
Static Analysis Tools in
Industry: Dispatches From the
Front Line
Dr. Andy Chou
Chief Scientist and Co-founder
Coverity, Inc.

Outline

•  Things I know
•  A little bit about Coverity

•  Bug-Finding: Technology + Philosophy + Engineering
•  Beyond Bug-Finding: Fixing

•  What I will show you
•  Demonstration of Coverity Static Analysis

•  What I think I know
•  Making Money: Business model + Trials + Data

•  Socioeconomic aspects of developers and tools
•  A few specific problems that want to be solved

•  Pure speculation

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 2

Coverity Founders

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 3

Dawson Engler

Andy Chou Seth Hallem Ben Chelf

Dave Park

It Started with Research (1999-2003)

Checking System Rules Using System-Specific, Programmer-
Written Compiler Extensions, OSDI 2000

Using Meta-level Compilation to Check FLASH Protocol
Code, ASPLOS 2000

An Empirical Study of Operating Systems Errors, SOSP 2001
A System and Language for Building System-Specific, Static

Analyses, PLDI 2002
ARCHER: Using Symbolic, Path-sensitive Analysis to Detect

Memory Access Errors, FSE 2003

... and more

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 4

About Coverity

•  Founded in 2003
•  Bootstrapped until 2007
•  $22m venture funding in 2007 from Foundation and

Benchmark Capital

As of mid-2011:
•  190+ employees
•  1100+ customers
•  100,000+ users worldwide
•  Estimated 3-5 billion lines of code actively scanned
•  Headquartered in San Francisco with offices in Boston,

Calgary, Tokyo, and London

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 5

Static Analysis

6
 Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011

char *p;
if(x == 0)
 p = foo();
else
 p = 0;

if(x != 0)
 s=*p;
else
 ...;
return;

Source Code

char *p

if (x == 0)

p = 0 p = foo()

if(x != 0)

s=*p

true false

false true

...

return

Symbolic CFG Analysis

x!=0 taking true branch

Assigning: p=0

Dereferencing null pointer p

Defects detected

char *p

if (x == 0)

p = 0 p = foo()

if(x != 0)

s=*p

true false

false true

...

return

Symbolic CFG Analysis

Defective Sample Code

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 7

Defects shown inline with the source code

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 8

First Defect: Memory Leak

9

Allocated “names”

Checking for allocation
failures for all variables

Freeing “selection”
instead of “names”

“names” leaked

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011

Second Defect: Double Free

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 10

Freeing “selection”
instead of “names”

Freeing “selection”
again

Resource Leaks
•  Memory leaks
•  Resource leak in object
•  Incomplete delete
•  Microsoft COM BSTR memory leak

Uninitialized variables
•  Missing return statement
•  Uninitialized pointer/scalar/array read/write
•  Uninitialized data member in class or

structure
Concurrency Issues

•  Deadlocks
•  Race conditions
•  Blocking call misuse

Integer handling issues
•  Improper use of negative value
•  Unintended sign extension

Improper Use of APIs
•  Insecure chroot
•  Using invalid iterator
•  printf() argument mismatch

Memory-corruptions
•  Out-of-bounds access
•  String length miscalculations
•  Copying to destination buffers too small
•  Overflowed pointer write
•  Negative array index write
•  Allocation size error

Memory-illegal access
•  Incorrect delete operator
•  Overflowed pointer read
•  Out-of-bounds read
•  Returning pointer to local variable
•  Negative array index read
•  Use/read pointer after free

Control flow issues
•  Logically dead code
•  Missing break in switch
•  Structurally dead code

Error handling issues
•  Unchecked return value
•  Uncaught exception
•  Invalid use of negative variables

C/C++ Defects That Coverity Can Find
Part 1

11
 Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011

Program hangs
•  Infinite loop
•  Double lock or missing unlock
•  Negative loop bound
•  Thread deadlock
•  sleep() while holding a lock

Null pointer differences
•  Dereference after a null check
•  Dereference a null return value
•  Dereference before a null check

