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Outline 

•  Things I know 
•  A little bit about Coverity 

•  Bug-Finding: Technology + Philosophy + Engineering 
•  Beyond Bug-Finding: Fixing 

•  What I will show you 
•  Demonstration of Coverity Static Analysis 

•  What I think I know 
•  Making Money: Business model + Trials + Data 

•  Socioeconomic aspects of developers and tools 
•  A few specific problems that want to be solved 

•  Pure speculation 
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It Started with Research (1999-2003) 

Checking System Rules Using System-Specific, Programmer-
Written Compiler Extensions, OSDI 2000 

Using Meta-level Compilation to Check FLASH Protocol 
Code, ASPLOS 2000 

An Empirical Study of Operating Systems Errors, SOSP 2001 
A System and Language for Building System-Specific, Static 

Analyses, PLDI 2002 
ARCHER: Using Symbolic, Path-sensitive Analysis to Detect 

Memory Access Errors, FSE 2003 

... and more 
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About Coverity 

•  Founded in 2003 
•  Bootstrapped until 2007 
•  $22m venture funding in 2007 from Foundation and 

Benchmark Capital 

As of mid-2011: 
•  190+ employees 
•  1100+ customers 
•  100,000+ users worldwide 
•  Estimated 3-5 billion lines of code actively scanned 
•  Headquartered in San Francisco with offices in Boston, 

Calgary, Tokyo, and London 
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Static Analysis 
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char *p; 
if(x == 0) 
 p = foo(); 
else 
 p = 0; 

if(x != 0) 
 s=*p; 
else 
 ...; 
return; 

Source Code 

char *p 

if (x == 0) 

p = 0 p = foo() 

if(x != 0) 

s=*p 

true false 

false true 

... 

return 

Symbolic CFG Analysis 

x!=0 taking true branch 

Assigning: p=0 

Dereferencing null pointer p 

Defects detected 

char *p 

if (x == 0) 

p = 0 p = foo() 

if(x != 0) 

s=*p 

true false 

false true 

... 

return 

Symbolic CFG Analysis 



Defective Sample Code 
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Defects shown inline with the source code 
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First Defect: Memory Leak 

9


Allocated “names” 

Checking for allocation 
failures for all variables 

Freeing “selection” 
instead of “names” 

“names” leaked 
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Second Defect: Double Free 
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Freeing “selection” 
instead of “names” 

Freeing “selection” 
again 



Resource Leaks  
•  Memory leaks 
•  Resource leak in object 
•  Incomplete delete 
•  Microsoft COM BSTR memory leak 

Uninitialized variables 
•  Missing return statement 
•  Uninitialized pointer/scalar/array read/write 
•  Uninitialized data member in class or 

structure 
Concurrency Issues 

•  Deadlocks 
•  Race conditions 
•  Blocking call misuse 

Integer handling issues 
•  Improper use of negative value 
•  Unintended sign extension 

Improper Use of APIs 
•  Insecure chroot 
•  Using invalid iterator 
•  printf() argument mismatch 

Memory-corruptions 
•  Out-of-bounds access 
•  String length miscalculations 
•  Copying to destination buffers too small 
•  Overflowed pointer write 
•  Negative array index write 
•  Allocation size error 

Memory-illegal access 
•  Incorrect delete operator 
•  Overflowed pointer read 
•  Out-of-bounds read 
•  Returning pointer to local variable 
•  Negative array index read 
•  Use/read pointer after free 

Control flow issues 
•  Logically dead code 
•  Missing break in switch 
•  Structurally dead code 

Error handling issues 
•  Unchecked return value 
•  Uncaught exception 
•  Invalid use of negative variables 

C/C++ Defects That Coverity Can Find 
Part 1 
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Program hangs 
•  Infinite loop 
•  Double lock or missing unlock 
•  Negative loop bound 
•  Thread deadlock 
•  sleep() while holding a lock 

Null pointer differences 
•  Dereference after a null check 
•  Dereference a null return value 
•  Dereference before a null check 

Code maintainability issues 
•  Multiple return statements 
•  Unused pointer value 

Insecure data handling 
•  Integer overflow 
•  Loop bound by untrusted source 
•  Write/read array/pointer with  

untrusted value 
•  Format string with untrusted source 

Performance inefficiencies 
•  Big parameter passed by value 
•  Large stack use 

Security best practices violations 
•  Possible buffer overflow 
•  Copy into a fixed size buffer 
•  Calling risky function 
•  Use of insecure temporary file 
•  Time of check different than time of use 
•  User pointer dereference 

