
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

IRONWAN: Increasing Reliability of Overlapping
Networks in LoRaWAN

Laksh Bhatia, Po-Yu Chen, Michael Breza, Cong Zhao, Julie A. McCann
Department of Computing, Imperial College London

{laksh.bhatia16,po-yu.chen11,michael.breza04,c.zhao,j.mccann}@imperial.ac.uk

Abstract—LoRaWAN deployments follow an ad-hoc deploy-
ment model that has organically led to overlapping communi-
cation networks, sharing the wireless spectrum, and completely
unaware of each other. LoRaWAN uses ALOHA-style commu-
nication where it is almost impossible to schedule transmission
between networks belonging to different owners properly. The in-
ability to schedule overlapping networks will cause inter-network
interference, which will increase node-to-gateway message losses
and gateway-to-node acknowledgement failures. This problem
is likely to get worse as the number of LoRaWAN networks
increase. In response to this problem, we propose IRONWAN, a
wireless overlay network that shares communication resources
without modifications to underlying protocols. It utilises the
broadcast nature of radio communication and enables gateway-
to-gateway communication to facilitate the search for failed
messages and transmit failed acknowledgements already received
and cached in overlapping network’s gateways. IRONWAN
uses two novel algorithms, a Real-time Message Inter-arrival
Predictor, to highlight when a server has not received an expected
uplink message. The Interference Predictor ensures that extra
gateway-to-gateway communication does not negatively impact
communication bandwidth. We evaluate IRONWAN on a 1000-
node simulator with up to ten gateways and a 10-node testbed
with 2-gateways. Results show that IRONWAN can achieve up
to 12% higher packet delivery ratio (PDR) and total messages
received per node while increasing the minimum PDR by up to
28%. These improvements save up to 50% node’s energy. Finally,
we demonstrate that IRONWAN has comparable performance to
an optimal solution (wired, centralised) but with 2-32 times lower
communication costs. IRONWAN also has up to 14% better PDR
when compared to FLIP, a wired-distributed gateway-to-gateway
protocol in certain scenarios.

Index Terms—lorawan, multi-owner, overlapping, reliability

I. INTRODUCTION

LoRaWAN [1] is a widely deployed Low Power Wide
Area Network (LPWAN) wireless communication protocol
used in many large scale Internet of Things (IoT) systems,
including city-scale sensing, smart urban infrastructure, pre-
cision agriculture, and industry 4.0 [2]. It provides a low-
power solution to applications that tolerate low data rates,
are uplink-heavy and generally delay-tolerant. LoRaWAN is a
license-free protocol that allows users to deploy their networks
(including nodes, gateways, and servers) anywhere and in any
density that they require.

This freedom of deployment by different stakeholders in a
space creates communication interference among overlapping
networks or networks in close physical proximity. LPWANs
like NB-IoT and Sigfox solve the problem of overlapping
networks by being carrier controlled. NB-IoT gateways are

positioned to implement purposefully designed minimally
overlapping cells. Overlapping may exist with SigFox, but a
network’s location and capacity are constrained to a single
carrier. The carrier controlled approach constrains networks
to areas where, for example, a network operator can provide
communication coverage.

The deployment model of LoRaWAN is one reason for its
popularity and broad adoption. Over 1.3 million public and pri-
vate LoRaWAN gateways have been deployed by 20211. Lo-
RaWAN allows private stakeholders to build personal LPWAN
networks for security and privacy reasons [2]. LoRaWAN
is also preferred in areas where network infrastructures and
Internet access are unreliable or not readily available. It can
be deployed relatively cheaply without the need for a carrier.

Overlapping LoRaWAN networks cause unexpected packet
collisions and duty-cycle exhaustion. We demonstrate this in
Sec. II through a simulation of a 1,000 node network with
6 gateways (results in Fig.2). Our simulation shows that the
packet delivery ratio (PDR) of four overlapping networks is
50% less than that of the same sized deployment owned by a
single network.

Without a carrier-controlled system, it is a challenge for
overlapping LoRaWAN deployments to optimise their network
settings (e.g. scheduling, transmission parameters) as in Sigfox
and NB-IoT. Simply sharing network metrics (e.g. network
loads and node transmission patterns) between networks is not
sufficient to solve this problem without sophisticated analysis
to determine when gateways should interact and how to do
so without disrupting the other networks. A naive gateway-to-
gateway (G2G) solution would create potential security vul-
nerabilities. Malicious users could send falsified information
for their benefit or jam the network at critical times [3].

Recent research has shed light on the problem of overlap-
ping networks in LoRaWAN and exposed beneficial oppor-
tunities [4], [5], [6]. LoRaWAN operates in the unlicensed
spectrum, and gateways receive all messages in their commu-
nication range. LoRaWAN encrypts the messages so that only
the desired users can decode them. These encrypted messages,
however, are available at gateways and servers that have no
use for them. This presents an opportunity for gateways and
servers to deliver messages not destined for them to other
networks that may have missed those messages.

For example, [7] proposes message exchanging between
network servers via an Internet-based cloud service. FLIP

1https://www.semtech.com/lora

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1: IRONWAN creates a wireless overlay network to
link overlapping networks (networks 1 and 2) to exchange
uplink and downlink transmissions. IRONWAN replays failed
messages for uplink collisions(red colour) and can use the link
for acknowledgements

[4] constructs a G2G backhaul network to transfer the re-
ception and acknowledgement responsibility of nodes from
one network to gateways of an overlapping network. However,
these approaches require reliable wired backhaul access (for
internet access or G2G communications), which may not be
available in hazardous or remote areas [8]. Furthermore, these
approaches (e.g.[4]) require the network owners to co-ordinate
and agree to exchange authentication keys or grant full access
[9] to the gateways of other networks. This puts each network
at risk of injection attacks or falsified data and the dropping
of uplink or downlink messages.

In this paper, we propose Increasing Reliability of
Overlapping Networks in LoRaWAN (IRONWAN), a solution
to the problems caused by overlapping LoRaWAN networks.
It is a software approach that requires no additional back-
haul networks, internet access or cloud services and can be
readily deployed by only updating the gateways. IRONWAN
organises the gateways of multiple networks into a wireless
overlay network for G2G message exchange (as shown in
Fig.1). IRONWAN allows a gateway from one network to
act as a redundant receiver for gateways of another network
without revealing their encryption keys. Gateways operate
IRONWAN can receive their uplink messages even when they
do not share the same network server (i.e. they belong to
different networks). IRONWAN also enables gateways in the
overlay network to share their downlink capacity. Gateways
that have exhausted their allocated duty cycle on the downlink
channel can send downlink messages via other gateways with
free capacity. Sharing uplink and downlink messages allow
all overlapping networks to increase the number of unique
messages they can receive per node (which implies they have
more data per node). It also helps to reduce the number
of retransmissions for messages requiring acknowledgements,
which saves a node’s energy. Since there is no need to share
encryption keys, there is no need for coordination between
the network owners and no chance of the associated security
threats. All that is required is adding some services on the
gateways and no modification to the nodes making the adop-
tion of IRONWAN trivial and anonymous.

Gateways in IRONWAN send G2G messages only when
necessary and with local information in a fully distributed
manner. Our contributions in this work are summarised as
below:
• By analysing 11-million real-world LoRaWAN messages,

we propose a Real-time Message Inter-arrival Prediction
(RMIP) algorithm. With RMIP, gateways can adaptively
predict message-arrival times from hundreds if not thou-
sands of uplink nodes with only O(=) computation and
memory overhead. Here = is a user-defined parameter (i.e.
window size) that is typically small and independent of
network and message sizes. Our evaluation shows RMIP
can achieve more than 99% accuracy in both precision and
recall at the same time.

