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Abstract—Hoisting equipment is core to many industrial sys-
tems and therefore their state of health significantly affects
production lines and personnel safety; this is especially important
in environments such as coal mines. The health of the hoisting
system, can be estimated by deploying energy harvesting wireless
sensor nodes that monitor the drum surface stress. In this
network of sensor devices, it is very costly to send highly sampled
data as it causes radio congestion and consumes energy. However,
from our experience of sensing hoist systems, we note that the
data observed at the upper surface of the hoist is significantly
more indicative of the state of health of the whole system,
compared with data sensed at the lower surface. Therefore, we
need to take advantage of this to optimise the communications of
sensor nodes. However, scarce energy can be collected for these
devices from the hoist itself, along with the prioritised Quality
of Service (QoS) requirements (throughput, delay) of monitoring
signals, raises important challenges for energy management. In
this paper, we use Lyapunov optimisation techniques and propose
an Energy-neutral and QoS-aware Protocol (EQP), including
duty cycling and network scheduling to solve it. Extensive
simulations show that EQP helps sensor nodes realize consecutive
monitoring, and achieve more than 38% utility gain compared
with existing strategies.

Index Terms—Prioritised QoS, energy-neutral operation, heath
monitoring, wireless sensor networks, hoisting systems

I. INTRODUCTION

HOISTING systems are core to many industrial envi-
ronments. In underground mining, the hoisting systems

reside in shafts and deliver mined materials, equipment and
personnel, and are described as the ”throat” of a mine due
to their importance. Although the hoisting system is vital
and designed to be stable, sometimes it fails and accidents
happen [1]. The major causes of failure are over-winding and
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jamming, which is caused by the failure of electric control
systems and mechanical deformation of a container or an
elevator guide rail, respectively. These failures can cause
damage to personnel and impact production lines accordingly
[2].

Common methods to judge the state of operation of a hoist
is to monitor the tension of hoist wire ropes by deploying
tension detection devices [3, 4]. These devices are usually put
between wire ropes and a hoist container, transmitting tension
signals using wireless communications. However, when the
mine depth is larger than 500 meters [5], the reliability of
transmission may not be guaranteed. Therefore, it is necessary
to develop a new approach to monitor the health of the hoisting
system to prevent accidents.

Zhou et al. [6] have invented a system to monitor the health
of hoisting systems through the real-time detection of drum
stress with wireless sensor networks (WSNs). Also, a wind-
induced piezoelectric energy harvesting device is designed to
be placed perpendicular on the surface of the drum to charge
the battery continuously [7].

However, there are still two important requirements for
monitoring reliability. Sensor nodes should keep working
perpetually during the operation of hoisting activity to avoid
missed detection and therefore not detecting events leading to
failure, and the data should indeed be valid and timely.

In order to satisfy the aforementioned requirements, we
propose an Energy-neutral and Quality of Service-aware (QoS-
aware) algorithm (EQP), which is a cross-network and MAC
layer protocol. The problem is solved in two steps. First,
perpetual operation is provided via energy sustainability which
is guaranteed through dynamic duty cycling of the nodes (both
sensing and communications). Second, we use Lyapunov op-
timisation [8, 9] to maximize and prioritise throughput within
maximum tolerable data communications delay. A distributed
algorithm is presented that supports QoS by varying the packet
dropping, prioritised admission, and the power allocation.

The remainder of this paper is organised as follows. Section
II introduces the monitoring system. The optimisation problem
definition is given in Section III. In Section IV, the monitoring
system models are established. The proposed scheduling algo-
rithm is designed in Section V. Simulation results are presented
in VI and conclusions are made in Section VII.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2015 2

II. RELATED WORK

The two main challenges in our systems are to provide
the QoS guarantees and energy sustainability. In terms of
prioritised QoS assurance, the current work can be divided
into three main approaches to this multi-attribute problem.
We describe the methods according to the protocol layer that
impacts.

MAC layer solutions. Here protocols are designed to help
nodes obtain channel resources at the link level. Liu et al.
proposed a MAC protocol to optimize the transmission order
and transmission duration [10] of nodes based on channel
status and application context. The proposed scheme jointly
exploits channel resource information, traffic and energy to
maintain QoS and ensure energy efficency. An IEEE 802.15.4
standard based MAC protocol was proposed to support QoS by
adjusting the data type and size [11]. This strategy introduces
emergency handling mechanism to ensure QoS requirements
of emergency data.

Network layer solutions. Network layer based protocols
are used to ensure end-to-end resource negotiation, reserva-
tion and reconfiguration so the system can adapt to various
application scenarios. Hammoudeh presented a cluster-based
route optimisation and load-balancing protocol. This protocol
can balance energy efficiency, scalability and robustness [12].
Cheng exploited a geographic opportunistic routing for QoS
provisioning with both end-to-end reliability and delay con-
straints in WSNs [13]. However, this strategy aims to improve
wireless performance in dense wireless networks.

