A Hybrid, Teleo-Reactive Architecture for Robot
Control

Simon Coffey and Keith Clark

Imperial College London, SW7 2AZ, United Kingdom
{spc03,klc}edoc.ic.ac.uk

Abstract. In this paper we describe the structure of a proposed hybrid ar-
chitecture for robot control. A BDI-style planning layer manipulates a plan
library in which plans are comprised of hierarchical, suspendable and recov-
erable teleo-reactive programs. We also present preliminary simulation and
implementation work.

Keywords: Hybrid robot architecture, BDI, teleo-reactive programming.

1 Introduction

Since their inception, behavioural robotics techniques have made great progress in
many traditional areas of robotics research: localisation; navigation; search, etc.
However, their application in the area of robot cooperation has been relatively lim-
ited in terms of producing truly versatile teams. This is not to say that behavioural
approaches to multi-robot teams are uncommon; quite the opposite. However, such
research tends to emphasise team-wide optimisation of a single task (e.g. [5,12]).
Genuine behavioural attempts at intra-team task distribution are rare [9], and those
addressing a fully re-taskable team are even rarer.

It would be foolish at this point to try and reopen the behavioural vs. cognitive
debate, and this is not our aim. However, it is notable that many robot teams to
date have tended to be task-specific, and have solved their problems in a manner
that could easily be viewed as a single, distributed robot rather than a society of
autonomous, interacting robots [1]. By contrast, the world of multi-agent systems is
heavily oriented towards the latter view, with human/computer interfaces working
with versatile, taskable agents to address the user’s needs. In many potential robotics
scenarios — robotically assisted hospitals, for example — this approach makes more
sense than a static, task-specific situated team.

The large array of interaction schemes used in the agent world have a great deal
to offer robotics without compromising an individual robot’s behavioural nature
(or even team-wide behaviours, if such exist). We believe that by applying these
techniques to the robotics world, it is possible to enable a richer variety of team-
based applications, without compromising the essential advantages of a behavioural
approach.

To address this goal, we present a hybrid robot control architecture based with
varying fidelity on two previous agent control schemes: Beliefs-Desires-Intentions
(BDI) and teleo-reactive (TR) programming. We replace the action-sequence style
plans in traditional BDI with robust, recoverable TR programs, and augment both
layers with a unified percept and world model store. In the following sections we
review teleo-reactive programming and traditional BDI. We then examine some
basic issues in the development of hybrid robot control architectures, then present
our own proposed architecture. Finally we detail our early implementation work.

2 Teleo-reactive Programs and the Triple Tower

2.1 Teleo-reactive Programs

Nils J. Nilsson is responsible for proposing firstly a programming formalism for
robust, goal-oriented robot programming (teleo-reactive programs [7]) and more
recently an architecture for adapting this formalism for a more cognitive style of
robot control in the form of his Triple Tower architecture [8].

Teleo-reactive programs provide the robot programmer with an intuitive and
recoverable structure within which to write goal-directed programs. Similar in style
to production rules (and to a lesser extent Brooks-style subsumption [3]), a teleo-
reactive program consists of a series of prioritised condition/action rules. A teleo-
reactive interpreter constantly re-evaluates the triggering conditions set for each
rule, and executes the action corresponding to the highest-priority rule with a sat-
isfied pre-condition. Generally, this is denoted

K1—>a1

Km — am

An action a; may consist of a single, primitive action (e.g. move_forward), or
may itself be a teleo-reactive subprocedure. A crucial point here is that unlike in
conventional programming, where a launched subroutine assumes control of the
execution of the program, a parent TR program continues to constantly evaluate
its set of conditions even when a subprocedure is invoked. Thus if a different rule
condition is triggered, the subprocedure is terminated by its parent. This mode
of operation is highly amenable to multi-threaded design, as subprocedures can
simply be launched as a new thread, and suspended or terminated by the parent as
appropriate.