• To minimise communication interference caused by the
G2G communications in IRONWAN, we propose Inter-
Pred. InterPred exploits reinforcement-learning techniques
to predict the behaviours of other nodes to avoid message
collisions during G2G communication in a fully distributed
manner. Our evaluation results demonstrate that InterPred
reduces messages collisions for G2G communications from
16% − 39% to 7% − 13% given different networks loads.

• We test IRONWAN (with RMIP and InterPred) with a
trace-driven simulation consisting of 1,000 nodes and 6-
10 gateways against original LoRaWAN, FLIP [4] and an
optimised centralised wired approach using OMNet++. Our
experimental results show that IRONWAN improves packet
delivery ratio (PDR) up to 28% and reduces message re-
transmissions by 50% compared to the original LoRaWAN.
Compared to FLIP with hardware backhaul between gate-
ways, IRONWAN shows comparable performance improve-
ment and outperforms FLIP with more than 8 gateways. We
also implemented and tested IRONWAN with a 10-node
test-bed to demonstrate its practicality.
We organise the paper as follows. We present preliminaries

and background in Sec. II. We present an overview of IRON-
WAN in Sec. III. We then describe the detailed design of RMIP
and InterPred in Sec. IV and V. We present the experimental
results in Sec. VI, and then we round out our discussion with
sections on the limitations and potential extensions of our
approach VII, related work VIII, and a conclusion IX.

II. BACKGROUND AND PRELIMINARIES

In this section, we describe the current LoRaWAN architec-
ture and the problems with overlapping networks.

A. LoRaWAN Architecture Overview

LoRaWAN operates a 3-level architecture, consisting of
nodes, gateways and servers. They are (as shown in Fig.1):
Nodes are devices responsible for sensing and transmitting
data to servers via gateways using LoRaWAN[1]. These nodes
use the ALOHA channel access scheme. They must imple-
ment Class-A functionality, where nodes open two receive
windows(1 and 2 seconds) after transmission to receive ac-
knowledgements for their messages. If messages are not ac-
knowledged, nodes can retransmit these messages. The number
of retransmissions and the algorithm are user-defined.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Gateways are the bridges between servers and nodes respon-
sible for wireless communication with nodes. They receive
messages via uplink channels and send control and acknowl-
edgement messages via downlink channels. The owner of the
gateway chooses to which server to forward all messages. In
LoRaWAN, the gateways forward all messages they receive
to the servers even if the messages belong to other networks.
Servers are the final destination for the data collected by the
nodes. Servers discard messages belonging to unknown nodes
(other networks) as they are unwanted and cannot be decoded.
Once messages are successfully delivered, servers select the
gateway with the best link conditions with the originating node
(e.g. highest RSSI, SNR) to send acknowledgements when
necessary.

B. Impact of overlapping networks
To study the effect of multiple overlapping networks on

the packet delivery ratio (PDR) and the number of unique
uplink messages per node received at the server (for a detailed
description, see Sec.VI), we simulate 1000 nodes generating
a message every 3 minutes. Fig.2 shows the results for a
network with 1 owner and 4 overlapping networks with 4
owners with the same network topology. We test the networks
under three levels of message acknowledgement requirements
(i.e. low:10%, medium:50% and high:100%). At all three
levels, the 1-owner network outperforms the networks with 4-
owners. Given networks consisting of 6 gateways, the number
of unique messages received per node and PDR of the 1-owner
network is 65% and 50% higher than the network consisting of
4 different stakeholders without gateway sharing. Our analysis
shows that networks with 4-owners suffer from extensive
message collisions caused by message retransmissions or lack
of available duty-cycle to acknowledge these messages. This
work aims to introduce the performance advantages of 1-owner
networks to networks with multiple owners by sharing gateway
resources between multiple owners.

(a)

(b)

Fig. 2: Effect of partitioning in a LoRaWAN network

III. IRONWAN OVERVIEW

IRONWAN is a G2G communication system that solves the
message loss and downlink duty-cycle exhaustion problems
caused by overlapping LoRaWAN networks. It does this by
enabling gateways to coordinate to find lost uplink mes-
sages and share downlink capacity. Importantly, IRONWAN
schedules G2G communication to minimise interference to all
of the networks. IRONWAN runs as an add-on module on
LoRaWAN gateways, is fully compatible with the LoRaWAN
specifications, does not require any backhaul networks, does
not incur usage costs, and is readily deployable with a software
update on the gateways. This section presents an overview of
IRONWAN’s architecture and the four sub-modules forming
IRONWAN. We then provide an operational overview describ-
ing the interactions between modules and the objectives and
challenges for IRONWAN.

A. IRONWAN Architecture

IRONWAN consists of four sub-modules: a manager,
a cache and two learning algorithms that run on every
IRONWAN-enabled gateway as shown in Fig.3. They are:

Fig. 3: Interaction between LoRa radio, packet forwarder and
IRONWAN’s modules (shown in red)

1) Manager module facilitates gateway communication. This
module is responsible for scheduling and orchestrating ac-
cess to the wireless channel for a gateway, tracking channel
usage, querying RMIP and InterPred when needed and
handling incoming G2G messages from other gateways. The
Manager module is also responsible for requesting lost up-
link messages (by querying RMIP), handing over downlink
messages and ensuring that any G2G communication causes
minimal interference (by querying InterPred). IRONWAN
also introduces new G2G messages that are not defined in
standard LoRaWAN, and so the manager module is also
responsible for prioritising and scheduling these messages.
It also forwards messages received from the radio layer to
the appropriate modules, including the Packet Forwarder
(part of the LoRaWAN specification). No encryption keys
need to be shared by the manager modules of different
gateways.

2) Caching Module caches the latest data packages received
from nearby nodes within the communication range. Upon
receiving data requests (for lost messages) from other gate-
ways, the manager module accesses this cache to find the re-
quested messages. The data stored in this cache are deleted
after a user-defined time to limit memory consumption.

3) Real-time Message Inter-Arrival Predictor (RMIP): es-
timates the message-arrival time for every node within the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

reception range. If an the expected message does not arrive
in time, it triggers the manager module to request the lost
message from gateways belonging to other networks, or the
manager module can poll this module to get information
about lost messages, see Sec.IV.

4) Interference Predictor (InterPred): predicts if a G2G
communication can cause interference through training
a value-based reinforcement-learning agent which learns
channel usage in real-time. By querying this module, the
manager can choose time-slots and channels for G2G com-
munications without causing interference to N2G commu-
nication, see Sec.V.

B. Operation Overview

Every gateway has to perform three operations alongside
standard LoRaWAN functionality to be IRONWAN-compliant.
The first is to duplicate and forward the received messages
correctly. The second is to request for failed uplink messages
if they haven’t arrived. The third is to hand over downlink
messages if a gateway has no downlink capacity. These
operations are described in detail below.

Received Messages. As shown in Fig.4a, the manager
module forwards all valid LoRaWAN messages to the cache
module, RMIP module, InterPred module and the packet
forwarder. The packet forwarder sends the message to the
server as per the LoRaWAN specification.

Request for a lost uplink message due to uplink packet
collisions. As described in Fig.4b, a gateway’s RMIP module
indicates to the manager that an uplink message from a
node was lost 1©. The manager then sends a Request for
uplink message with the node’s address and last received
message ID to radio 2© which in-turn broadcasts it using
LoRa 3©. The manager module of the receiving gateway 4©,
queries its caching module for a newer message than the
message ID for that particular node 5©. If there is such a
message 6©, the gateway responds to the requesting gateway
with a Rebroadcast an uplink message to radio 7© that then
broadcasts it using LoRa 8©. These messages are received
by the gateway 9© and forwarded to the server10©. Essentially,
the gateways act as store-and-replay intermediaries, and this
increases overall network throughput.