Cross-layer solutions. Cross-layered interactions can help
networks use information from different layers to achieve
better performance. An integrated cross-layer framework was
presented, spanning the MAC and network layers. This pro-
tocol can satisfy stringent reliability and maximum delay
constraints paired with priority demand [14]. However, it
requires the involvement of additional sink sources, increasing
hardware costs of monitoring. A cross-layered framework was
proposed to maintain QoS with an increasing number of video
transmitting sources [15], but system needs to know prior
knowledge about the location of each other node.

Concerning energy sustainability guarantees, there are two
main methods. One way is adaptive duty cycling. E.g., an LMP
algorithm was used to optimise the maximum duty cycle based
on predicted solar power and monitored energy level [16]. A
wake-up variation reduction power management was proposed
for Energy Neutral Operation (ENO) in WSNs [17]. The other
is adaptive topology control. A cluster head group mechanism
was proposed that allows a cluster to use multiple cluster
heads to share heavy traffic load [18]. Similarly, Bozorgi
et al. proposed a hybrid clustering method combining static
and dynamic clustering to solve the energy constraints [19].
However, cluster-based strategies are more suitable for WSNs
with a larger number of nodes.

Although the aforementioned work provides innovative
methods to ensure QoS in WSNs, these strategies cannot be
used directly in health monitoring of hoisting systems. This
is because a suitable strategy should consider the following
factors.

Unstable energy supply. The piezoelectric energy harvester
supplies energy to the sensor device continuously but not
uniformly. This is because the amount of harvested energy
depends on the spinning speed of the hoist drum which also
varies. We cannot guarantee nodes receive the same energy
constantly. Some works [10–15] do not support dynamic
energy management and so the sensor nodes will eventually
fail due to energy shortage.

Difference in data importance and QoS requirements. As
the drum spins, it receives significantly more stress at the
top. The data received from sensors while positioned at the
top also have the highest impact on the health status of the
system. These data sampled at the top are more vital and
should be prioritised. However, [16–19] do not meet prioritised
QoS requirements.

Change in data priority. Different from static networks [20],
sensor nodes rotate along with the drum and pass through
the top and bottom points. The priority of sampled data also
changes correspondingly. Although [8, 21] make contributions
to QoS assurance, these works do not take the change of data
priority into consideration. [22, 23] support ENO and QoS
guarantee but they assume a system without priorities.

Therefore we propose EQP to satisfy the application-
specific requirements of a coal mine. The major contributions
are as follows:

1) An energy-neutral strategy is proposed to ensure energy
sustainability, which also helps to monitor the health of
the hoisting system.

2) Weight factors are introduced into the Lyapunov op-
timisation technique. This parameter helps classify the
importance of different priority data to accomplish QoS
service.

3) A virtual arrival data is added to a data queue to solve
the worst delay problem when the data priority changes.
This ensures that nodes with older data are not starved
of their chance to communicate.

III. MONITORING SYSTEM

A. Monitoring Principle

A classical structure of a friction hoist is shown in Fig. 1(a).
In this hoisting system, the drum is a driving member and its
rotation drives the ropes on a drum which raises one container
and lowers the other one. The direction of drum rotation is
reversible so any of the containers can be raised or lowered.
During this process, the load is on the drum and this load is
determined by the working conditions. For instance, in normal
condition (constant speed and acceleration), the load is only
calculated by the force of gravity on the coal and equipment,
as well as the product of their mass and acceleration. In
contrast, in abnormal conditions (over-winding and jamming),
ropes undertake additional force caused by other objects which
impede the hoisting process.

Different loads lead to changes in surface stress of the
drum, and four different operating conditions are simulated in
ANSYS (Fig. 1(b)), including two normal conditions (constant
speed and acceleration) and two abnormal conditions (over-
winding and jamming). The maximum stress in the jamming
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Fig. 1. Monitoring principle (a) Structure of hoisting systems in coal mines:
(1) a drum (friction wheel), (2) a guide wheel, (3) wire ropes, (4) hoisting
containers, (5) tail ropes (b) Stress nephogram of a drum at four different
operating conditions: (1) constant speed (2) acceleration (3) overwinding (4)
jamming.

condition is nearly 5 times that of the acceleration mode. The
maximum stress for the over-winding condition doubles that
in the acceleration mode. This means the difference of stress
can be easily recognized by commercial off-the-shelf sensors.
Furthermore, the largest stress change of the drum from normal
conditions to abnormal conditions happens in the upper half
surface and the stress change is less significant in the lower
half surface. Hence, the data sampled in the upper half surface
are more useful to detect faults than the data sampled in the
lower half. This motivates the need to set different sampling
and communication requirements and assign them different
priorities. We define the High Priority Zone (HPZ) as the area
above the horizontal line (i.e. the upper half surface), and the
data sampled in this zone as High Priority (HP) data. Similarly,
the Low Priority Zone (LPZ) is the area below the horizontal
line (i.e. lower half surface), and data sampled there is defined
as Low Priority (LP) data.