C/C++ Defects That Coverity Can Find 
Part 2 
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Resource Leaks 
•  Database connection leaks 
•  Resource leaks 
•  Socket & Stream leaks 

API usage errors 
•  Using invalid iterator 
•  Unmodifiable collection error 
•  Use of freed resources 

Concurrent data access violations 
•  Values not atomically updated 
•  Double checked locking 
•  Data race condition 
•  Volatile not atomically updated 

Performance inefficiencies 
•  Use of inefficient method 
•  String concatenation in loop 
•  Unnecessary synchronization 

Program hangs 
•  Thread deadlock 

Class hierarchy inconsistencies 
•  Failure to call super.clone() or 

supler.finalize() 
•  Missing call to super class 
•  Virtual method in constructor 

Control flow issues 
•  Return inside finally block 
•  Missing break in switch 

Error handling issues 
•  Unchecked return value 

Null pointer dereferences 
•  Dereference after null check 
•  Dereference before null check 
•  Dereference null return value 

Code maintainability issues 
•  Calling a deprecated method 
•  Explicit garbage collection 
•  Static set in non-static method 

Java/C# Defects That Coverity Can Find 
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Philosophy + Engineering + Technology 

•  Focus on bug finding 
•  Focus on developer stickiness 

•  Low false positive rate (typically <20% out of the box) 
•  (more on next slide) 

•  Interprocedural analysis with bottom-up function summarization 
•  Ensures bounded memory use: only one function + summaries for callees 
•  Each function only analyzed once; recursive cycles are broken 
•  Context sensitive 

•  Path sensitivity with false path pruning 
•  Multiple independent false path pruners: integer interval solver, string logic, 

inequality, SAT-based 
•  Staged analysis 

•  Cheaper analyses are run before more expensive ones – false path pruning only 
run if a candidate defect is found 

•  Parallel, incremental analysis 
•  Android kernel: 700kLOC, 10 minutes with 8-way parallel analysis from scratch 
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Top reasons for low false positives 
•  Iterative checker design 

•  Start with a defect example or idea 
•  Implement a rough checker that casts a wide net 
•  Run on open source 
•  Sample first N results 
•  Address idioms, refine heuristics, add options 
•  Repeat until the checker has a low FP rate and still finds defects 

•  Or, discard the checker altogether 

•  Evidence-based approach 
•  Only report defects if enough evidence is available that it is likely to be real 
•  This also helps developers understand the results 
•  Evidence orientation is a good way to think about what analyses will be 

successful 
•  Perception: avoidance of stupid looking false positives is important 

•  A single example of a dumb looking FP can result in loss of credibility 
•  Credibility among a core individual / group is key to adoption 
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Technologies we don’t use (much) 
•  Pointer alias analysis 

•  Blobs cause FP explosions 

•  Typical tricks for achieving scalability introduce inference steps that don’t make 
sense to developers – e.g. field insensitivity, flow insensitivity, ... 

•  Checkers, derivers, and FPP do their own intraprocedural alias tracking with full 
understanding of what they do and don’t care about 

•  No single unified memory model – each checker can pick its own 

•  E.g. No resource leak is detected in this code: 
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Other technologies we don’t use much 

•  Heap structure analysis 
•  Complex string analysis 
•  Abstract interpretation (*) 
•  ... many more 
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Beyond Bug-Finding: Fixing 
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The importance of workflow 

•  What doesn’t work: 

•  Why? 
•  Bugs get fixed.  False positives don’t.  Over time, FP rate 

approaches 100%. 

•  Unclear what should be fixed; no prioritization 
•  Unclear who should fix what; no ownership 

•  Workflow separates a static analysis engine  from a static 
analysis solution. 
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Code Bugs Analysis 



Defect management and collaboration 
•  What works better: 

•  Track defects across time, even if the code changes (hashing/
merging) 

•  Share triage information across developers 
•  Prioritize and assign ownership of defects 
•  Detect defect duplication across branches 
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Code Analysis DB 

Historical  
Defect Merging 

Shared 
Defect Server 

(CIM) 



Deployment practices 

•  Clean before checkin 
•  Nightly build 
•  Continuous integration 
•  Incremental nightly build + weekend full analysis 
•  Code review integration 
•  Bug fix-it day 
•  Baselining 
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Baselining 

•  The first time static analysis runs, there may be thousands 
of errors 
•  Typical: 1 defect/kLOC, 1MLOC code base = 1000 defects 
•  Where to start? 