Request to send a downlink message due to duty-cycle
exhaustion on downlink channels. As shown in Fig.4c,
IRONWAN enables a gateway with no remaining downlink
duty-cycle to handover the transmission of downlink mes-
sages to other gateways. Whenever the manager receives a
message from packet forwarder 1©, and it cannot transmit it,
the requesting gateway’s packet forwards it to manager 2© that
encapsulates the packet in a Request to forward Downlink
message and sends it to radio 3© that broadcasts it using LoRa
4©. If a gateway belonging to another network receives this

message, it checks its cache to verify if it has received a
message from that particular node in the last two seconds 5©.
If the gateway has received a message from that node, it gets
the time of when to transmit the message from its cache, and it
schedules 6© and transmits a Neighbour Downlink Message 7©.

C. Objective and Challenges

IRONWAN solves the problem caused by overlapping net-
works by exchanging failed uplink and downlink messages
between gateways. IRONWAN uses LoRaWAN for G2G com-
munication. LoRaWAN operates in the sub-GHz unlicensed
band, which is subject to a 1% duty-cycle on band 0 (868.0-
868.8 MHz for both uplink and downlink) and a 10% duty-
cycle on band 1 (869.40-869.65 MHz for downlink) in the
EU. As the access to the channel is duty-cycle limited,
this makes communication a scarce resource. So message
transmissions need to be planned and scheduled to use the
spectrum efficiently. Gateways are also resource-constrained
devices (e.g. raspberry pi) and may connect to hundreds if not
thousands of nodes simultaneously. It is essential to ensure
all of the solutions are lightweight and can scale to large
networks. This creates two new challenges:
1. Deciding when to hunt for missing messages. We aim to
solve the problem of uplink packet collisions by requesting
the gateways of other networks to retransmit a message
that failed to arrive at its own network as is described in
Subsec. III-B. Gateways have to accurately estimate when to
expect message arrivals for every node in their communication
range. To understand if this could be estimated, we analyse 11-
million real-world LoRaWAN messages to see if there was an
observable trend, using the LoED dataset [10]. LoED is a real-
world dataset consisting of LoRaWAN messages collected by
passively listening at 9 gateways deployed in London, repre-
senting a dense urban environment. LoED’s data showed that
message inter-arrival times per node are relatively consistent.
56% of the nodes in the dataset sent messages periodically, 5%
of these nodes changed their transmission period at some point
because of application layer changes or the reassignment of
node ids, and only 4% of the nodes which transmit messages
periodically require acknowledgements. This observation is in
line with the results in citeChoi2020. Their results show that
around 65% of the nodes transmit with intervals that have less
than 10 seconds of standard deviation. These results indicate
that gateways can predict the message arrival time for nodes
that send messages periodically. An additional solution is also
required to cope with changes in inter-arrival periods and
errors from undefined behaviours that could deviate from our
predictions.
2. G2G communication scheduling. Whenever a G2G com-
munication occurs to exchange uplink or downlink messages,
it can only occur on band 0 as gateways only listen on
that band. G2G messages will interfere with node-to-gateway
(N2G) communication on band 0. A gateway can choose from
several channels and times on this band to transmit a packet.
If it transmits at the wrong time on the wrong channel, it
will interfere with an N2G message, leading to a lost packet,
triggering retransmission. We need an effective, lightweight
solution to predict and avoid interference so gateways can
schedule G2G transmissions that cause the least interference.
The solution needs to consider the changes in the environment,
like varying transmission periods and network conditions that
affect communication parameters.

In this section, we have described IRONWAN’s compo-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

(a)
(b) (c)

Fig. 4: (a) All received messages are replicated by manager and forwarded to all modules, (b) IRONWAN’s G2G communication
for a gateway to request a lost uplink message from a neighbour gateway. (c) IRONWAN’s G2G communication for a gateway
with no remaining downlink duty-cycle to request that a neighbour gateway send a downlink message.

nents, how they interact, and the communication protocol. In
the next two sections, we will dive deeper into the design
and evaluation of RMIP and InterPred modules, which are
solutions for the objectives described in Subsec.III-C.

IV. ESTIMATING MESSAGE ARRIVAL WITH RMIP

In this section we describe how the RMIP module esti-
mates the message inter-arrival time for every node. RMIP
uses techniques from streaming and statistical methods. The
computation and memory overhead of RMIP are both $ (=),
where = is a buffer size that determines how fast RMIP
responds to changes in inter-arrival times. A gateway only
needs (= + 1) ∗ 4 bytes (assuming 32-bit floats) per node and
can predict message arrivals from hundreds if not thousands
of nodes using low memory and computation.

A. Problem Statement

Assume a gateway with a set of nodes in its reception
range. The nodes transmit messages periodically with an inter-
arrival time ΔC. We show in Fig.5(a), when every uplink
message successfully arrives at a gateway on the first try
(i.e. no retransmissions), the messages arrival time can be
seen as a time series 〈C1, C2, · · · , C;〉, where {1, 2, · · · , ;} are
monotonically increasing message IDs. In Fig.5(b) we see
that for messages that require acknowledgements nodes will
try to retransmit the message when a message delivery fails
before the next message is generated. For messages that
do not need acknowledgements, this message is lost. The
actual arrival time at the gateway, shown in Fig.5(c), becomes
〈C1+31, C2+32, · · · , C<+3<〉, where {31, 32, · · · , 3;} are random
numbers in range [0,ΔC) denoting the delays incurred because
of these retransmissions. As messages may be missing and
these delays are unknown to the gateway, message delivery
intervals may vary and become 〈ΔC ′1,ΔC

′
2, · · · ,ΔC

′
<〉.

Our objective is, given the observed message inter-arrival
times 〈ΔC ′1,ΔC

′
2, · · · ,ΔC

′
<〉, to predict the actual message ar-

rival times 〈C1, C2, · · · , C;〉 at the gateway. We further break
down the problem into three sub-problems listed below:
• Inter-arrival time prediction: The first task is to predict

the actual inter-arrival time ΔC given 〈ΔC ′1,ΔC
′
2, · · · ,ΔC

′
;
〉.

• Reference-anchor prediction: The second task is to find a
reference point from where this inter-arrival time is valid.
To predict 〈C1, C2, · · · , C;〉 from inter-arrival time ΔC, we find

Fig. 5: Examples of: (a) uplink messages sent and received by
a node and the gateway, respectively, without retries. (b) uplink
messages sent by a node with retries. (c) uplink messages
received at the gateway with retries.

a reference time point C∅ where a message arrives with zero
retries.

• Change detection in inter-arrival time: The inter-arrival
time ΔC may change overtime. Our predictions based
on previous observations may be skewed if the gateway
is not aware of these changes. Consequently, a gate-
way needs to detect changes and adapt accordingly given
〈ΔC ′1,ΔC

′
2, · · · ,ΔC

′
;
〉.

It is worth noting that, each LoRaWAN gateway may
connect to thousands of LoRaWAN nodes and it is essential
to minimise the extra overhead introduced by RMIP.

B. Estimating ΔC ′ for Missing Messages
Before starting the prediction algorithm, RMIP first checks

if each data point in 〈ΔC ′1,ΔC
′
2, · · · ,ΔC

′
<〉 is computed from

messages with two consecutive IDs (e.g. ΔC ′1 = C ′2 − C
′
1). In

practice, some messages may go missing and never reach the
gateway (delay 38 > ΔC) due to interference. The Inter-arrival
time computed from a message stream with lost messages can
significantly deviate from the ground truth. For example, when
a gateway only receives every alternate message, the inter-
arrival estimation can be two times larger than the ground
truth. To deal with missing messages RMIP fills in these
missing ΔC ′

8
using the equation below:

ΔC ′8 =
C ′
;+< − C

′
;

<
∀; < 8 < ; + <

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

where ; and ; + < denotes the message ID of the recent and
last received messages, and < denotes the number of missing
messages.