Nilsson defines two properties pertaining to teleo-reactive programs, the com-
pleteness property and the regression property. A teleo-reactive program is said to
be complete if the conjunction of the preconditions for all of its rules, K1 A... A Ky,
is a tautology; that is, that the set of the preconditions of all rules in the program
represents the full set of possible percept states for the agent. In other words, there
is no percept state for which the agent does not have a relevant response action.

A teleo-reactive program is said to satisfy the regression property if the pre-
condition of each rule is expected to be satisfied by the action of a rule with a lower
priority. For example, a rule with an action find_door would satisfy a precondition
at_door; thus the program

at_door — move_through

T — find_door

would be considered to satisfy both the regression and completeness properties,
since T A at_door is a tautology, and the result of action find door is to achieve
the pre-condition at_door. A complete teleo-reactive program which satisfies the
regression property is said to be universal.

Teleo-reactive programming appeals as the basis of a method for robot control
due to their goal-directed nature, and recoverable properties. Rather than planning
a discrete, explicitly sequenced series of actions (although simpler TR programs
can appear like this), TR programs make action a direct mapping from sensor
inputs, in the behavioural style of (cite some Brooks here). As a result, robots can
opportunistically take advantage of external events which might satisfy some rule’s
precondition without the robot acting for itself, or recover from adverse external
events without re-planning.

For example, a program intended to seek out trails, then follow them to a cache
of some resource might be written:

see_resource — collect_resource
on_trail — follow_trail

T — wander

Should the robot be following a trail and for some reason lose it, or perceive that a
cache it had found becomes exhausted, it will simply default to the lower priority
rules as appropriate; no re-planning is needed. Conversely, should the robot be
wandering and fortuitously happen across a resource cache, it will simply skip the
trail-following stage, and opportunistically execute its collect_resource action
without having to do any intermediate re-planning to cope with this unexpected
stroke of luck.

Appealing though they are for intuitively constructing simple (and even mod-
erately complex) behaviours, teleo-reactive programs are limited in the extent to
which they can be used as a robot control architecture. They contain no defined
mechanism for communication; program state is (deliberately) minimal, and they
are inherently directed at a single goal. All of these factors limit their (unmodified)
application as a taskable, cooperative robot control system.

2.2 The Triple Tower

More recently [8], Nilsson described
his Triple Tower architecture (Figure
1), building on the foundation of teleo-
reactive programs to construct a more
capable architecture aimed at a more
cognitive style of robot control. e

Acknowledging the need for control
at different levels of abstraction, Nils-
son proposes (orthogonally to the tra-
ditional three-layer architecture) three
towers, respectively representing a ro-
bot’s perceptual expertise, its model of
the world at a given time, and its re-
sponse functions. Each is intended to
consist of an arbitrary number of lev-
els, as appropriate to the specific appli-
cation. Fig. 1. Nilsson’s Triple Tower

The Model Tower, as indicated in
figure 1, contains the predicates which comprise the robot’s world model. At the
lowest level, these directly correspond to the data arriving from the robot’s sensors.
The robot then uses the inference rules contained in the Perception Tower to deduce
higher-level information about its environment (e.g. navigational information, task
progress, etc.). To borrow Nilsson’s own example, a block-stacking robot might
directly perceive only whether each block is on another block, or on the table.
Deductive inference rules can then construct the agent’s world model. For example,
from this information the robot can infer whether a given block is clear to be picked
up, whether any towers are formed, and what order they are formed in. This inferred
information can then be used to create simpler TR programs than would otherwise
be possible using the raw percepts.

The Action Tower, which consists of a number of teleo-reactive programs, ac-
cesses the Model Tower for use in its programs’ conditional rules. Rather than

\ >
Model Tower

(Predicates Action Tower
+ (Action routines)

T™S)
r—)

implement a subsumption-style suppression system, the higher-level TR programs
invoke the lower-level programs as their actions, switching between lower-level pro-
grams as appropriate. Nilsson avoids explicitly enforcing layer separation, so that
Action Tower programs at all levels can access all of the Model Tower if necessary.
By design, however, higher levels are intended to access inferred beliefs, with the
bottom levels of TR program accessing the raw percepts.