•  Analysis answer: rank 
•  Market’s answer: baseline 

•  Ignore all defects on existing code (the “baseline”) 
•  Fix defects in new code 
•  “Someday” get around to fixing defects in old code 

•  Why is this so popular? 
•  Old code is in the field.  It works well enough.  Risk is low. 
•  New code is unproven.  It might work, or it might not.  Risk is high. 
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Demonstration 
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Business Model 
We sell term-based project licenses sized by lines of code or team 

size. 

Term-based: 
•  Customers purchase for a specific period of time, mostly 1 or 3 years. 
•  Customers renew every year based on then project size. 

Project license: 
•  We license specific named projects (e.g. a code base). 

Sizing: 
•  LOC is the most common metric (with special cases to handle OS and 

third party code). 
•  Team licenses are based on the total number of developers working on 

a project. 
Enterprise licenses have custom terms. 

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 24




Opportunity cost and urgency 
•  Favorite VC questions: 

•  Where does the budget come from?  What are they NOT going to spend on? 
•  Why now? 

•  Decision maker is often a director of engineering or VP of engineering 
•  ALWAYS strapped for resources 
•  There are a multitude of problems to be solve to successfully deliver product 
•  Is this use of money the most cost-effective use of these resources? 

•  “Why don’t we instead...” 
•  Hire 20 developers and QA engineers in low cost geography 
•  Improve test coverage 
•  Buy a collaborative code review tool 
•  Developer training 

•  Quality is not a new problem. 
•  Companies have already tried their best to optimize resources using many 

methods to try to lower costs and find defects early. 
•  New technologies need to overcome all of these optimizations and deliver ROI 

of many multiples more 
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[Some slides omitted] 
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Build Integration - the code must be found 
and parsed to be analyzed 
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Support for Mimicking Dozens of Compilers 

Analog Devices VisualDSP++ Nokia Codewarrior for Symbian 
ARM C and C++ QNX C/C++ 
Borland C++ Renesas C/C++ 
Cosmic C Cross Compilers Scratchbox 
Freescale Codewarrior SNC PPU C/C++ 
GNU GCC and G++ STMicroelectronics GNU C/C++ 
Green Hills C and C++/EC++ STMicroelectronics ST Micro C/C++ 
HI-TECH PICC Sun (Oracle) CC and cc 
HP aCC Tensilica Xtensa xt-xcc and xt-xtc++ 
IAR Embedded Workbench C/C++ Texas Instruments Code Composer 
Intel C++ TriMedia TCS 
Keil Compilers Visual Studio 
Marvell MSA Wind River (formerly Diab) C/C++ 
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•  Our build integration understands: 
•  Compiler command line options 

•  Built-in macro definitions 
•  Compiler-specific language extensions 
•  Compiler bugs that allow nonstandard code to parse 
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Why bother with the small compilers? 

VP of 
Engineering 

Director A 

Team 1 

Team 2 

Team 3 

Director B 

Team 4 

Director C 

Team 5 

Team 6 
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gcc 

Wind River 
(diab) 

ARM ADS 

gcc 
Visual Studio 

Sun CC 

“We help solve your quality problem” 



Organizational structure influences product 
requirements through buying behavior 
•  The higher you go in the org chart: 

•  The more you can charge 
•  The less they understand what you do 
•  The more they want “coverage” of all of their code 
•  The more they want a complete solution that meets more 

requirements 
•  The fewer vendors they want to deal with 
•  The more metrics you need to provide to prove value 

•  Hence: 
•  MISRA 
•  C/C++/Java/C# ... Javascript, Ada, Cobol, Objective C, PHP, 

Actionscript/FLASH, PL/SQL, ... 
•  Reports, charts, pretty pictures 
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About Developers... 

•  The developer persona 
•  Resistant to change 

•  Impatient – “time to value” needs to be very short - think coffee 
break. 

•  Quick to dismiss a tool that loses credibility – hence a focus on 
eliminating “stupid looking false positives”. 