C. Inter-Arrival Time Prediction

Once the missing inter-arrival times are estimated, the next
task is to estimate ΔC given 〈ΔC ′1,ΔC

′
2, · · · ,ΔC

′
;
〉. To do so, we

have a closer look at the message inter-arrival time observed
in real-world scenarios. From example shown in Fig.5, we
observe the property:

(; − 1)ΔC < Σ;8=1ΔC
′
8 < (; + 1)ΔC, (1)

where ; is the number of messages expected. From Eq.(1), we
know that the error term is bounded by ±1/; when using the
mean as our estimator. However, using the mean has several
drawbacks. First, this error term is not equal to zero unless
the first and last messages both arrive without delay. This is a
problem in practical scenarios where delays due to collisions,
retransmissions or clock jitter are common. The estimation
may deviate from the actual inter-arrival time. Second, the
mean value is more sensitive to outliers, and a large delay
may significantly skew the estimation. We use the median
as the estimator, which is more robust against the problems
mentioned above.

The median may still deviate from actual intervals when
there are no exact inter-arrival times in observed samples. We
overcome this problem by performing a statistical test on the
inter-arrival estimate. Due to the small sample size (=) (= = 10
in our implementation), RMIP uses student’s t-test[11] to test
if we should use the computed median value as ΔC. T-test
produces a p-value (with regards to its degree of freedom)
which we test to see if we can reject the null hypothesis
(i.e. median is not valid). We adopt a more restrictive p-value
(0.703 representing a 50% two-side quantile when = = 10) for
our implementation. If the null hypothesis is rejected RMIP
accepts this median as the estimated inter-arrival time (ΔC),
otherwise it continues to collect new inter-arrival time samples
while dropping the oldest one until the null hypothesis is
rejected.

D. Reference-Anchor Prediction

Our next task is to find the reference time point C∅ with
which 〈C1, C2, · · · , C;〉 can be acquired. RMIP uses a simple
but efficient method to predict C∅ using the equation below:

C∅ =

{
C= C= − C∅ < =ΔC,
C∅ else, (2)

where = is the message counter values from C∅. As can be
seen, it resets C∅ when messages are received before expected
arrival time. This is valid because LoRaWAN message counter
values are reset only when a new message is generated. This
allows C∅ to quickly converge to the first transmission for any
message of every node.

E. Change Detection in Inter-Arrival Time

RMIP adopts the event trigger technique that is commonly
seen in stream processing to minimise memory and computa-
tional requirements and detect changes in the inter-arrival time.
Instead of updating ΔC every time a new message is received, it
compares the new inter-arrival time with ΔC. If RMIP collects
= consecutive inter-arrival times 〈ΔC ′1,ΔC

′
2, · · · ,ΔC

′
=〉, where

their difference with ΔC is greater than a given threshold 4 (i.e.
|ΔC − ΔC ′

8
| > 4,∀8 ∈ {1, 2, · · · , =}), it assumes that a node’s

transmission interval has changed. RMIP then recomputes the
ΔC and C∅, with the algorithms presented in Subsecs.IV-C and
IV-D, respectively.

To better understand the impact of = and 4 on RMIP, we
run an experiment on a real-world dataset, LoED[10]. As the
ground-truth changes are not available in this dataset, changes
were simulated by concatenating inter-arrival timeseries of
different nodes (to simulate artificial inter-arrival changes).
The results are shown in Fig.6. As can be seen, RMIP captures
changes with a very high accuracy. Precision and Recall
are more than 96% in all of our experiments. There is no
discernible changes in Recall with respect to both = and 4.
Precision improves with larger = and 4; however, the difference
become negligible when 4 ≥ 1.5s. In our experiments, we
choose = = 10 and 4 = 1s as default. This is because
LoRaWAN devices open two receive windows 0.9-1.1 and 1.9-
2.1 seconds for acknowledgements from gateways as presented
in Sec.II-A.

(a) Precision

(b) Recall

Fig. 6: The precision and recall of the change detection in
RMIP given given different window size = (5-15) and error
threshold 4 (0.5s-2.0s)

V. INTERFERENCE PREDICTION WITH INTERPRED

In this section we describe InterPred. Each gateway using
IRONWAN has an InterPred agent, when requested, determin-
ing a channel and timeslot for G2G communication that will
not interfere with N2G communication.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

A. InterPred Overview

InterPred trains an interference predicting agent on each
gateway by overhearing the network traffic that reflect the
communication usage of the neighbouring gateways and
nodes. The agent learns an interference model to decide the
channel and timeslot for G2G communication that will not
interfere with other communication. To formalise LoRaWAN
interference prediction as a reinforcement learning problem,
InterPred introduces novel definitions of state, action, policy,
and reward, and uses the value-based reinforcement learning
method, State-Action-Reward-State-Action (SARSA)[12], to
train the gateway agent. We use SARSA because of its merits
in embedded applications (e.g., fast, efficient, and no pre-
trained model requirement). It is not trivial to use SARSA
for agent training to predict wireless communication. Most
wireless communication systems (including but not limited to
LoRaWAN) are half-duplex, i.e., messages can be either sent
or received on a channel but not both simultaneously. A half-
duplex system does not have the immediate feedback about its
success or failure required by SARSA. To address this issue
InterPred trains the agent based on pseudo actions (discussed
in Sec.V-C).

The workflow of InterPred is illustrated in Fig.7. An
InterPred agent on a specific gateway chooses an action
(i.e., decides the channel and timeslot inducing the minimal
interference with N2G communication, and conducts G2G
communication correspondingly) given a specific state (i.e.,
the network status defined by spectrum usage information
during a past period of time). Since the optimal acting policy
(i.e., best actions to take in different states) is unknown
after the system initialisation, the agent continuously interacts
with its wireless environment, and iteratively optimises its
policy according to the environment reward determined by
the interference caused by actions taken. We present detailed
definitions as follows.

Fig. 7: InterPred overview

B. State, Action, Policy, and Reward

Formally, we assume that IRONWAN operates in discrete
timeslots C ∈ 1, 2, · · · of 0.1 seconds. InterPred stores the com-
munication spectrum usage information of up to % past slots.
When a gateway needs to conduct a G2G communication, it
uses the information collected in these % slots to choose one
slot from future � slots on one of � channels to communicate

with the least possibility of causing interference with other
N2G communication. The gateways have no information about
interference at other gateways, and they can only make locally
optimal decisions.

1) State.: At a specific timeslot, we define the current State
Y as a matrix of information about message received on each
of � channels in each of past % timeslots (see Fig.7). Each
timeslot is labelled as ?8 , 8 ∈ {1, 2, ..., %}, and each channel
is labelled as 2 9 , 9 ∈ {1, 2, ..., �} . ?1 and ?% represent the
oldest and the current timeslots in Y, respectively. Each state
matrix element B?82 9 contains information about the number
of messages received on 2 9 at ?8 . Whenever the gateway
receives a message in ?% on 2 9 , it extracts information about
the airtime of a packet, and calculates the number of timeslots
where packet reception was undergoing (:) by dividing airtime
with slot length (0.1 seconds). B?82 9 is then updated as:

B?82 9 = B?82 9 + 1, 8 ∈ [<0G(0, % − :), %] . (3)

We use this approach as the gateway radio only forwards a
message when it has been completely received. The maximum
value of B?82 9 is bounded by 5, which implies that 2 9 is
congested and not suitable for transmission. Such a bound ob-
jectively reflects this property of LoRaWAN communication,
and it helps to restrict the state space for better tractability.

2) Action.: In a specific state Y at timeslot ?% , if G2G
communication is required, the InterPred agent needs to take
an action. We define an Action 0 as the gateway conducting
a G2G transmission at a future timeslot 58 ∈ {0, ?% + 1, ?% +
2, · · · , ?% + �} on channel 2 9 ∈ {21, 22, · · · 2� }. Note that the
agent only decides to transmit in one of next � timeslots, and
58 = 0 represents the case where no transmission is conducted.
Specifically, 0 582 9 denotes transmit at timeslot 58 = ?% + 8 on
channel 2 9 .

