that
every other branch of the evaluation tree (constructed using some
particular selection rule) ends in a failure node. By an exhaus-
tive search we can discover that there are no other solutions
given by this evaluation tree. We should like to know no other
evaluation tree would provide us with an extra solution. Assuming
that the completed data base is consistent, this is guaranteed by:

'¢Theorem 3.

If for some literal selection rule every branch of the evalua-
tion tree of a query +Q ends with a success or failure, and
61,...,6j are all the answers given by the evaluation paths that
end in success, then

(Vxl,...,xk) [Q+—»el Ve, V..V ej]

is a theorem of the completed data base. Here, Xj,...,Xg are the
free variables of Q and el,...,ej are the general forms of the
answers. B

The proof is a straightforward induction on the structure of
the evaluation tree.

Example Application of Theorem 2.

Figure 6 is the failure tree generated by the PROLOG selection
rule for the query <«Non-maths-major(D.Smith). The proof of
Theorem 2 gives us a method for lifting this failure tree into a
first order proof of

~ Non-maths-major (D.Smith).

133

We simply climb down the tree substituting for each query the dis-
junction of general forms of its immediate descendents. By Theorem
2 each substitution preserves equivalence. For FAIL we substitute
false. This deduction, with some intermediary steps inserted, is

Non-maths~major (D.Smith)

<+ Jy[Maths-course(y)& ~Takes(D.Smith,y)] by definition of
Non-maths-major

<> Jy[(y=Cl01 V y=C301)& ~Takes(D.Smith,y)] by definition of
Maths-course

«> 3y[y=C101& ~Takes(D.Smith,y) V y=C30l& ~Takes(D.Smith,y)]
<+ o~ Takes(D.Smith,C1l0l) V ~ Takes(D.Smith,C301)

+> e~ true ”V ~ true

+ false

.+ ~ Non-maths-major(D.Smith) B

Non-maths-major (D.Smith)

Maths-course(y) & ~ Takes(D.Smith,y)

/\

~Takes(D.Smith,C101) ~ Takes(D.Smith,C301)
FAIL FAIL
Query +Takes(D.Smith,C101) Query <«Takes(D.Smith,C101)
succeeds succeeds

Figure 6. Failure Tree Generated by PROLOG Selection Rule

134
COMPLETENESS OF QUERY EVALUATION

We have argued that the evaluation of a query can and should
be viewed as a deduction from the completed data base. However,
when we evaluate a query, that is try to discover whether or not
some instance is implied by the completed data base, we ignore the
completion laws and inequality schemas. As a substitute we augment
a Horn clause theorem prover for the remaining if-halves of the
relation definitions - the data base clauses - with our negation as
failure inference rule. Is this an adequate substitute? Will we
still be able to infer every answer to the query implied by the
completed data base? With certain restrictions on the data base
and its queries, yes. In general, no.

Let us look at the ways in which query evaluation falls short
of a complete inference system. To begin with there is the restric-
tion that our failure inference rule should only be applied to a
ground literal. With this restriction we cannot even begin to ans-
wer a query

+ ~ R(x,a)

which is a request for any x not related to a by R. We could relax
this restriction on failure proofs. Let us suppose that the recur-
sively entered evaluation of “R(x,a) constructs a failure tree
rooted at R(x,a). By Theorem 2 we can infer (x)~ R(x,a), giving as
an answer to the query the identity substitution x/x. We can also
give an answer when the evaluation of «R(x,a) succeeds, providing
the answer is the identity substitution x/x. For in this case the
evaluation is a proof of (x)R(x,a), i.e. ~ 3x~R(x,a). So false
is the answer to the query <+~ R(x,a). However, should we have a
-successful evaluation of +R(x,a) with an answer other than the
identity substitution we cannot conclude anything about the query
+ ~R(x,a). To patch our query evaluation process in this circum-
stance, we would need to resort to a systematic search for a ground
instance of ~R(x,a) that can be failure proved. But of course,
just such a systematic search will be invoked by the modified

query,
+Q(x)& ~ R(x,a)

providing Q(x) only has ground solutions. Our insistence that
queries must have this form is a requirement that the querier must
implicitly constrain the search.

The second limitation associated with failure proofs is much
more serious. It is the fact that we search for a failure proof by
constructing just one evaluation tree.