Code maintainability issues
•  Multiple return statements
•  Unused pointer value

Insecure data handling
•  Integer overflow
•  Loop bound by untrusted source
•  Write/read array/pointer with

untrusted value
•  Format string with untrusted source

Performance inefficiencies
•  Big parameter passed by value
•  Large stack use

Security best practices violations
•  Possible buffer overflow
•  Copy into a fixed size buffer
•  Calling risky function
•  Use of insecure temporary file
•  Time of check different than time of use
•  User pointer dereference

C/C++ Defects That Coverity Can Find
Part 2

12
 Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011

Resource Leaks
•  Database connection leaks
•  Resource leaks
•  Socket & Stream leaks

API usage errors
•  Using invalid iterator
•  Unmodifiable collection error
•  Use of freed resources

Concurrent data access violations
•  Values not atomically updated
•  Double checked locking
•  Data race condition
•  Volatile not atomically updated

Performance inefficiencies
•  Use of inefficient method
•  String concatenation in loop
•  Unnecessary synchronization

Program hangs
•  Thread deadlock

Class hierarchy inconsistencies
•  Failure to call super.clone() or

supler.finalize()
•  Missing call to super class
•  Virtual method in constructor

Control flow issues
•  Return inside finally block
•  Missing break in switch

Error handling issues
•  Unchecked return value

Null pointer dereferences
•  Dereference after null check
•  Dereference before null check
•  Dereference null return value

Code maintainability issues
•  Calling a deprecated method
•  Explicit garbage collection
•  Static set in non-static method

Java/C# Defects That Coverity Can Find

13
 Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011

Philosophy + Engineering + Technology

•  Focus on bug finding
•  Focus on developer stickiness

•  Low false positive rate (typically <20% out of the box)
•  (more on next slide)

•  Interprocedural analysis with bottom-up function summarization
•  Ensures bounded memory use: only one function + summaries for callees
•  Each function only analyzed once; recursive cycles are broken
•  Context sensitive

•  Path sensitivity with false path pruning
•  Multiple independent false path pruners: integer interval solver, string logic,

inequality, SAT-based
•  Staged analysis

•  Cheaper analyses are run before more expensive ones – false path pruning only
run if a candidate defect is found

•  Parallel, incremental analysis
•  Android kernel: 700kLOC, 10 minutes with 8-way parallel analysis from scratch

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 14

Top reasons for low false positives
•  Iterative checker design

•  Start with a defect example or idea
•  Implement a rough checker that casts a wide net
•  Run on open source
•  Sample first N results
•  Address idioms, refine heuristics, add options
•  Repeat until the checker has a low FP rate and still finds defects

•  Or, discard the checker altogether

•  Evidence-based approach
•  Only report defects if enough evidence is available that it is likely to be real
•  This also helps developers understand the results
•  Evidence orientation is a good way to think about what analyses will be

successful
•  Perception: avoidance of stupid looking false positives is important

•  A single example of a dumb looking FP can result in loss of credibility
•  Credibility among a core individual / group is key to adoption

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 15

Technologies we don’t use (much)
•  Pointer alias analysis

•  Blobs cause FP explosions

•  Typical tricks for achieving scalability introduce inference steps that don’t make
sense to developers – e.g. field insensitivity, flow insensitivity, ...

•  Checkers, derivers, and FPP do their own intraprocedural alias tracking with full
understanding of what they do and don’t care about

•  No single unified memory model – each checker can pick its own

•  E.g. No resource leak is detected in this code:

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 16

Other technologies we don’t use much

•  Heap structure analysis
•  Complex string analysis
•  Abstract interpretation (*)
•  ... many more

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 17

Beyond Bug-Finding: Fixing

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 18

The importance of workflow

•  What doesn’t work:

•  Why?
•  Bugs get fixed. False positives don’t. Over time, FP rate

approaches 100%.

•  Unclear what should be fixed; no prioritization
•  Unclear who should fix what; no ownership

•  Workflow separates a static analysis engine from a static
analysis solution.