3) Policy.: In state Y, the InterPred agent needs to choose
an action from ((� + 1) ∗�) available candidates to minimise
the interference on N2G communication. To achieve this, we
use a Q-value (&Y,0) to denote the impact of taking action 0 in
state (on the N2G communication interference. A higher Q-
value represents less interference. The Policy of an InterPred
agent is a table of the Q-value of each action in each state,
or a Q-table (see Fig.7). Agents take actions in an n-greedy
manner according to the Q-table, i.e., selects the action with
the highest Q-value with a probability of 1 − n , or a random
action with a probability of n . n ∈ [0, 1] can be adjusted for
a desirable trade-off between exploitation and exploration.

Initially, all elements in the Q-table are assigned with 0
since there is no prior information about each action’s impact.
Iteratively taking actions according to its latest policy, the
InterPred agent updates the Q-table based on the feedback
from the wireless environment. Each element &Y,0 is updated
as follows:

&=4FY,0 = &Y,0 + U ∗ (A4F0A3 + W ∗&Y′,0′ −&Y,0). (4)

Here, Y′ denotes the state transferred from Y after 0 is taken,
0′ denotes the action taken in Y′ according to the current
policy, U ∈ [0, 1] is the learning rate that controls the stepsize
of Q-value update, and W ∈ [0, 1] is the discount factor that
controls the weight of future Q-value. Both U and W are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

empirically tuned to improve the performance of the learnt
policy under our experimental settings. Reward is a real value
quantifying how to adjust the Q-value of each action in a state
considering its impact.

4) Reward.: Intuitively, if an action causes no interference,
we call it good, which should impart a positive reward.
Similarly, a bad action causing interference should impart
a negative reward. Moreover, if no G2G transmission is
conducted, the agent should be punished or rewarded based
on whether potential chances are missed or not. Therefore,
we have following definitions:
• Reward of a good action (�6): If action 0 582 interferes

with no N2G message, its reward is:

A4F0A30 58 2
= 1 − 8/�. (5)

This encourages the gateway to carry out G2G communi-
cation as soon as possible.

• Reward of a bad action (�1): If action 0 582 interferes with
< N2G messages, its reward is:

A4F0A30 58 2
= −2 ∗ < ∗ (1 − 8/�). (6)

This introduces a penalty to discourage the gateway from
taking bad actions in the current timeslot.

• Reward of a no-transmission action (�=): If action 002
is taken, its reward is:

A4F0A3002 = (
∑

�6 +
∑

�1)/�. (7)

Here,
∑
�6 +

∑
�1 represents the total reward that would

impart by all other actions, implying whether it was a lost of
transmission opportunity or a good choice to not transmit.

C. Agent Training based on Pseudo Actions

The real challenge of training the InterPred agent with
SARSA is that, LoRaWAN communication is half-duplex.
The gateways can only transmit or receive on a channel at
any given point, which makes it impossible to get feedback
to calculate rewards. To address this issue, we use pseudo
actions for training. Once deployed on a gateway with the
initial policy (i.e., all Q-values are 0), the agent first enters the
training phase, where it iteratively selects actions in different
states according to its policy. However, no G2G communi-
cation is actually conducted. In the meantime, the gateway
keeps overhearing all communications on all channels, and
continuously provides the agent with the wireless spectrum
usage information. With this, interference that would have
been caused by corresponding actual actions can be inferred
and used to update the Q-table according to Eq.4.

After trained based on pseudo actions for 3 hours in a 24-
hour simulation, the agent is able to start actual predictions.
When the gateway needs to transmit a G2G message the agent
determines a timeslot and a channel according to its Q-table
for G2G transmission. The Q-table is not updated after a
real transmission. When there is no G2G transmission request
the agent continuously learns based on pseudo actions. There
may be no transmission decision that the agent can take that
gives it a positive reward. In this case, the agent will take
the no-transmission action, and the gateway will not send a

G2G message. This lack of a decision helps InterPred to deal
with network conditions of extreme overcrowding to prevent
complete resource starvation.

D. InterPred Validation

We implement InterPred and compare it with two naive
policies, i.e., random and next-used to validate the correctness
of our method. Three agents with different prediction methods
were placed under the same virtual wireless environment
(defined by the same set of simulated and real-world datasets).
They were evaluated in terms of fulfilling G2G communication
requests and preventing N2G interference. Only the InterPred
agent was required for this validation.

1) Comparatives.: We selected following two compara-
tives:
• Random: In a state, the agent randomly chooses a timeslot

and channel with a uniform probability for G2G communi-
cation.

• Next-Used: In a state, the agent chooses the next timeslot
on a channel where there was no message in the last timeslot
of that channel for G2G communication.

The next-used policy requires little storage (the number of
messages sent on each channel in the last timeslot). We
selected these comparatives to demonstrate how a trivial
solutions perform under real-world wireless communication
conditions.

2) Scenarios and Metrics.: We tested all agents in virtual
wireless scenarios defined by three simulated datasets (i.e.,
low, medium, and high load) and the real-world dataset,
LoED[10]. We define load as the proportion of nodes that
require acknowledgements for all messages. Traffic amounts
of the medium and high load scenarios are 1.5 and 2.5 times
as that of the low load scenario and that of real-world dataset
are lower than the low load scenario.

In all scenarios the system parameters are set to % = 4,
� = 8, and � = 3. % is chosen based on the available
memory and the convergence time of a network. Increasing
% increases the convergence time that reduces the accuracy of
our system. We set � = 8 to give enough time to facilitate G2G
communications because LoRaWAN nodes open their receive
windows after a fixed period LoRaWAN specifications require
all devices to operate on at least 3 channels, so we set � = 3.
For InterPred parameters, we set U = 0.8, W = 0.1, and n = 0.2
according to empirical studies on all datasets.

The system operate for 24 hours under each scenario. We
collected the numbers of different actions taken by each agent
to quantify its ability to fulfil G2G communication requests,
and the total reward received by each agent to quantify its
ability to prevent N2G interference.

3) Memory requirements: InterPred has a low memory
footprint so that it can run on low-resource gateways. The
memory requirements for InterPred depends upon %, �, � and
the maximum number of messages per slot. With our chosen
values, the maximum number of bits required to encode the
counter value of 5 is 3 and with % = 4 and � = 3, we only
need %∗� ∗3 = 36 bits (rounded to 51HC4B) to encode a single
state. Total number of states is ((5%) ∗ �) = 1875. Assuming

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

every action is a 32-float value, the memory needed to encode
all actions of a state is ((� + 1) ∗ �) ∗ 4 = 1081HC4B. The
total memory needed is 1875 ∗ (108 + 5) = 210 1HC4B. The
memory requirement can be reduced by using a 16-bit float
or reducing number of future states.

4) Computation requirements: InterPred has a low compu-
tation complexity. For each gateway, &=4FY,0 is calculated and
the Q-table is updated at every time slot. The lookup and
computation complexity for SARSA is $ (1), and is one of
the primary reasons to choose a lightweight solution to run on
gateways that have low resources.