For a query that has a successful evaluation we do not have to

135

search alternative evaluation trees, at least not for the top~-level
deduction. This is because at the top-level we can view each dele-
tion of a negated literal as a resolution step. Thus, the evalua-
tion is in essential respects a Horn clause refutation. In the
search for such a refutation we know we need only consider ome
selection rule (Hill [1974]). 1In other words, if a successful
evaluation of a query Q with answer substitution 6 appears on one
evaluation tree rooted at Q, then it appears on every evaluation
tree rooted at Q. The problem arises when we recursively enter the
query evaluation process to check that some negated literal ~P

is indeed a lemma of the completed data base. When we do this, to
grow just one evaluation tree is to risk 'missing' a failure proof.

Suppose we have the following clauses in the data base,

P(x) < Q(y) & R(y)
Q(h(y)) + Q(y)
R(g(y))+

and we want to failure prove ~ P(a). If we use the PROLOG selec-
tion rule, and always select the leftmost literal, we get an evalua-
tion tree with a single infinite branch (see Figure 7a). Using
another selection rule, in fact any other rule in this instance,

we get a finite failure tree (see Figure 7b).

A complete search for a failure proof should therefore search
over the space of alternative evaluation trees. That is the dif-
ferent selections of a literal in a query should be treated as al-
ternatives when we search for a failure proof. Interestingly, the
different ways of resolving on the selected literal are not alter-
natives for a failure proof. Every one of them must eventually be
investigated and shown to FAIL. This gives us a nice duality be-
tween search for a successful evaluation, and search for a failure
proof.

ﬁ(a) P(a)
Q(y) & R(y) Q%Y) & R(y)
ny') & R(h(y')) | Qiy") & ?(h(y'))
Q(y"™) & R(ha(h(y™)) FAIL
(a) (b)

Figure 7. Incompleteness of PROLOG Selection Rule

136

We have seen that we might miss the failure proof of some ne-
gated literal ~P by restricting ourselves to the construction of
just one evaluation tree rooted at P. In consequence, we may not
be able to successfully complete a query evaluation that depends on
the lemma ~ P. However, this very insistence that all negated 1li-
terals should be inferred as lemmas; and the consequent neglect of
a case analysis proof - check if the same answer is given on the
assumption that P is true, and on the assumption that P is false -
is another hole in the query evaluation process.

The following clauses give an example of this:
R(x,y) + P(x) & Q(x,y)

R(x,y) + ~ P(x) & T(x,y)

(13)
P(x) « P(£(x))
Q(a,b)+
T(a,b)*
R(a,b) is implied by these clauses. This is because
R(x,y) + Qx,y) & T(x,y) ‘ (14)

is a consequence of the two clauses for R. If we resolve these two
clauses on the 'test' literal P(x) we get

R(x,y) VR(x,¥y') + Q(x,y) & T(x,¥"),

which we can factor to give (14). Clause (14) tells us that no
matter whether P(x) is true or false we can conclude R(x,y) if only
Q and T can 'agree' on y. R(a,b) is now an immediate consequence
of (14) and the ground clauses for Q and T. However, no evaluation
of the query

“R(a,b)

which uses only the given clauses (13) can terminate. This is
because the single clause for P, which amounts to a definition

Vx[P(x) +P(£(x))]

in the completéd data base, does not allow us to prove or disprove
P(a), and the query evaluator insists on the proven truth or falsity
of every literal encountered in the evaluation. Like intuistionist

logic, the query evaluator does not countenance the law of the
excluded middle

137
Pv~P,

Put another way, it treats
PVQ
as a statement that is true only when [P or [Q.

There is also an interesting analogy with the two different
interpretations that can be given to the conditional expression

if P(x) then q(x) else t(x)

in a more conventional programming formalism. For any x, the
value is g(x) if P(x) is true, and t(x) if P(x) is false. But
what if P(x) is undefined, i.e., its evaluation for some argument
X does not terminate, just as our evaluation of <P(a) does not
terminate. The 'sequential' semantics for the conditional says
that the conditional is undefined. The 'parallel' semantics says
that it is undefined except in the special case that g(x) and t(x)
agree, i.e. return the same value. In this case the value of the
conditional is this common value.. This is precisely what derived
clause (15) asserts. .First order logic, then, insists on the
‘parallel’ semantics. Our query evaluation gives us the 'sequen-
tial’,

Finally, let us note that an SL refutation (Kowalski and
Kuehner [1971]) used to evaluate the query would cope with the
case analysis allowed by classical logic by an ancestor resolution.