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 19

Code Bugs Analysis

Defect management and collaboration
•  What works better:

•  Track defects across time, even if the code changes (hashing/
merging)

•  Share triage information across developers
•  Prioritize and assign ownership of defects
•  Detect defect duplication across branches

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 20

Code Analysis DB

Historical
Defect Merging

Shared
Defect Server

(CIM)

Deployment practices

•  Clean before checkin
•  Nightly build
•  Continuous integration
•  Incremental nightly build + weekend full analysis
•  Code review integration
•  Bug fix-it day
•  Baselining

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 21

Baselining

•  The first time static analysis runs, there may be thousands
of errors
•  Typical: 1 defect/kLOC, 1MLOC code base = 1000 defects
•  Where to start?

•  Analysis answer: rank
•  Market’s answer: baseline

•  Ignore all defects on existing code (the “baseline”)
•  Fix defects in new code
•  “Someday” get around to fixing defects in old code

•  Why is this so popular?
•  Old code is in the field. It works well enough. Risk is low.
•  New code is unproven. It might work, or it might not. Risk is high.

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 22

Demonstration

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 23

Business Model
We sell term-based project licenses sized by lines of code or team

size.

Term-based:
•  Customers purchase for a specific period of time, mostly 1 or 3 years.
•  Customers renew every year based on then project size.

Project license:
•  We license specific named projects (e.g. a code base).

Sizing:
•  LOC is the most common metric (with special cases to handle OS and

third party code).
•  Team licenses are based on the total number of developers working on

a project.
Enterprise licenses have custom terms.

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 24

Opportunity cost and urgency
•  Favorite VC questions:

•  Where does the budget come from? What are they NOT going to spend on?
•  Why now?

•  Decision maker is often a director of engineering or VP of engineering
•  ALWAYS strapped for resources
•  There are a multitude of problems to be solve to successfully deliver product
•  Is this use of money the most cost-effective use of these resources?

•  “Why don’t we instead...”
•  Hire 20 developers and QA engineers in low cost geography
•  Improve test coverage
•  Buy a collaborative code review tool
•  Developer training

•  Quality is not a new problem.
•  Companies have already tried their best to optimize resources using many

methods to try to lower costs and find defects early.
•  New technologies need to overcome all of these optimizations and deliver ROI

of many multiples more

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 25

[Some slides omitted]

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 26

Build Integration - the code must be found
and parsed to be analyzed

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 27

Support for Mimicking Dozens of Compilers

Analog Devices VisualDSP++ Nokia Codewarrior for Symbian
ARM C and C++ QNX C/C++
Borland C++ Renesas C/C++
Cosmic C Cross Compilers Scratchbox
Freescale Codewarrior SNC PPU C/C++
GNU GCC and G++ STMicroelectronics GNU C/C++
Green Hills C and C++/EC++ STMicroelectronics ST Micro C/C++
HI-TECH PICC Sun (Oracle) CC and cc
HP aCC Tensilica Xtensa xt-xcc and xt-xtc++
IAR Embedded Workbench C/C++ Texas Instruments Code Composer
Intel C++ TriMedia TCS
Keil Compilers Visual Studio
Marvell MSA Wind River (formerly Diab) C/C++

28

•  Our build integration understands:
•  Compiler command line options

•  Built-in macro definitions
•  Compiler-specific language extensions
•  Compiler bugs that allow nonstandard code to parse

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011

Why bother with the small compilers?

VP of
Engineering

Director A

Team 1

Team 2

Team 3

Director B

Team 4

Director C

Team 5

Team 6

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 29

gcc

Wind River
(diab)

ARM ADS

gcc
Visual Studio

Sun CC

“We help solve your quality problem”

Organizational structure influences product
requirements through buying behavior
•  The higher you go in the org chart:

•  The more you can charge
•  The less they understand what you do
•  The more they want “coverage” of all of their code
•  The more they want a complete solution that meets more

requirements
•  The fewer vendors they want to deal with
•  The more metrics you need to provide to prove value

•  Hence:
•  MISRA
•  C/C++/Java/C# ... Javascript, Ada, Cobol, Objective C, PHP,

Actionscript/FLASH, PL/SQL, ...
•  Reports, charts, pretty pictures

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 30

About Developers...