Despite its treatment of representation, and its facility for multi-level control,
the Triple Tower architecture is still not ideally suited for cooperative robot control.
At the highest level, there can still only be one TR program controlling the robot,
so the robot can not be easily switched between tasks. Moreover, there is no explicit
facility for communication (although this could be considered to simply be part of
the robot’s percepts), and the combination of this and the lack of taskability makes
the architecture as described unsuitable for team-based robot control.

3 BDI

Perhaps the most well-known formal agent control architecture, BDI or “Beliefs,
Desires and Intentions” was proposed by Rao and Georgeff [11] and extended further
with the introduction of AgentSpeak(L) [10]. Following the work of Bratman et al
[2], this seeks to model what Rao and Georgeff see as the three primary mental
attitudes necessary for a rational agent. The three attitudes model the information,
motivational and deliberative states of the agent, respectively.

Beliefs are kept deliberately conceptually distinct from knowledge, which is not
represented in BDI. This is because a key assumption is that sensor information is
incomplete, necessitating a store of information that represents the likely state of
the environment. However, sensor inaccuracy and un-sensed environmental changes
may at any point cause some or all of the stored information to be untrue. As a
result, the information store must be non-monotonic. Since such a requirement does
not correspond well with traditional theories of knowledge, the concept of belief is
instead used. Similarly, desires are considered distinct from goals, as at any given
moment there exists the possibility of mutually incompatible desires.

Intentions represent not what the agent is seeking to achieve, but the actions
by which it (presently) intends to achieve its desires. In practice (e.g. in AgentS-
peak(L)), this is implemented by giving an agent a library of uninstantiated plans,
each describing a pre-defined sequence of actions designed to achieve a particular
desire or goal. Augmented with preconditions, the BDI interpreter chooses a rele-
vant plan, instantiates it and adds it to its execution stack. To return to the earlier
trail-following robot example, a relevant plan to satisfy the goal have (gold) might
be as follows:

+goal (have(R)) —
wander (Time) ;
7?believes(at(trail));
follow(trail,Time);
7believes(see_resource(R));
pickup(R).

Here, the 7believes(...) represents a query against the agent’s internal beliefs.
The agent performs one atomic action, then checks to see if it has succeeded, only
then proceeding to the next atomic action. The problem with respect to robot
control is fairly clear. Should any of the actions fail, and the desired belief state fail
to be reached, the plan has no fallback; it simply fails, leaving the planner to decide
on another course of action. Worse still, if the robot happens across a resource by
accident, the plan contains no contingency for this either, and will either continue

searching pointlessly for a trail before collecting anything, or will fail again and
cause still more unnecessary re-planning. Contrast this with the much simpler TR
program shown earlier, with its built-in facilities of recovery and opportunism, and
the advantages that TR has to offer are clear.

It is this re-evaluation in the face of unexpected events that causes the most
problems when attempting to apply action-sequence oriented BDI implementa-
tions directly to robotic applications. Designed for an agent world in which non-
deterministic actions are relatively rare, and reliability is hoped to be the norm, not
the exception, this re-evaluation represents a considerable cost in the unpredictable
world of robotics. Actions can not be assumed to be completed, and changes in the
world state can and will occur, frequently unnoticed. By contrast, TR programs
with their durative actions and fall-back structure are ideally suited to a world in
which not everything is in the robot’s control.