B. Monitoring Network Architecture

Based on the simulation results of the drum surface stress,
we design a many-to-one network. This can be seen in Fig.
2(a). In this figure, the sensor nodes are uniformly installed
on the surface of a spinning drum. Each node is equipped
with a wind-induced piezoelectric energy harvesting device, a
strain gauge sensor, and an angle detection sensor. The strain
gauge sensor is used to monitor stress. The angle detection
sensor is used to calculate its current location and decide
whether the sampling data is in HPZ or LPZ. All sensor
nodes are equipped with radio transceivers that can send and
receive on one channel at a time. We use a single-hop network
architecture in our system where the sink can receive data from
only one node at a time.

The network topology is described in Fig. 2(b), where
the monitoring network consists of a set of sensor nodes
N = {1, 2, ..., n} and a set of sink nodesD. Let L = {1, 2, ..., l}
represent the set of all wireless links. We assume that the
wireless channel remains unchanged in each time slot and
channel state sn(t) varies independently in every time slot.
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Fig. 2. Monitoring network (a) The deployment of network nodes on the
surface of a drum (b) Dynamic queue model in the monitoring network.

Each node has two queues, a HP queue and a LP queue.
HP data are placed in the HP queue and LP data are placed
in the LP queue. We denote C to be the set of priority
classes, including a higher class H and a lower class L, i.e.,
c ∈ C = {H, L}. The network operates in a finite-horizon
period consisting of discrete time slots t ∈ {1, 2, 3...,T}.
We assume reliable links where if data is transmitted once,
sink nodes receive it successfully and there is no need for
retransmissions. Let ∆t represent a time slot interval. Some
key notations of symbols are listed in Tab. I.

TABLE I
DEFINITION OF THE KEY VARIABLES

Symbols Description
τcn End-to-end delay of c-class data at node n
dc
n (t) The number of dropped c-class data at node n due to

maximum delay tolerance
pt (t) Transmission power at time slot t
en(t) The power of harvested energy at node n at time slot t
hn(t) The amount of harvested energy at node n at time slot t
psen Sensing power of sensor nodes
pslp Sleep power of sensor nodes
pn(t, D(t)) The amount of consumed energy when the duty cycle is D(t)
µc
n (t) Service rate of c-class data at node n at time slot t
µ̃c
n (t) The expected service rate of class c at node n at time slot t

Rc
n(t) The real arrival of c-class data to a queue at node n at time

slot t
Rvircn (t) Virtual arrival of c-class data to a queue at node n at time

slot t
wc The weight factor of c-class data
ψc Priority control evaluation factor of c-class data
Gn(t) Power allocation evaluation factor at sensor node n

IV. PROBLEM DEFINITION

Our objective is to maximize prioritised throughput within
a tolerable delay while ensuring nodes survive. We get the
following optimisation problem:

Maximize:
D(t),dc

n (t),pt (t)
util =

1
T

T−1∑
t=0

N∑
n=1
(%H µHn + %

LµLn ) (1)

Subject to: %H > %L (2)
τcn 6 τ

c
max (3)

dc
n(t) 6 dc

max (4)
En(t) > Emin (5)
pt (t) ∈ {0, pmax} (6)

In the above formulation, %H and %L represents the weight
factor for actual service rate µH and µL of HP and LP data
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respectively. We define the utility util as the accumulated
sum of the weighted service rate. Constraint (2) ensures
that throughput for HP data has a higher priority than the
throughput for LP data. Constraint (3) ensures that data delay
τcn is less than the maximum delay τcmax for c-class. Constraint
(4) guarantees the dropped data dc

n(t) is less than the maximum
dropped value dc

max(t). Constraint (5) ensures that sensor
nodes are energy neutral, i.e., the current energy level En(t)
should be larger than the minimum energy requirement Emin.
Constraint (6) explains the range of transmitting power, and
the maximum transmission power pmax is constant here.

V. SYSTEM MODEL

In the following section, an energy model and a network
queue model are designed. We derive the channel state sn(t)
from the Received Signal Strength Indication (RSSI). We also
assume senor nodes have enough memory to store the sampled
data.

A. Energy Model
In this section, we describe the energy model which includes

energy harvesting, consumption and storage.
Energy is harvested from piezoelectric vibration energy

which converts ambient vibration energy into electric energy.
The amount of generated energy depends on the rotation speed
of the drum. We conducted energy harvesting experiments on
a drum test-bed (Fig. 3(b)). The results of our experiments
are shown in Fig. 3(a). The data points obtained can be curve
fitted by using the least-squares approximation method,

en(t) = 1.017 × 10−9v(t)5.686 (7)

where en(t) is the harvesting power and v(t) is spinning speed.
The amount of harvested energy is hn(t) = en(t) · ∆t.
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Fig. 3. Energy harvesting experiments (a) Relationship of harvesting power
versus spinning speed of a drum (b) Test bed.