Where does that leave us? In the light of the above short-
comings is query evaluation as we have described it worth consider-
ing? It is, because as we have already remarked, coupled with a
back-tracking search strategy it can be most efficiently implemen-
ted. Can we perhaps side-step its inadequacies?

Firstly, the constraint that every variable in a negated lit-
eral should have its range specified by an unnegated literal that
will generate a candidate set of ground substitutions is perfectly
acceptable. Let us call this an allowed query. For an allowed
query no evaluation can flounder because it encounters a query with
only unground negative literals. (Remember the literal selection
rule is constrained so that it can only select a negative literal
if it is ground.) Now suppose that for some given data base we
can define a literal selection rule such that the evaluation tree
for every allowed query dis finite. Providing the completed data
base is consistent (and I think that the finiteness of every evalu-
ation tree guarantees this, although I have not checked it out)
query evaluation is complete. This is because the back-tracking
traversal of the finite evaluation tree will find each and every

138

answer given by a successful evaluation path, and Theorem 3 tells
us that these are the only answers. Note that a proof that a data
base + selection rule has a finite evaluation tree for each and
every query is a termination proof for the data base viewed as a
non-deterministic program, each posed query being a 'call' of the
program. ’

With regards providing such a termination proof for a data
base I have no ready suggestions, although I think it is an inter-
esting area to explore. Typically we might have to modify the
selection rule and perhaps further restrict the legitimate queries
as a data base evolves. We can however lay down a strong but
quite general condition for a logic data base which ensures termi-
nation of every allowed query evaluation for any selection rule.
It is that each relation R of the data base, whether it be expli-
citly or implicitly defined, should have finite extension that can
be computed by .constructing any evaluation tree for the query

+R(xl,...,xk)

Let us call this the condition of computable finite extensions.

It is quite easy to show that for a data base which only has
computable finite extensions the evaluation tree for an allowed query

+Ll & L, &...& Ln
is finite no matter what selection rule is used. Remember that any
variable in a negative literal appears in some positive literal

for which there are only computable ground solutions. So negative
literals present no problem, all selection rules being constrained
to select a negative literal only after it has become ground. We
leave the reader to provide the termination proof for a query com-
prising only positive literals. There is a slight complication due
to the fact that we can, in effect, coroutine between the evalua-
tions of

+Ll, +L2,...,.+Ln

We can now come back on ourselves and use this result to speci-
fy a hierarchical data base in which each relation does have a com-
putable finite extent, hence a data base with the termination pro-
perty for any selection rule. The clauses of the data base must be
such that they can be grouped into disjoint sequence of sets

SO’Sl"“’Sn
which satisfy the following condition.

Let us call a relation R of the data base in i-~level relation
if it is completely specified by the clauses in

139
Sp. U Sl;U oo U Si

That is, there dre no clauses about R, or any relation referred to
directly or indirectly by the clauses for R, that are outside this

set. The data base of clauses satisfies the hierarchical con-
straint if:

(1) S0 is the set of all unit clauses which all ground
(ii) Si+1 only contains clauses of the form

L<«L &L
n

l & L
where the antecedent Lj &..& L is an allowed query using on-
ly J-level relatioms, j=1 .

Note that this rules out recursive or mutually recursive definitions
of relations., It is, unfortunately, a very strong constraint. It
derives from the data base structuring proposals of Reiter [1977].

By an induction on i, it is easy to show that each i-level
relation has a computable finite extent. Each O-level relation is
a relation completely defined by a set of ground instances. The
induction step makes use of the fact that each i+l level relation
that is not also an i~level relation is defined by a set of clause
each of which has a precondition

+Ll & oo & Ln
which is an allowed query about j-level relations, j=i, i.e. relations
with computable finite extents. The details are quite straight-
forward. Another induction on i can be used to prove the consis-
tency of the completed data base. The induction step is a.proof
that we can extend the model for the completion of S. U .. U S.
to a model for the completion of S U...US.US, ;. We can®

i i+l
conclude:

Theorem 4

For a data base satisfying the hierarchical constraint the
evaluation process for allowed queries is complete. MM

The hierarchical constraint guarantees that our query evalua-
tion process will be find each and every answer to a query. Is
it too restrictive? Perhaps, but it still characterizes a data
base which generalizes a conventional relational data base in the
following respects:

(1) We can define the computable finite extensions of the rela=-
tions by a set of instances, or by general rules, or by a mixture

140
of both.