4 Hybrid Architecture Issues

At their heart, all hybrid architectures seek to tackle the divide between the reactive,
un-modelled control layers responsible for direct and reflexive control of a robot’s
basic functions, and the cognitive levels intended to allow logistical planning and
re-evaluation of the robot’s world model. Some systems take the approach of firmly
delineating the two aspects of the robot’s architecture [6], implementing a cognitive
planner entirely separately from the behavioural layers of the robot. While this
offers a certain conceptual simplicity, the problem of model consistency arises: does
the symbolic state of the planner accurately represent the raw sensor data being
used by the behavioural layer? Other architectures seek to incorporate behavioural
concepts such as motivational signals into the cognitive layer [13].

Rather than treat cognition and reaction as distinct and immiscible, we seek to
graduate the transition between the cognitive and the behavioural. Further, instead
of maintaining a separation between the sensory data used by the behavioural layers,
and the symbolic knowledge used by the cognitive layer, we instead maintain a
distinct percept and data server that all layers of the control architecture can access.
While it is to be expected that the cognitive layer will mostly access symbolic
data and that the behavioural layer will mostly access raw sensor data, it seems
counter-productive to enforce an artificial barrier between the two. In this sense,
the percept system is similar in concept to Nilsson’s Model Tower, differing in that
the knowledge contained therein is explicitly available to all levels of the control
architecture.

5 Our Architecture

We propose an architecture in which we bind a BDI-style cognitive layer with a
graded behavioural layer composed of hierarchies of teleo-reactive programs. In
our approach, we seek to smooth the transition between the cognitive layer of our
architecture and the behavioural. In this, we follow the example of Nilsson’s triple
tower by using hierarchies of teleo-reactive programs, with each higher level of TR
program operating using a information at a higher level of abstraction. Thus, the
lowest level of program operates using the robot’s raw sensor percepts as the basis
for its rules’ conditions, while the highest level can use the robot’s belief state
regarding the world and its team-mates if necessary.

In a BDI context, the set of highest-level TR programs corresponds to the BDI
layer’s plan library. Each is augmented with a plan_for attribute, which represents
the event or goal that the plan is intended to address. Thus, an intention consists
not of an instantiated series of pre-planned actions, but an invoked TR plan, to

which control of the robot’s actuators is passed. In a similar manner to traditional
BDI, these pseudo-intentions can be suspended and resumed as required in reaction
to externally- or internally-generated events.

Control Software

BDI-style planner Percept Manager /
Belief Store

|
|
|
| Symbolic comms
: (e.g. negotiation)

Intention Selection

TR “Plan” Library /

Percept
and Belief
Sharing

Percepts ‘

" Tr, Trea Trg <

P OOy TRy ISR NeS

Robot Hardware

Fig. 2. Our hybrid architecture

In a significant simplification over traditional BDI, however, resumption of sus-
pended intentions carries no risk of requiring re-planning. Since they are generally
stateless, a suspended TR program can be resumed after an intervening program
has run without the BDI layer needing to consider whether circumstances have
changed in the meantime such as to invalidate the plan. Rather than leaving com-
plex re-planning to the BDI layer, recovery is left to the TR program itself, which
due to its inherently robust structure is able to accommodate any changes to the
robot’s state caused by the intervening program.

For example, the trail-following robot in Section 2 might find its foraging behav-
iour interrupted by an intervening request to deliver its current cargo to a depot,
or to pass it to a team-mate. Being stateless, the foraging intention can be triv-
ially suspended (or simply stopped) to allow the requested delivery to go ahead.
On resumption of the suspended intention, the BDI layer need do no re-checking
of plan guard conditions, etc.: it can simply restart the suspended program on the
assumption that it will operate as designed, regardless of the changes in the robot’s
belief state caused by the delivery program.

In practice, the TR style makes intention suspension and resumption even easier
through multi-threaded design. Each intention is given its own execution thread,
running its own TR interpreter on such percepts and beliefs as it chooses to subscribe
to from the percept module. Should the BDI module wish to switch to a new
intention, it merely suspends the current top-level TR execution thread, leaving it
dormant while the intervening intention executes. Again, the stateless nature of the
TR programs allows the agent to either abandon the intention entirely or resume it
at a later time by simply terminating or restarting the suspended thread.