Most of the energy is spent in sensing and transmission
whereas the node spends most of its time in sleep mode. We
denote psen, pt and pslp as the power prices for sensing,
transmission, and sleep. Duty cycle is represented as D(t).
Therefore the consumed energy is

pn(t,D(t)) = [psen+ pt (t)] ·D(t) ·∆t+ pslp · [1−D(t)] ·∆t . (8)

The remaining energy of sensor node n is represented by En(t),
and it is given by:

En(t + 1) = En(t) − pn(t) + hn(t) (9)

where En(t) should be less than Cb , and Cb is the capacity of
energy storage devices.

B. Network Queue Model

The first queue is Qc
n(t), representing the real c-class data

queue backlog at node n in the network, where Qc
n(0) = 0.

Let Rc
n(t) represent the number of c-class sampling data at

time slot t, and it is subjected to 0 6 Rc
n(t) 6 Rc

max , where
Rc
max is the maximum sampling rate for c-class data. Rc

n(t)
is also the data arrival rate to Qc

n(t). When sensor nodes are
located in HPZ, the sampled data is represented by RH

n (t).
On the contrary, RL

n (t) is the data sampled in LPZ. All the
sampled data will be stored in their respective queues. Let
µn(t) = µ̂n(pt (t), sn(t)) represent service rate on a channel;
µ̂n(p, s) is a function of transmission power and channel state.
The service rate of c-class data satisfies 0 6 µcn(t) 6 µn(t).
dc
n(t) is the number of data that can be dropped in slot t. The

queue dynamics is given by

Qc
n(t + 1) = max[Qc

n(t) − dc
n(t) − µ

c
n(t), 0] + Rc

n(t). (10)

The second queue is a virtual queue. We define Zc
n (t) for

c-class data [8] to ensure that the worst-case delay is bounded.
Our queue dynamics are expressed as follows:

Zc
n (t + 1) =

{
0, Qc

n(t + 1) = 0 & PosChange = 1
max[Zc

n (t) + ε
c − dc

n − µ
c
n, 0], else

(11)

with Zc
n (0) = 0 for all n, and PosChange is an indicator that

is 1 if a node moves from HPZ to LPZ or from LPZ to HPZ.
εc is a preset constant, satisfying 0 6 εc 6 Rc

max .
According to [8], suppose a scheduling algorithm can guar-

antee Qc
n(t) 6 Qc

max and Zc
n (t) 6 Zc

max for all t ∈ {0, 1, 2...}.
Then, the worst-case delay of non-dropped c-class data is
bounded by the constant

tcmax =

⌈
Qc

max + Zc
max

εc

⌉
, (12)

where dxe denotes the smallest integer that is greater than or
equal to x.

However, in this paper, the formula (12) needs to be
modified to help the dropped data, as there are some special
cases especially when data priority changes. When a node is
crossing the horizontal line from LPZ to HPZ, the sampling
data will change their priority from low to high. Hence, these
data will be put in the HP queue while the LP queue will have
no arrivals. Once the data in the LP queue are chosen to be
sent and there are still some data left in the LP queue, QL

n (t)
decreases and only ZL

n (t) increases due to lack of arrival data.
As a consequence, d(QL

n (t) + ZL
n (t))/ε

Le may be constant for
certain time slots. The remaining data in the LP queue will
not be dropped in time, since d(QL

n (t) + ZL
n (t))/ε

Le is already
larger than the real delay, which adds additional delay to the
items in queue.

To solve this problem, we use a virtual arrival Rvircn (t)
which is added to maintain the increase in the queue backlogs,
but in fact, there are no real data in the actual queues. Qvircn (t)
is represented as the virtual queue backlog, which is the third
queue. The dynamic is as follows:

Qvircn (t + 1) =

{
Qc

n(t + 1) + Rvircn (t), Qc
n(t) , 0

0, else
(13)



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2015 5

where Rvircn (t) satisfies

Rvircn (t) =

{
2uc

max, Rc
n(t) = 0,Qc

n(t) , 0
0, else.

(14)

where uc
max is the maximum service rate for c-class data.

Therefore, formula (12) can be changed as

tcmax =

⌈
Qvircmax + Zc

max

εc

⌉
. (15)

The reason why we set Rvircn as 2uc
max is that

Qvircmax + Zc
max will not decrease in this setting as the

maximum decrease for Qvircmax + Zc
max is 2uc

max , which
guarantees out-of-time data can be dropped according to the
formula (15). Otherwise, once Qvircmax + Zc

max decreases or
remains constant, it will take the remaining data more time
to accumulate to a certain level for the data to be dropped or
sent, which will increase its delay.

VI. EQP ALGORITHM

We will solve the proposed problem in two steps: duty cycle
management and network scheduling. Duty cycle management
is used to maximize the number of data that can be sampled
while avoiding energy deficiency. Based on these sampled
data, network scheduling is used to maximize the number of
transmitted data while satisfying the QoS requirements.