(2) The components of a relation are not restriéted to strings and
numbers. They can be quite general data structures (terms of the
logic program).

(3) The clausal notation fills the role of data description lan-
guage, query language and host programming language. Indeed, a
data base is just a logic program with a large number of ground
clauses. This multi-role aspect of logic programs is more fully
explored by van Emden [1978] and Kowalski [1978].

(4) Finally, the retrieval of information is not just a search

over a set of files. It genuinely involves a computational deduc-
tion.

FINAL REMARKS

We have shown that the negation as failure inference rule
applied to a data base of clauses is a sound rule for deductions
from the completed data base. As a generalization of this, we
have shown that an exhaustive search for solutions to a query, if
it returns a finite set of solutions, is a proof that these are
exactly the set of solutions. We have described a query evaluation
process for a data base of clauses which uses negation as failure
as its sole proof rule for negated literals. Although’'it is in
general not complete, its chief advantage is the efficiency of its
implementation. Using it the deductive retrieval of information
can be regarded as a computation. However, by imposing constraints
on the logic data base and its queries, which generalise the con-
straints of a relational data base, the query evaluation process
is guaranteed to find each and every solution to a query.

ACKNOWLEDGMENTS

I have benefited much from discussions with Bob Kowalski and
Maarten van Emden. The research was supported by the Science
Research Council.

REFERENCES

1. Boyer, R.S. and Moore, J.S. [1972] The Sharing of Structure
in Theorem Proving Programs. In Machine Intelligence 7 (B.
Meltzer and D. Michie, Eds.), Edinburgh University Press,
101-116.

2. Chang, C. L. and Lee, R.C.T. [1973] Symbolic Logic and
Mechanical Theorem Proving, Academic Press, New York, 1973.

10.

ll.

12.

13.

14,

15,

141
Codd, E. F. [1970] A Relational Model for Large Shared Data
Banks, CACM 13, 6 (June, 1970), 377-387.

Codd, E. F. [1972] Relational Completeness of Data Base Sub-
languages, In Data Base Systems (R. Rustin, Ed.), Prentice-
Hall, 65-98. ' :

Hewitt, C. [1972] Description and Theoretical Analysis
(Using Schemata) of PLANNER: A Language for Proving Theorems
and Manipulating Models in a Robot, 4. I. Memo No. 251, MIT
Project MAC, 1972.

Hill, R. [1974] Lush-Resolution and Its Completeness, DCL
Memo No. 78, Department of Artificial Intelligence, Edinburgh
University, 1974,

Knuth, D, .[1968] Fundamental Algorithms, The Art of Computer
Programming, Vol. 1, Addison-Wesley, Reading, Mass, 1968.

Kowalski, R. and Kuehner, D. (1971] Linear Resolution with

Selection Function, Artificial Intelligence 2, 3/4 (1971),
221-260. .

Kowalski, R. [1978] Logic for Data Descriptiom, In
Logic and Data Bases (H. Gallaire and J. Minker, Eds.),
Plenum Press, New York, N.Y., 77-103. :

Kramosil, I. [1975] A Note on Deduction Rules with Negative
Premises, Proceedings IJCAI 4, Tbilisi, USSR, 1975, 53-56.

Nicolas, J. M. and Gallaire, H. [1978] Data Bases: Theory
vs. Interpretation, In Logic and Data Bases (H. Gallaire and
J. Minker, Eds.), Plenum Press, New York, N.Y., 1978,

33-54,

Reiter, R. [1978] On Closed World Data Bases, In Logie and
Data Bases (H. Gallaire and J. Minker, Eds.), Plenum Press,
NEW York’ N.Y.’ 1978, 55'—760

Reiter, R. [1977] An Approach to Deductive Question-Answer-
ing, BBN Report No. 3649, Bolt, Beranek and Newman, Cambridge,
Mass., 1977.

Roussel, P. [1975] PROLOG: Manual d'Utilisation, Rapport
Interne, G.I.A., UER de LUMINY, Universite d'Aix-Marseille,
1975, :

van Emden, M. [1978] Computation and Deductive Information
Retrieval, In Formal Description of Programming Concepts, (E.
Neuhold, Ed.), North~-Holland, 1978.