The percept/belief subscription model is important to the efficient operation of
the TR interpreter. By placing a subscription to the relevant belief within the belief
store, the TR interpreter will receive updates only on changes to fluents that it has
deemed relevant, and more importantly will only receive updates when they change.
More efficient than busy querying of rule conditions on a constant cycle, this allows

the interpreter to suspend until relevant information makes re-assessment necessary.
Programs which need to do so can still access streams of raw percept data, but this
is intended to be limited to the lowest levels of program.

5.1 Percepts, Beliefs and Communication

The decision to use one unified module for percepts and beliefs allows the inclusion
of several agent-style design techniques, such as multi-modal percept transmission
using publish /subscribe, broadcast and point-to-point communication. It also facili-
tates intra-team percept sharing by allowing members to subscribe to percepts from
another agent in the team transparently, effectively co-opting sensors throughout
the team as appropriate.

This is not to say that the distinction between percepts and beliefs is lost,
however. Access to them is mediated through the same software module to allow all
levels to consult both beliefs and percepts if necessary. Discretion in this matter is
left to the programmer; however it is to be expected that a coherent programming
style will only attempt to use (for example) high level beliefs in a low-level TR
program rarely.

The unified percept module also assists with the synthesis of percepts and com-
munications to beliefs. Domain knowledge allows an agent or robot to contextually
interpret its current percepts with respect to its belief state. For example, a robot
whose belief state indicates it is in a corridor might interpret decreasing frontal
sensor readings as indicating the end of the corridor, or a door opened in its path,
depending on how far along the corridor it believes itself to be. By contrast to Nils-
son’s Model Tower, however, we use “live” deductive reasoning in a Prolog style,
querying the database using inference rules on demand, instead of interpreting each
incoming percept and adding the appropriate beliefs. This obviates the need for a
Truth Maintenance System as with the Triple Tower, as beliefs are not permanently
stored, and therefore need not be removed when obsolete.

5.2 Cooperative Task Allocation

Task distribution amongst collective members is a classic agent problem. Our archi-
tecture is agnostic with respect to distribution methods; robots might implement
any one of a number of task distribution algorithms. What is required is that all
agents are capable of advertising those tasks they are able (and willing) to perform,
and of requesting tasks from appropriate partners. Our early simulation efforts (Sec-
tion 6.1) demonstrate a basic selfless negotiation strategy being used to optimise
foraging and collection tasks in a homogeneous team. More complex strategies for
use in heterogeneous teams and more varied task environments can be implemented
using traditional agent techniques. Robots acting as brokers might specialise in or-
ganising a particular type of task, or might use superior communications abilities
to muster a team for a less capable robot in the field.

If a robot is to search for task partners, it must first be aware that it needs to do
so. To this end, our TR plans must therefore be augmented with another attribute,
requires_coop([(N,T) 1) !, indicating that the task requires (or would like) N
cooperative agents to perform task T in order to accomplish the goal. This attribute
is used by the deliberative layer to locate and recruit available agents according to
the task distribution scheme in use. If none can be found, an alternative TR plan
is sought. Note that the attribute does not specify a manner in which the task
is to be performed - in a heterogeneous team different robots may perform the

! Where [(N,T) |_] denotes an arbitrarily long list of tuples (N,T), allowing an agent to
specify several different cooperative tasks required to fulfil its goal

same task in different ways, and with differing degrees of efficiency. Here again,
agent techniques such as Contract Net offer the ability to sensibly recruit the most
appropriate agent/robot for the task, without having to bother about the details of
how the task is achieved.

5.3 Cooperative Behaviours

One aspect of forming ad-hoc teams is the ability to not only agree to perform an
agreed set of tasks together to achieve a common goal, but to cooperate within those
tasks. On a behavioural level, this might mean maintaining a specific formation with
other robots to achieve an efficient search pattern, or perhaps share range-finder data
to cooperatively map an area. In each case, however, the individual robots have a
specified set of data requirements from their team partners, each appropriate to the
task being performed.