A. Duty Cycle Adjustment

The optimisation problem is defined as follows:

Maximize:
D(t)

∑
t

D(t) (16)

Subject to: Dmin 6 D(t) 6 Dmax (17)
Constraint (5)

where Dmin is the minimum duty cycle and Dmax is the
maximum duty cycle. The constraint (17) guarantees that duty
cycle is in a certain range. One simple way for this problem
is to maintain the stored energy around the initial energy level
by changing duty cycle dynamically. Following this idea, a
sub-optimal solution is presented in Algorithm 1 to achieve
ENO.
where,

∆D(t) =
{En(t) + hn(t) − En(0)}/∆t − pslp

psen + pmax − pslp
(18)

Our proposed algorithm handles two cases. The first case
is when the battery energy is lower than the minimum energy
required for work. In that case, the duty cycle is set to zero,
which means the node is sleeping and is waiting for enough
energy to be harvested. The second case is when the battery
energy is higher than the minimum energy requirement. This
case deals with two further conditions. One condition is that
the battery energy is higher than the initial energy. The strategy
is to increase the duty cycle to consume excess energy. The
other condition is that the battery energy is lower than the
initial value, where the duty cycle is reduced based on an
energy deficit. In both conditions, duty cycling is chosen to
avoid overuse.

Algorithm 1 Duty Cycle Assignment
1:Initialize
2:While (t 6 T ) do
3: If (En(t) < Emin) /*case 1*/
4: D(t + 1) = 0
5: Else /*case 2*/
6: If (En(t) > En(0)) /*case 2.1*/
7: D(t + 1) = min[Dmax, (D(t) + ∆D(t))]
8: If En(t) + hn(t) − pn(t, D(t + 1)) < Emin

9: If En(t) + hn(t) − pn(t, Dmin) < Emin

10: D(t + 1) = 0
11: Else
12: D(t + 1) = Dmin

13: End if
14: End if
15: Else /*case 2.2*/
16: D(t + 1) = max[Dmin, (D(t) + ∆D(t))]
17: If En(t) + hn(t) − pn(t, D(t + 1)) < Emin

18: If En(t) + hn(t) − pn(t, Dmin) < Emin

19: D(t + 1) = 0
20: Else
21: D(t + 1) = Dmin

22: End if
23: End if
24: End if
25: End while

B. Network Scheduling Design

A Lyapunov optimisation method is used in this section and
the control strategy is developed by solving 3 sub-problems.

1) Lyapunov Optimisation: Now denote U(t) ,
[wcQvirc(t);wcZc(t)] as a collective vector of all wcQc

n(t)
and wcZc

n (t) weighted queues. Then we have a Lyapunov
function as follows:

L(U(t)) ,
1
2

N∑
n=1

∑
c

{[wcQvircn (t)]
2 + [wcZc

n (t)]
2}.

Theorem 1: ( 1-slot drift) we define 1-slot conditional Lya-
punov drift as ∆L(U(t)). For all t, all U(t), we have,

∆L(U(t)) 6B −
N∑
n=1

∑
c

wc2µcn[Qvircn (t) + Zc
n (t)]

−

N∑
n=1

∑
c

wc2dc
n(t)[Qvircn (t) + Zc

n (t)]

+

N∑
n=1

∑
c

wc2
{[Rvircn (t) + Rc

n(t)]

· Qvircn (t)} +
N∑
n=1

∑
c

wc2εcZc
n (t)

(19)

where B is a constant defined as

B =
1
2

N∑
n=1
{[wH 2

+ wL2
]{2[µmax + dmax]

2

+ εmax
2 + [Rmax + Rvirmax]

2}.

(20)

µmax , dmax , Rmax , Rvirmax are the maximum service rate,
dropping rate, real arrival rate, virtual arrival rate for all c-
class data, respectively.

Proof: see Appendix A and queue stability is also proofed
in Appendix B 1. �

1https://www.dropbox.com/s/kw0ol6n7wxuqyjy/Appendix.pdf?dl=0
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2) Control Strategy: We now design a distributed algorithm
to minimize the right-hand side of (19) subject to listed
constraints.

1. Dropping Control

Maximize:
dc
n (t)

N∑
n=1

wc2dc
n(t)[Qvircn (t) + Zc

n (t)] (21)

Subject to: 0 6 dc
n(t) 6 dc

max (22)

A sub-optimal strategy is adopted here: only data exceeding
or potentially exceeding delay constraints will be dropped,
which will also minimize the number of dropped data and
help maximize the throughput.

dc
n(t) =


0,

⌈
Qvircmax + Zc

max

εc

⌉
6 τcmax

dc
max, else

(23)

2. Priority Control
Based on the optimisation problem (1), we still need to

decide which priority data should be sent if a node has
access to the channel. We need to ensure a high throughput
while guaranteeing our delay requirements. To ensure this, we
adopt the following method: select the queue which has the
maximum product of weight and criticality between classes
[21]. Then, admission can be decided based on capacity. The
priority control evaluation factor is defined as:

ψc(t) = υc[τcmax − (Qvircn (t) + Zc
n (t))/ε

c], (24)

where υc is the admission weight factor, (Qvircn (t)+Zc
n (t))/ε

c

is the possible maximum delay of a node n at time slot t, and
τcmax − (Qvircn (t) + Zc

n (t))/ε
c is the difference between the

delay constraint and the current delay. Since there are only
two classes in the network c ∈ {H, L}, ψH (t) and ψL(t) are
the two effect factors which can determine admission priority.
By usage of the two factors, the expected admission for classes
H and L can be decided as follows:

µ̃Hn ={
min(µmax(s),QH

n (t) − dH
n (t)), ψH (t) > ψL(t)

min(µmax(s) − µ̃Ln ,Q
H
n (t) − dH

n (t)), else

(25)

µ̃Ln ={
min(µmax(s),QL

n (t) − dL
n (t)), ψL(t) > ψH (t)

min(µmax(s) − µ̃Hn ,Q
L
n (t) − dL

n (t)), else

(26)

where µmax(s) = µ̂n(pmax, sn(t)) and it is the maximum
service when the channel state is sn(t) at node n. Formulas
(25) and (26) means if ψH (t) > ψL(t), node n will send data
in class H first. If there is any surplus capacity, the node will
send data from its class L queue. If ψH (t) 6 ψL(t), this is
opposite to the aforementioned case.

3. Power Allocation
According to the constraint (6), the value of allowable

transmission power is limited, and also the power must be
allocated to satisfy that only one node can transmit data to the

sink node in each time slot. Therefore, transmission power is
allocated according to different priority queue backlogs.

Maximize:
pt (t),ξn(t)

N∑
n=1
{wH 2

µ̃Hn [QvirHn (t) + ZH
n (t)] (27)

+ wL2
µ̃Ln [QvirLn (t) + ZL

n (t)]}

Subject to:
N∑
j=1

N∑
i=1

ξi(t)ξj(t) = 0, i , j (28)

pt (t) ∈ {0, pmax}

where the expected service rates µ̃Hn and µ̃Ln are allocated
based on formulas (25) and (26). In (28), ξn(t) is a channel
control parameter which is 1, if a channel is selected and
the transmission power is allocated as pmax else pt (t) =
0. Since only one channel can be accessed in each time
slot, the value of a control parameter ξn must be chosen
from the maximum power allocation evaluation factor, i.e.,
Gn(t) =

∑
c w

c2 µ̃cn(t)[Qvircn (t)+Zc
n (t)] among queues. Finally,

transmission power and real service rates can be determined
by the following rule:

ξn(t) =

{
1, Gn(t) > Gi(t), i , n, i, n ∈ N
0, else

(29)

pt (t) =

{
pmax, ξn(t) = 1
0, else

(30)

µcn(t) =

{
µ̃cn(t), pt (t) = pmax

0, else
(31)

C. Algorithm Execution

We now give the pseudocode of EQP for each sensor node
that is used for the execution of the distributed algorithm,and
shows the operational process clearly.

Algorithm 2 EQP
1:Synchronization
2:While (t 6 T ) do
3: Duty cycling according to Algorithm 1
4: Drop data according to formula (23)
5: Calculate expected admission according to formula (25) and (26)
6: Each sensor node sends Gn(t) to the sink node,

wait the sink node compares Gn(t) and feedback ξn(t)
7: If ξn(t) == 1
8: Send data
9: Else
10: Sleep
11: End if
12: Update Ec

n (t), Qvircn (t), Z
c
n (t)

13: End while

VII. SIMULATION RESULTS

First, simulation settings are provided in this section. Then,
we vary our key parameters to study their influence on the
algorithm in terms of i) normalised throughput (the number
of successfully transmitted bits within the tolerable delay) and
ii) maximum delay time slot. At last, two other algorithms
are compared with EQP by using the following two metrics:
i) energy sustainability and ii) utility which is presented in
formula (1) .
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A. Simulation Setup

We assume that the hoisting system lifts coal from un-
derground to overground. The initial speed for the drum is
0, the acceleration is 0.7 m/s2, and the maximum speed is
12 m/s. The monitoring network is designed as a one-hop
star topology (Fig.2(a)) and consists of n = 3 sensor nodes
and 1 sink node. The monitoring network operates on l = 3
channels and each channel sn has three different states ”Good”,
”Medium” and ”Bad”, which represent 150, 50 and 30 kbps
service rates respectively [24]. The channel states arise as i.i.d.
vectors (s1(t), s2(t), s3(t)) in every time slot. Based on [25], the
probability of each vector is as follows, Pr[(G, M, M)] = 1/3,
Pr[(M, B, B)] = 1/9, Pr[(M, M, M)] = 1/9, Pr[(G, B, B)] =
2/9, Pr[(M,G,G)] = 1/9.