5) Results.: Our experimental results are illustrated in
Fig.8. The results show that InterPred performs similarly to
random and next in the LoED dataset. In low-load scenario, the
total rewards for InterPred and next are similar, however, next
has up to 2x more bad actions compared to InterPred. InterPred
also performs better in medium and high load scenarios
in terms of lower bad actions and higher total rewards. In
scenarios defined by simulated datasets, according to Fig.8(a),
the InterPred agent fulfils between 92% and 97% of all G2G
communication requests. The ratio of bad actions to all actions
is between 7% and 13%. The random agent fulfils 88% of
all requests in all scenarios, but its bad action ratio increases
from 16% to 30% as the network load increases. The fulfilling
ratio of the next-used agent is close to 99% all the time,
but its bad action ratio is between 19% to 39%. In Fig.8(b)
the total rewards for InterPred and next-used agents are more
than 1.9 times of that of the random agent in the low load
scenario. However, as the network load increases, the total
reward for either the random or the next-used agent goes below
0, implying that they have on average a negative impact on the
network. On the other hand, the total reward for the InterPred
agent always remains positive.

Fig. 8: InterPred validation results

In the LoED dataset scenario the InterPred and next-used
agents perform similarly since the system load is lower than
that of our low-load simulated scenario. The random agent
performs much worse than the other two in terms of the total
reward. Its bad action ratio, however, is similar to the others.
This shows that the random and next-used agents may work
well in low load scenarios, but the InterPred agent performs
better than both regardless of the load on the system.

It is clear from the results above that IRONWAN has
more communication opportunities and causes less interfer-
ence when using InterPred over the other policies. InterPred
uses a SARSA continuous learning model to train a gateway
agent to learn a model of its local communication traffic.
A single model would not work on all gateways due to
the multitude of wireless interference and placement issues.

InterPred also enables a gateway agent to deal with changes
in the environment like new nodes, dynamic inter-arrival times
or environmental conditions.

VI. IMPLEMENTATION AND EVALUATION

In this section we describe our evaluation of IRONWAN.
We perform four performance studies; initially on a small-
scale testbed to demonstrate that it works on gateways without
making changes to the LoRaWAN protocol. The next two
studies are simulations to evaluate how IRONWAN compares
against LoRaWAN in highly-dense environments. The final
simulation study compares our work against an full-oracle
wired centralised solution (WCS).
Evaluation Criteria. We use three evaluation criteria:
• Unique messages/node - The number of unique messages

received at the server per node. Each node sends approx-
imately 480 messages per experiment(depending on start
time). Each message is identified by a counter number
0, · · · , 479. A unique message has a unique counter number,
and is received only once by the gateway. This is an appli-
cation level metric and shows how much unique information
a server received from a node.

• Packet Delivery Ratio (PDR in %) - Packet delivery ratio
is defined as number of messages acknowledged over the
total number of unique messages sent by the node. This
metric captures how many messages that needed acknowl-
edgements were successfully acknowledged.

• Number of retransmissions (NoReTx) - The average
number of retransmissions needed for messages that re-
quire acknowledgements to be acknowledged. Reduction
in NoReTx implies that nodes have to retransmit less and
conserve their energy.

Evaluation algorithms. We compare IRONWAN with a base-
line algorithm LoRaWAN:
• LoRaWAN: This is baseline LoRaWAN that represents a

typical use-case for LPWANs. Nodes implement Class A
specification[1] and use Adaptive Data Rate(ADR). There
is no G2G communication in LoRaWAN.

• IRONWAN: This inherits all properties of LoRaWAN and
implements the G2G communication.

A. Testbed Evaluation

1) Setup.: We evaluated IRONWAN with two overlapping
LoRaWAN networks, each with 5 nodes and 1 gateway
connected to a server. The nodes and gateways were deployed
in a 1502 metre indoor office environment. The nodes were
placed about 4 metres apart from each other and the gateways.
We created collisions by having all of the nodes transmit at
the same time, on the same frequency, using spreading factor
7, and a transmit power of 14 dBm. We also reduced the duty-
cycle on one of the gateways to 0%. The nodes transmitted a
message every 20 seconds and we run the experiment for 5
minutes and repeat it 10 times. We report on the average and
standard deviation.
Our LoRaWAN nodes consisted of an Adafruit Feather M0
RFM95 LoRa node communicating over USB to a host
running Linux. All of the hosts were synchronised with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

NTP, and they instructed the LoRaWAN nodes to transmit
at the same time to ensure message collisions. We used 2
MultiConnect Conduit Gateway as LoRaWAN gateways each
with an 868MHz +3dbi whip antenna.

2) Results.: Fig.9 show results of the testbed experiment.
The results show that the average unique messages per node
increases by 2-6% and the average PDR increases by 15-88%.
The results indicate that IRONWAN works on gateways and
can improve the total messages received and PDR.

(a)

(b)

Fig. 9: Testbed evaluation

B. Large-scale Simulation Evaluation

Next, we perform large-scale simulations to study how
IRONWAN works in dense urban scenarios.

Setup. We evaluate IRONWAN on the FLORA[13] Lo-
RaWAN simulator using OMNeT++ and the INET framework.
We simulate 1000 nodes uniformly deployed in a 4:<2 sim-
ulation area. We base the density of the gateway deployment
on an experimental study where an average of 2− 3 gateways
should receive a message for any node with a gateway density
of one every 1.5:<2 [14]. We simulated the use of six, eight,
and ten gateways, � ∈ 6, 8, 10, to give an average of 1.5, 2, 2.5
gateways per network. Our simulated networks had � gate-
ways connected to 4 independent networks with their own
servers. The nodes transmit a new message every three minutes
(maximum of 480 messages). The experiment is run for 24
hours of simulated time. We define the load on the network
as the percentage of nodes that require acknowledgements for
all of their messages. We evaluate three loads on the network:
low, medium and high that correspond to 10,50 and 90% of
nodes requiring acknowledgements.

1) Study 1: Impact of increasing gateways: In the first
study, we compare LoRaWAN and IRONWAN. We increase
the number of gateways and the load on the network.

Unique Messages Received and PDR. Fig.10a shows
that the total messages received increases with an increase
in gateways for both LoRaWAN and IRONWAN. We see
IRONWAN receives 12% more messages than LoRaWAN for

a medium load scenario with 6 gateways. For other scenarios,
the average total messages received by IRONWAN is from
1-7% better than that for LoRaWAN. We attribute the low
throughput gain difference to the LoRaWAN Adaptive Data
Rate which reduces the transmission power to reduce the
number of nodes heard at multiple gateways. IRONWAN
increases the minimum number of messages received from
a node in all but the high load with 8 gateways and reduces
the 25th percentile (lower line of the box) for all scenarios.
IRONWAN reduces the starvation of nodes and the servers
have more information from every node.

Fig.10b shows that the average PDR in low-load scenarios
is above 99.7% and 99.9% for LoRaWAN and IRONWAN
respectively. With a medium-load IRONWAN has 11%,12%
and 5% higher PDR for 6,8 and 10 gateways. A similar but
smaller PDR performance increase is seen for IRONWAN
when the network has a high load. The minimum PDR does
not change in low-load scenarios. For medium load IRON-
WAN has a minimum PDR that is better than the LoRaWAN’s
minimum PDR by 28% for 6 gateways, 27% for 8 gateways
and 20% for 10 gateways. IRONWAN’s minimum PDR for a
high network load with 10 gateways is 23% higher than that
of LoRaWAN. The results show that networks with a medium
or high load have a higher PDR with IRONWAN than with
LoRaWAN. We see that for networks with a high load and
10 gateways IRONWAN enables gateways to handle more
acknowledgements and improve its minimum and average
PDR.

(a)

(b)

Fig. 10: Evaluation of LoRaWAN and IRONWAN with in-
creasing load and number of gateways

Fig.10a and Fig.10b show that as the load on the network in-
creases, IRONWAN increases the reliability by handling more
acknowledgements which reduces the load on the network. We
then see the impact of IRONWAN on NoReTx.

Number of retransmissions IRONWAN and LoRaWAN
have very similar messages received per node as seen in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig.10a. The difference is in the number of retransmissions
required to achieve the messages received. Fig.11 shows the
NoReTx per node. IRONWAN reduces the NoReTx in low
load scenarios by 1%,21% and 32%, for medium load by
8%,29%,39%, and for high load by 2%,5% and 6% when
compared to LoRaWAN. This shows that IRONWAN can
achieve similar performance to LoRaWAN while consuming
lesser energy in low and medium load scenarios.