Again, this necessitates a further augmentation of each TR plan in the robot’s
library, requires_data([(T,P) |_]). This indicates that for each cooperating robot
performing task T, the local robot requires the cooperating robot to forward its
percepts matching P. This is again mediated by the deliberative layer. Here the agent
techniques again come to the fore, as the network-transparent publish/subscribe
features of the individual robots’ percept modules allows the deliberative layer to
simply place a subscription from the local robot to the cooperative team-member,
whereupon the local robot’s TR plans can simply treat the remote percepts like any
other (allowing, of course, for issues of network latency and unreliability).

It should be noted at this point that all of the above presumes that any robots
wishing to cooperate will have some shared ontology for both tasks and percept
types. While our architecture is designed with heterogeneous teams in mind, some
degree of commonality is clearly needed to allow even the most minimal of coop-
eration. Our initial implementation efforts presume a completely shared ontology;
while teammate discovery and task allocation in an uncertain ontology environment
would certainly represent an interesting research topic for the future, it is beyond
the scope of our present work.

6 Early Implementation

Initial attempts at implementation have been made in both simulation and hard-
ware. Simulation efforts have been limited purely to proof-of-concept levels, since it
is our belief that to rely on simulation is to ignore the majority of the fundamental
challenges of robotics.

6.1 Simulation

A basic foraging scenario formed the basis
of initial simulation attempts [4], in which four
independent agents operated in a grid world to
collect a constantly replenished food resource.
Combining a reactive search and navigation layer
with more sophisticated task allocation and ne- A2 A1
gotiation techniques, the agents’ internal archi- L =
tecture represent a simplified prototype of the f f
proposed architecture.

While not implementing a full BDI-style up-
per layer, the agents demonstrate a useful con-
vergence of deliberative and behavioural programming styles. Foraging is done re-
actively, using a basic TR program consulting only the agent’s direct percepts. An

5-steps

1
8steps 25teps

Fig. 3. Foraging agent scenario

ant-style pheromone-laying algorithm directs the agent’s search by guiding it away
from previously explored areas in a pseudo-random walk. Independently, the delib-
erative layer monitors the food discovered by the agent and its team-mates, and
attempts to optimise the agent’s current task according to both its personal expe-
diency and that of the team at large. It can do this independently of the search
behaviour’s implementation, and interacts with the behavioural layer solely by de-
positing intentions in the shared belief store.

The simulation further demonstrates the ease with which cooperative strategies
can be used at different levels of an architecture without interfering; indeed, in a
highly complementary manner. The pheromone-based search algorithm is reactive,
unaware of the existence of other robots in any explicit sense, while the task dis-
tribution algorithms act to further enhance the search’s efficiency, without needing
any details of how the search itself is being performed.

6.2 Robotic Implementation

Implementation on robot hardware is still at a relatively early stage, but illus-
trates some incidental advantages of the architecture. Our research equipment is
comprised of two Garcia robots from Acroname, each equipped with a BrainStem
controller board (a controller package providing serial sensor interfaces and a min-
imal C-style programming environment), an Intel Stargate onboard host, and a
CMUCam?2 vision system. Sensors include 6 IR range sensors around the robot,
and two downward-looking IR sensors for ledge avoidance.