We set the sampling frequency for the sensing task as
40kHz. The maximum duty cycle is 0.8 and the minimum duty
cycle is 0.1. Therefore, the maximum number of arrival data
(bits) for two classes is Rc

max=32k in one slot. We use CC2650
sensor tags as our wireless sensor nodes. The sensing power
psen = 0.001W and the transmission power pmax = 0.01W .
The sleep power consumption is negligible compared to the
sensing and transmissions powers and is ignored, i.e. pslp=0W.
The maximum tolerable delay for HP data τHmax and for LP
data τLmax is set as 3 and 6 time slots respectively. One time
slot is 1s. The initial battery level for all sensors En(0) = 0.
The maximum number of bits that can be dropped dc

max is
32k. The admission weight for HP data υH=2 and LP data
υL=1. εc is set as Rc

max . We conduct numerical calculations
of our algorithm using Matlab. We evaluate our algorithm for
10000 time slots.

B. Parameter Studies

1) Influence of Parameter wH : We first set LP weight
factor wL = 1, and then change HP weight factor wH to
study the influence. Fig. 4 shows the relationship between
wH and average throughput for HP data and LP data. In
the figure, the average throughput for HP data first increases
significantly with wH and then stabilises at a certain level
after reaching an inflexion point. The trend for LP data is the
exact opposite of the HP data. Average throughput for LP data
first increases slightly with wH before decreasing significantly.
After that, average throughput remains stable at a certain level
but larger than zero. Tab. II shows the 95% confidence interval
of throughput corresponding to each wH and it can be seen
that the range of these values is relatively small.

Now, we will analyze the theoretical reason for the impact
of wH on throughput. Throughput is directly affected by the
number of transmissions, which is primarily determined by the
power allocation strategy.

We first analyse the direct reason. When the number of
transmissions for c-class data increases, more c-class data
can be serviced and fewer c-class data will be out of time.
Therefore, the number of transmissions has a positive impact
on throughput.

Next, we will study how wH impacts the number of
transmissions. Fig. 5 shows the relationship between wH and
the number of transmissions. The profiles of the number of

transmissions (Fig. 5) have a similar trend of throughput in
Fig. 4. The number of transmissions for HP data increases
with wH and then remains at a certain level. The number of
transmissions for LP data has the opposite trend.
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Fig. 4. Effect of wH on throughput for HP and LP data .
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Fig. 5. Effect of wH on number of transmissions for HP and LP data.

The power allocation strategy (29) is the main reason for the
change in the number of transmissions. In the channel access
competition, Gn(t) =

∑
c w

c2 µ̃cn(t)[Qvircn (t) + Zc
n (t)] must be

chosen from nodes to achieve the maximum value. The HP
weight factor wH is designed to increase the importance of
HP data in Gn, thereby increasing the significance of high-
priority data. When both weight factors are equal, i.e. wH = 1
and wL = 1, there is a lesser chance for the HP data to
be sent. This is because most of the HP data does not have
enough time to increase its data queue backlogs required for
transmission and so that the data will time out and be dropped.
The reason for this is that the maximum delay time for HP
data is smaller than that for LP data. Hence, the number of
transmissions and throughput for the HP data is less than the
LP data. When wH increases, all the HP data have larger
weighted queue backlogs than the LP queue backlogs and so
the HP data gets more access to channel resources than LP
data. The number of transmissions increases. In contrast, this
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TABLE II
THE 95 % CONFIDENCE INTERVAL OF THROUGHPUT

wH Confidence interval of
LP throughput

Confidence interval of
HP throughput

1 [4.93,4.97] [1.17,1.27]
2 [4.97,5.18] [1.41,1.46]
3 [5.21,5.38] [1.51,1.55]
4 [5.31,5.51] [1.62,1.71]
5 [5.30,5.40] [1.87,1.95]
6 [4.79,4.98] [2.41,2.61]
7 [4.06,4.14] [3.13,3.20]
9 [2.68,2.89] [4.15,4.19]
11 [2.09,2.30] [4.49,4.66]
13 [1.92,2.02] [4.65,4.83]
15 [1.78,1.89] [4.78,4.86]
17 [1.76,1.89] [4.78,4.88]
19 [1.76,1.89] [4.81,4.86]
21 [1.76,1.88] [4.81,4.86]

index is lowering for LP data because they have lower channel
access opportunities. If wH keeps increasing and is larger than
a certain point (inflexion point), the number of transmissions
for HP data will be at the maximum value. In this case, once
the expected HP data µ̃Hn is not zero in Gn, all HP data will be
sent as soon as possible and the system reaches a saturation
point. In contrast, the LP data still have a chance to send
when µ̃Hn = 0. Of course, since the channel quality varies,
the throughput changes slightly even though the number of
transmissions is the same.

We also calculate the value of the inflexion point. The lowest
wH should ensure that the HP data is sent even for the worst
case. Assuming the power allocation evaluation factor Gn(t) is
calculated at each node, there are admitted LP data but no HP
data at node 1, µ̃L1 > 0, µ̃H1 = 0. We also assume that node 1
has the largest LP queue backlogs, QvirL3 (t)+ZL

3 (t) = 6ε . The
relevant channel state is ”Good”, representing 150 kbps. The
duty cycle has a maximum value of 0.8. In comparison, there
are admitted HP data but no LP data in node 3’s queues, µ̃H3 >
0, µ̃L3 = 0. Besides, the HP data at node 3 are new arrivals, and
the sum of virtual queues is QvirH3 (t)+ ZH

3 (t) = ε . Assuming
that the relevant channel state is ”Bad” (representing 30 kbps),
the duty cycle takes the minimum value of 0.1. Therefore, the
critical point is

√
6ε/ε × 150 × 0.8/(30 × 0.1) = 15.49. This is

the theoretical explanation for the inflexion point around 15
and 16 in Fig. 5.