•  Instant gratification – Eclipse/VS highlight as you type; continuous 
integration happens every half hour 

•  Hero complex 

•  Artist complex 

•  “There’s no glory in fixing bugs” 
•  Firefighter by day, arsonist by night 
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Developers 

•  Like any large human population there is a normal 
distribution of talent and intelligence for developers 
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(This is getting worse for C/C++) 



Yet... Developer Adoption is Key 

•  Developers need to adopt or there is no value to a tool 
•  Priorities change like the wind howls – will the tool + process stick? 

•  The term business model means a huge problem for renewal rate if 
adoption doesn’t happen 

•  One possible solution: 
•  Services to integrate everything 
•  Automatic analysis “while you sleep” (or drink coffee) 

•  Automatic assignment to the right developer 
•  Proactive email notification 

•  IDE integration 

•  ... and much more to make it smooth, seamless, and as painless as 
possible 
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Problems that want to be solved 
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Most real-world problems are boring 
•  Maintaining a large legacy code base 

•  Removing dead code 
•  Large company: probably 60%+ of code is dead 
•  This is an ongoing tax on understanding and modifying this code 
•  Mindset: first eliminate code that doesn’t matter, this lowers costs going forward 

•  Visualizing code 
•  Standards compliance 

•  MISRA, JSF++   /  DO-178b  /  ISO 26262  /  PCI 
•  Defect churn / instability 

•  Normal bug: reproduce, fix, verify fix 
•  Developers tend to want to work the same way on static analysis defects; this 

requires analysis to be very stable 
•  Tools that enable better productivity from the bottom 80% of 

developers 
•  Tools are rarely put into the hands of the best people to use.  They are too busy 

building product features. 
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The non-boring real-world problems are hard 

•  Most static analysis considers the code as a monolithic input 
•  Development organizations don’t see it that way at all. 
•  Their existing code works.  They are changing it.  They want to 

know: 
•  Will this change introduce risk of customer issues? 

•  What kind of customer issues 

 should I expect? 

•  Where should I expect them? 

•  What should I test? 

•  Am I on track to ship next month? 

•  Real life is a complex trade-off 
•  They want help making this  

 trade-off given business needs 
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Working 

Change 

Working? 



[Some slides omitted] 
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Pure speculation 
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New languages do get adopted 
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1996 
1973 
1983 
2001 
1995 
1986 
1991 
1991 
1987 
1995 
1993 
1995 
1958 
1995 
1974 
1970 

1980 

PLDI 2001 
Snowbird, Utah 



Getting the world to eat spinach 

•  It is a vital and important area of inquiry to understand 
how to make verification technologies more palatable 

•  Do we understand the traits that lead to language 
popularity, and how can we trojan horse the best ideas 
from modern research into something that will become 
popular? 
•  Dynamic typing – less typing?  Cleaner syntax?  Error resilience? 
•  Social aspects should not be underestimated 

•  The web spawned Javascript, but nothing was ready to step in – a 
huge missed opportunity 

•  More than 50% of this is being ready at the right place and 
the right time – and mixing this with a larger trend 
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Or... be real about legacy code 

•  Be realistic about what can be expected 
•  Restrict the scope to a segment of the market – and really 

understand that domain and how code is specialized for it 
•  Realize that the market is already trying to optimize and might be 

“good enough” with proven technologies and processes 
•  Change assumptions to better fit what can be realistically adopted 

•  “Everything described in the paper works.  Everything else 
doesn’t” 
•  Why isn’t that in the paper?  That’s the most important part. 

•  An empirical approach with negative results is vital for legacy code 
problems 
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Conclusion 
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Is there Hope? 

•  We are still taking baby steps... but many companies are starting 
to care 
•  When there’s a new quality initiative, someone speaks up: “Static 

analysis is one of the easiest things we can do...” 
•  Companies are more ready to listen after a major incident 
•  For any given company at any given time the chances are low, but 

eventually everyone gets burned 

•  The groundwork is being laid for lower barriers 
•  Coverity and others are being deployed into build systems, processes, 

and management metrics 
•  This will eventually lower the barrier to entry for new technologies on 

top of these platforms 

•  Exposure to real-world problems 
•  Other academic disciplines have the notion of “field work” 
•  Find ways to get out there and see what real development organizations 

are facing 
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Academic Program 

•  Get access to our static analysis product for a nominal fee (*) 

•  Teaching license 
•  Research license 

•  Some restrictions 
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http://www.coverity.com




Q & A 
Andy Chou 
andy@coverity.com 
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