CMUCam2

Basic behaviours stored
here; TR programs directly

accessing sensor data. Ti

Brainstem Stargate Linux Host COM 2

400MHz XScale ARM Chip

Moto Module GP Module o
i Qo
< 32MB Flash 64MB
32K 32K - SDRAM
ROM EEPROM
(12 prog
slots)

[-
Team comms _,,

Fig. 4. Garcia hardware platform

As shown in figure 4, the execution platform is split between the Stargate host
and the low-level BrainStem controller. Running on the StarGate are the BDI layer
and the upper levels of TR program; running on the BrainStem are the lowest
levels of TR program. In this sense the TR programs act in effect as a hardware
abstraction layer; higher-level TR programs (and certainly the BDI layer) can be
programmed without regard to the individual implementations of the lower-level
programs. Indeed, the system could cope with more divisions of execution hardware
or even the wholesale replacement of an entire hardware platform (e.g. swapping
the BrainStorm for, say, a HandyBoard, a broadly comparable robotic controller
board), since interaction between execution layers within the architecture is limited
to invocation and termination calls.

The split nature of the hardware does force compromises regarding the handling
of percepts, however. Because of the limited communication facilities between the
BrainStem and Stargate, and the fact that the robot’s sensors are not all attached
to the same hardware, percept availability is not universal as desired in the origi-
nal percept design. Primarily, the camera data is unavailable to any TR programs
running on the BrainStem itself. This does not represent a particularly onerous
limitation since the processing power of the BrainStem is limited, and is not ideally
suited for vision algorithms.

7 Conclusions

Early simulation efforts have indicated the ease of programming offered by our pro-
posed approach, as well as the validity and utility of allowing independent coopera-
tion at multiple levels of the same robot’s architecture. The intermediate staging of
TR programs in place of plans allows both the behavioural and deliberative layers of
the agent architecture to be programmed independently. This can be done without
regard to the details of the other’s implementation. Further, the nature of the archi-
tecture has proven itself extremely amenable to the multi-threaded programming
style common in the world of agent research. Future work will concentrate solely
on real-world robotics implementations, with a view to replicating the successes
achieved thus far in simulation.

References

1. T. Balch and L. E. Parker. A taxonomy of multi-robot systems. In Robot Teams: From
Diversity to Polymorphism, pages 3—22. A K Peters, Natick, Massachusetts, 2002.

2. M. E. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical
reasoning. In R. Cummins and J. L. Pollock, editors, Philosophy and AI: Essays at
the Interface, pages 1-22. The MIT Press, Cambridge, Massachusetts, 1991.

3. R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14-23, March 1986.

4. S. Coffey and D. Gaertner. Implementing pheromone-based, negotiating forager
agents. Sixth International Workshop, CLIMA VI, City University London, UK, June
27-29, 2005. Revised Selected and Invited Papers, pages 385—395, 2006. Lecture Notes
In Artificial Intelligence, Vol. 3900.

5. R. Kurazume, S. Nagata, and S. Hirose. Cooperative positioning with multiple robots.
In Proceedings of the IEEE International Conference on Robotics and Automation,
volume 2, pages 1250-1257, 1994.

6. K. H. Low, W. K. Leow, and M. H. Ang, Jr. A hybrid mobile robot architecture
with integrated planning and control. In Proc. 1st International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS-02), pages 219-226, 2002.

7. N. J. Nilsson. Teleo-reactive programs for agent control. Journal of Artificial Intelli-
gence Research, 1:139-158, 1994.

8. N. J. Nilsson. Teleo-reactive programs and the triple-tower architecture. FElectronic
Transactions on Artificial Intelligence, 5:99-110, 2001.

9. L. E. Parker. ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Coopera-
tion. IEEE Transactions on Robotics and Automation, 14(2):220-240, April 1998.

10. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, pages 42-55, Eindhoven, The Netherlands, 1996.

11. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings of
the First Intl. Conference on Multiagent Systems, San Francisco, 1995.

12. S. Roumeliotis and G. Bekey. Distributed Multi-Robot Localization. IEEE Transac-
tions on Robotics and Automation, 18(5):781-795, October 2002.

13. A. Stoytchev and R. Arkin. Incorporating motivation in a hybrid robot architecture.
Journal of Advanced Computational Intelligence and Intelligent Informatics, 8(3):269—
274, May 2004.