2) Influence of Parameter Rvircn : In this section, we evalu-
ate the delay of the proposed algorithm with Rvircn and without
Rvircn . In order to show the comparative results better, we
set wH = 1, wL = 1, εH = 0.7Rmax , εL = 0.7Rmax and
repeat the simulation 5 times. Fig. 6 shows the average value
of maximum delay and the 95% confidence interval of the
maximum delay. Queue number pairs {1, 2}, {3, 4}, {5, 6}
are the data queues that belong to node 1, 2 and 3 respectively.
Queue numbers 1, 3 and 5 are LP queues, and queue numbers
2, 4 and 6 are HP queues.

For the proposed algorithm with Rvircn , the delay require-
ments are satisfied for different priority data. The average
of the maximum delay for LP data is 5 time slots, and the
requirement is also satisfied for HP data, not larger than 3 time

slots. However, the delay requirements are not satisfied with
the algorithm without Rvircn . The average of the maximum
delay in simulations is 6.8, 6.4 and 6.8 time slots for three
nodes respectively, which are more than the requirement of 6
time slots. Additionally, the right endpoints of corresponding
confidence intervals are also larger than 6. For HP data, the
average of one of the maximum delay is 4 time slots, which
is also larger than 3 time slots. Therefore, Rvircn is necessary
to guarantee our delay requirements.

The theoretical reason for the difference in delay has been
given when we set the value of Rvircn . The worst-case delay
is ensured by limiting the maximum sum of Qc

max and Zc
max

with a continuous Rc
n(t) [8]. This theory holds when the data

priority remains unchanged. However, when the data priority
changes, one of the priority queue has no arrival data anymore.
This violates the prerequisite for the theory and the worst-
case delay will not be bounded. Hence we use the concept
of virtually arriving data Rvircn (t) to update the data queues
to ensure that the theory works. The results also show the
correctness and necessity.
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Fig. 6. Effect of Rvircn on the maximum delay.

C. Performance Comparisons

We compare our EQP algorithm with two different algo-
rithms. The first one is a joint control scheme (PEH-QoS) [26]
and the second one is a greedy strategy in which all harvested
energy is used to transmit in every time slot [27]. We use the
data queue aware control strategy from the PEH-QoS scheme.
In the greedy strategy, all three sensors randomly have access
to the channel to send their data. For the EQP algorithm, we
set wH = 9 and wL = 1.

The results for the comparisons are shown in Fig. 7(a).
The figure shows the energy dynamics and the throughput for
the three strategies. As can be seen from Fig. 7(b), there is
always some energy remaining in the batteries during a run.
All three strategies ensure ENO and that sensor nodes work
continuously. The main advantage of our algorithm can be
seen in Fig. 7(b). This figure shows the system utility and the
throughput of the priority data when %H=%L=1. Our proposed
EQP strategy achieves at least 38% higher utility than the
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other two algorithms. The reason this happens is because EQP
considers the channel status before making a decision and uses
the channel with good conditions for as many transmissions
as possible. High priority data also have higher throughput
in EQP compared to other strategies. This happens because
the priority-based admission control strategy is designed into
EQP and therefore high priority data have a higher chance
to be sent. In contrast, there is no priority control strategy
in the other two algorithms. The greedy strategy achieves the
worst performance of them all. This is because sensor nodes
have no dropping strategy and so many expired messages
are occupying the channel. This also reduces the chances for
newer or higher-priority messages to be sent.
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Fig. 7. Simulation comparisons (a) Remaining battery energy dynamics (b)
Utility and throughput in strategies.

VIII. CONCLUSIONS

In this paper, we study how to optimise piezoelectric
harvesting WSNs to improve the health monitoring quality
of hoisting systems. First, the health monitoring system is
introduced and based on this, the optimisation problem is
formulated. Then, the system models are designed. With the
system model in mind, we design the EQP algorithm to solve
the problem. In this algorithm, based on the energy model, a
duty cycle management is proposed to ensure ENO of sensor
nodes (so that they operate perpetually). Network schedul-
ing is implemented via queue approaches and the Lyapunov
optimisation technique ensures that the data is timely but
not at the cost of energy neutrality. During this process, we
develop a novel technique called HP weight factor wH to
differentiate and balance QoS service of different priority data
depending on the priority or significance of the data (from
different parts of the hoist). In addition, we also develop a
novel scheme that utilises the notion of a virtual arrival Rvircn
to ensure the liveliness of the data. Simulations show that
EQP achieves significant utility improvements over state-of-art
algorithms. Future work will examine how similar principles
can be applied to other elements of condition monitoring of
machinery.
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