Fig. 11: Average number of retransmissions

Overhead of IRONWAN In Fig.12 we see the additional
communication overhead caused by the G2G communication
used in IRONWAN when compared to LoRaWAN. IRON-
WAN’s overhead is the number of messages transmitted on
bands 0 and 1 and LoRaWAN’s overhead is only messages
transmitted on band 1. IRONWAN’s overhead is 12-14%
for low load scenarios, 0-7% in medium load, and 2-5%
in high load scenarios. An interesting observation is that
when IRONWAN is used in a network with a medium load
and 8 gateways it has its highest gain in PDR (Fig.10b)
and transmits less messages per node. This occurs because
IRONWAN provides a better redistribution of resources and
reduces acknowledgements. The results show that overhead of
IRONWAN is not high and that it uses spare gateway duty-
cycles to the benefit of all networks.

Fig. 12: Overhead for IRONWAN compared to LoRaWAN
2) Study 2: Impact of increasing number of retrans-

missions: In the second study, we test the effect of vary-
ing the maximum number of retransmissions on LoRaWAN
and IRONWAN. LoRaWAN allows users to choose a policy
that limits the maximum number of retransmissions(A4CG).
LoRaWAN specifications recommend a retransmission limit
of 8 which is what we use in all other experiments. It was
shown in [15] that increasing the number of retransmissions
increases the probability of lost packets. With this experiment,
we study the effects of varying the retransmission limit on the
performance of IRONWAN.

Results. Fig.13 shows the unique messages received and
PDR for a maximum of 2,4,6 and 8 retransmissions in a
network with 10 gateways distributed between 4-servers. The
total messages received is similar for all networks loads. This
allows us to see how the PDR changes to achieve the same
performance. A clear trend emerges where the PDR reduces
to 78% for a medium load and 50% for a high load for
2 retransmissions for LoRaWAN. For IRONWAN under the
same conditions the PDR only drops to 90% and 63%. Another
observation is that IRONWAN with A4CG retransmissions has
a 5% to 10% higher PDR than LoRaWAN with A4CG + 2
retransmissions. Instead of increasing A4CG, IRONWAN could
be used instead which would reduce the load on the network
and the number of messages sent by the nodes by replacing
node retransmissions with G2G messages requests. This can
also be seen in Fig.13b. In all scenarios, the average PDR of
the system increases by up to 20% and the minimum PDR
increases in range of 25-160% for medium and high load
scenarios. Increasing the retransmissions increases the load on
the network and does not significantly increase the PDR. This
is evident from the high-load scenario where the average PDR
is always higher in IRONWAN compared to cases in which
the retransmission limit is increased. This study shows that
IRONWAN increases the total messages received and PDR of
the system when compared to LoRaWAN with an increasing
retransmission limit.

(a)

(b)

Fig. 13: Varying maximum number of retransmissions
3) Study 3: Comparison to state-of-art: In our final study,

we compare IRONWAN with two state-of-art systems. As
both of the algorithms under comparison have components that
tackle different issues, we focus only on the parts of solution
that are comparable to IRONWAN. The two solutions are:

1. Wired centralised server (WCS). WCS is a centralised
system that facilitates message exchange between multiple
servers. In WCS every time a server receives a message, it
forwards messages not destined for it to all other servers. So,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

the servers have information from all gateways that received
their message, and they can also use those gateways for
acknowledgements. However, they only choose to use those
gateways if none of their gateways had received a message.
We calculate the overhead of WCS as the number of times it
used a message received from another server or used another
server for acknowledgements. This is the most significant
difference between a network with 1-stakeholder and WCS.
The closest thing to WCS is PacketBroker, however, there
are no documentations or publications that describe how they
work.

2. FLIP. FLIP is a peer-to-peer network between gateways
to distribute the load of the network. FLIP does this by
minimising Shannon’s entropy and coming to a consensus
about what nodes are handled by which gateways. For our
comparison, we implement a centralised server that receives
all of the messages and assigns nodes to gateways such that
the entropy is minimised. We use this technique as it mimics
the operation of FLIP which minimises entropy by sharing the
load.
Results. Fig.14a and Fig.14b show the results of our com-
parison. We only show results for medium and high load
as all three algorithms perform similarly under the low-load
scenario. WCS always has the highest number of unique
messages received and PDR as it provides the behaviour of an
unpartitioned network. The cost required by WCS to achieve
this can be seen in Fig.14c. For a medium load scenario, the
total messages received by IRONWAN is as good as FLIP with
6 gateways and outperforms it when 8 and 10 gateways are
used. The total messages received by FLIP is higher than that
for IRONWAN in the 6 and 8 gateway scenarios. IRONWAN
receives more messages than FLIP in the 10 gateway scenario.
The PDR for medium load follows a similar trend, where
IRONWAN has a higher PDR and much higher minimum PDR
when compared to FLIP and is comparable to WCS in the 10
gateway scenario. For a high load scenario, IRONWAN has
a lower PDR when compared to FLIP and WCS, however, it
increases the maximum PDR from 80% in FLIP and WCS to
100%. IRONWAN’s PDR is higher than FLIP in 10 gateway
scenario and closer to WCS’s. Fig.14c shows that the cost of
IRONWAN is significantly lower than WCS in all scenarios
where cost for IRONWAN is number of messages it requested
or responded for other networks.

The results of our evaluation show that IRONWAN in-
creases total messages received by a limited amount while
increasing the PDR in most scenarios. It also increases the
minimum PDR in all scenarios. IRONWAN also reduces
the number of retransmissions in all scenarios with minimal
overhead per gateway. IRONWAN does not perform as well
as WCS (which is similar to an unpartitioned network) but
performs better than FLIP in terms of PDR. Finally, our results
show that IRONWAN is a candidate solution for dealing
with multi-owner overlapping networks commonly found in
LoRaWAN.

VII. LIMITATIONS AND FUTURE WORK

IRONWAN currently has no idea about how many gateways
are in its communication range. A neighbourhood discovery

(a)

(b)

(c)

Fig. 14: Comparison of IRONWAN, FLIP and WCS

protocol could help gateways form a map of its neighbouring
gateways. This map could then be used to create trust and
incentivisation schemes to deal with free-loading or malicious
gateways. The G2G messages are not currently encrypted nor
authenticated, we leave that for further work. We plan to
use neighbour disovery algorithms to create keys for G2G
authentication in a way that would not require network owners
to coordinate thus retaining the deployment security and
simplicity of IRONWAN.
RMIP has been designed for periodic data, it could be extended
to deal with event-based data which would allow our system
to be used in more scenarios. We have tested InterPred for
a limited time and over-time the environment it operates
in can change. A real-time parameter tuning and periodic
recalibration needs to happen to deal with drastic changes in
the wireless environment.

VIII. RELATED WORK

In this section we review current research that tackles as-
pects of the multi-gateway and multi-owner networks problem
in LoRaWAN.

Benefits of multiple gateways: Authors in [16] showed that
increasing LoRaWAN gateways from one to four improved
the messages that were acknowledged from 24% to 40%. The
authors of [5], [17], [6] used multiple gateways to directly

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

forward all of signals received from all of the nodes in
their range to a central server where they are combined
and decoded. This is an orthogonal approach to ours as it
changes the role that gateways play in a LoRaWAN network
by offloading decoding of packets to a server which requires
precise time-synchronisation, high bandwidth wired links and
most importantly all gateways talking to the same server. To
the best of our knowledge, all previous work has assumed
that multi-gateway LoRaWAN networks share the same server
which is contradictory to LoRaWAN deployment methods
where multiple overlapping networks exist. Our work removes
this assumption and allows networks to retain their autonomy
while still working together to improve performance for all.

Downlink traffic: The authors of [15], [18] examine the
effects of downlink traffic in LoRaWAN and demonstrate its
inability to handle high amount of downlink traffic. A number
of solutions have been proposed [16], [19], [20] to increase
the reliability of LoRaWAN by balancing the load, scheduling
traffic or controlling access to the channel using queuing
systems. All of this assumes a single network using a single
server. IRONWAN addresses the more realistic scenario of
multiple overlapping networks and solves these by enabling
communication between the gateways of different networks.

Merging overlapping networks: The most notable work
that tackles the problem of overlapping networks is FLIP[4].
FLIP federates gateways of multi-stakeholder overlapping
networks. The federated gateways distribute the nodes in
overlapping communication regions amongst each other at ini-
tialisation. The gateways then handle the communication with
the nodes assigned to them as they also hold the encryption
keys for that node. The gateways then forward the received
messages to the gateway that owns the node which in-turn for-
wards it to the server. The federated gateways share decryption
keys for the allocated nodes which poses a threat in the case of
malicious gateways. FLIP assumes a wired internet connection
for G2G communication which may not be available, reliable,
or secure. In IRONWAN gateways do not require the keys
of neighbour nodes. IRONWAN uses the wireless spectrum
overcoming the problem of an unreliable wired connection[8]
or unavailable backhaul networks in hazardous scenarios. As
shown in Sec.VI, IRONWAN performs better than FLIP in
most scenarios without having any security issues.

IX. CONCLUSION

In this paper, we present IRONWAN and its novel compo-
nents RMIP and InterPred. IRONWAN leverages overlapping
LoRaWAN networks to enable wireless gateway-to-gateway
communication, reducing the negative effects of node-to-
gateway message collisions and efficiently sharing gateway-
to-node communication capacity. Both RMIP and InterPred
are new approaches to solve these problems. We evaluate
the effectiveness of IRONWAN in simulation and a testbed
experiment. Our results show that IRONWAN outperforms
LoRaWAN in low-load and medium-load scenarios (can be
considered typical use-cases of LoRaWAN) and achieves
comparable performance in the high-load scenario. IRONWAN
also improves the messages received per node and the packet

delivery ratio while reducing the number of retransmissions
required and enables gateways to acknowledge messages when
they have exhausted their communication duty-cycle. Ulti-
mately, IRONWAN is a suitable candidate to leverage over-
lapping networks to increase the reliability for all participating
networks in LoRaWAN deployments.

REFERENCES

[1] L. Alliance™, “LoRaWAN™Specification,” lora-
alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf, July 2018.

[2] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of
lpwan technologies for large-scale iot deployment,” ICT express, 2019.

[3] E. Aras, N. Small, G. S. Ramachandran, S. Delbruel, W. Joosen, and
D. Hughes, “Selective jamming of lorawan using commodity hardware,”
Proceedings of the 14th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, Nov 2017.
[Online]. Available: http://dx.doi.org/10.1145/3144457.3144478

[4] S. Delbruel et al., “Tackling contention through cooperation: A dis-
tributed federation in lorawan space,” in EWSN ’20, 2020.

[5] A. Dongare et al., “Charm: exploiting geographical diversity through
coherent combining in low-power wide-area networks,” in IPSN’ 18,
2018.

[6] J. Liu, W. Xu, S. Jha, and W. Hu, “Nephalai: Towards LPWAN C-RAN
with physical layer compression,” arXiv, 2020.

[7] The Things Network, “PacketBroker,” https://www.packetbroker.org,
2019, [Online; accessed 07-Sep-2020].

[8] Kathleen McLaughlin, “Gaps in 4G Network Hinder High-tech Agri-
culture: FCC Prepares to Release 500 Million to Improve Coverage,”
2016.

[9] M. H. Dwijaksara, W. Sook Jeon, and D. G. Jeong, “Multihop gateway-
to-gateway communication protocol for lora networks,” Proceedings of
the IEEE International Conference on Industrial Technology, vol. 2019-
Febru, pp. 949–954, 2019.

[10] L. Bhatia et al., “Dataset: Loed: The lorawan at the edge dataset,” in
Proceedings of the Third Workshop on Data Acquisition To Analysis,
ser. DATA ’20, 2020.

[11] J. C. De Winter, “Using the student’s t-test with extremely small sample
sizes,” Practical Assessment, Research, and Evaluation, 2013.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[13] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive configura-
tion of lora networks for dense iot deployments,” in IEEE/IFIP NOMS,
2018.

[14] Olivier Seller, “Predicting LoRaWAN Capacity,” https://lora-
developers.semtech.com/library/tech-papers-and-guides/predicting-
lorawan-capacity, 2020, [Online; accessed 26-Oct-2020].

[15] M. Capuzzo, D. Magrin, and A. Zanella, “Confirmed traffic in lorawan:
Pitfalls and countermeasures,” in Med-Hoc-Net, 2018.

[16] V. Di Vincenzo, M. Heusse, and B. Tourancheau, “Improving downlink
scalability in lorawan,” in IEEE ICC 2019, 2019.

[17] X. Xia, Y. Zheng, and T. Gu, “Ftrack: Parallel decoding for lora
transmissions,” in ACM SenSys’ 19, 2019.

[18] A.-I. Pop, U. Raza, P. Kulkarni, and M. Sooriyabandara, “Does bidirec-
tional traffic do more harm than good in lorawan based lpwa networks?”
2017.

[19] L. Bhatia et al., “Control communication co-design for wide area cyber-
physical systems,” ACM Trans. Cyber-Phys. Syst., 2020.

[20] Y. Oh et al., “Trilo: A traffic indication-based downlink communication
protocol for lorawan,” Wireless Comm. and Mobile Computing, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Laksh Bhatia is a PhD student and a research
assistant at Imperial College London. His research
interests include designing of reliable wireless com-
munication protocols with applications in Internet-
of-Things and Cyber-Physical systems and robotics.

Po-Yu Chen received his PhD in Computer Science
from Imperial College London in 2016. He currently
a research associate in the AESE group of Imperial
College and Alan Turing Institute. His research
interests include data analytics and machine learning
in distributed systems such as the Internet of Things
(IoT) and cyber-physical systems (CPS).

Michael Breza received a PhD in Computer Sci-
ence from Imperial College London in 2013. He
is currently a Research Associate in the AESE
group of Imperial College. His research interests
include secure and reliable communication protocols
for decentralised distributed systems such as sensor
networks employed in Internet of Things (IoT) and
cyber-physical systems (CPS) applications.

Cong Zhao received his Ph.D. degree in Computer
Science and Technology from Xi’an Jiaotong Uni-
versity (XJTU) in 2017. He is currently a research
associate in the Department of Computing at Impe-
rial College London. His research interests include
meta learning, federated learning, and industrial in-
telligence.

Julie A. McCann is a Professor in Computer Sys-
tems, and Vice Dean (Research) Engineering with
Imperial College London. Her research centres on
decentralized and self-organizing schemes for spatial
computing e.g., Wireless Sensor systems, Internet
of Things, or Cyber-physical systems. She leads the
Adaptive Embedded Systems Engineering Research
(AESE) Lab , is Deputy Director for the UK-wide
PeTraS Centre for IoT Cyber-security, and until
recently co-directed the Intel Collaborative Research
Institute for Sustainable Cities. She has received

significant funding though national and international bodies such as the UK’s
EPSRC, EU FP7/H2020 funding and Singapore NRF; she has a sub-lab
in Singapore with I2R and HDB. Prof McCann is an Elected Peer for the
EPSRC, serves on/chairs/AE for the top international conference committees
and journals in the field, and is a Fellow of the BCS and Chartered Engineer.