•  The developer persona
•  Resistant to change

•  Impatient – “time to value” needs to be very short - think coffee
break.

•  Quick to dismiss a tool that loses credibility – hence a focus on
eliminating “stupid looking false positives”.

•  Instant gratification – Eclipse/VS highlight as you type; continuous
integration happens every half hour

•  Hero complex

•  Artist complex

•  “There’s no glory in fixing bugs”
•  Firefighter by day, arsonist by night

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 31

Developers

•  Like any large human population there is a normal
distribution of talent and intelligence for developers

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 32

(This is getting worse for C/C++)

Yet... Developer Adoption is Key

•  Developers need to adopt or there is no value to a tool
•  Priorities change like the wind howls – will the tool + process stick?

•  The term business model means a huge problem for renewal rate if
adoption doesn’t happen

•  One possible solution:
•  Services to integrate everything
•  Automatic analysis “while you sleep” (or drink coffee)

•  Automatic assignment to the right developer
•  Proactive email notification

•  IDE integration

•  ... and much more to make it smooth, seamless, and as painless as
possible

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 33

Problems that want to be solved

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 34

Most real-world problems are boring
•  Maintaining a large legacy code base

•  Removing dead code
•  Large company: probably 60%+ of code is dead
•  This is an ongoing tax on understanding and modifying this code
•  Mindset: first eliminate code that doesn’t matter, this lowers costs going forward

•  Visualizing code
•  Standards compliance

•  MISRA, JSF++ / DO-178b / ISO 26262 / PCI
•  Defect churn / instability

•  Normal bug: reproduce, fix, verify fix
•  Developers tend to want to work the same way on static analysis defects; this

requires analysis to be very stable
•  Tools that enable better productivity from the bottom 80% of

developers
•  Tools are rarely put into the hands of the best people to use. They are too busy

building product features.

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 35

The non-boring real-world problems are hard

•  Most static analysis considers the code as a monolithic input
•  Development organizations don’t see it that way at all.
•  Their existing code works. They are changing it. They want to

know:
•  Will this change introduce risk of customer issues?

•  What kind of customer issues

 should I expect?

•  Where should I expect them?

•  What should I test?

•  Am I on track to ship next month?

•  Real life is a complex trade-off
•  They want help making this

 trade-off given business needs

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 36

Working

Change

Working?

[Some slides omitted]

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 37

Pure speculation

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 38

New languages do get adopted

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 39

1996
1973
1983
2001
1995
1986
1991
1991
1987
1995
1993
1995
1958
1995
1974
1970

1980

PLDI 2001
Snowbird, Utah

Getting the world to eat spinach

•  It is a vital and important area of inquiry to understand
how to make verification technologies more palatable

•  Do we understand the traits that lead to language
popularity, and how can we trojan horse the best ideas
from modern research into something that will become
popular?
•  Dynamic typing – less typing? Cleaner syntax? Error resilience?
•  Social aspects should not be underestimated

•  The web spawned Javascript, but nothing was ready to step in – a
huge missed opportunity

•  More than 50% of this is being ready at the right place and
the right time – and mixing this with a larger trend

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 40

Or... be real about legacy code

•  Be realistic about what can be expected
•  Restrict the scope to a segment of the market – and really

understand that domain and how code is specialized for it
•  Realize that the market is already trying to optimize and might be

“good enough” with proven technologies and processes
•  Change assumptions to better fit what can be realistically adopted

•  “Everything described in the paper works. Everything else
doesn’t”
•  Why isn’t that in the paper? That’s the most important part.

•  An empirical approach with negative results is vital for legacy code
problems

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 41

Conclusion

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 42

Is there Hope?

•  We are still taking baby steps... but many companies are starting
to care
•  When there’s a new quality initiative, someone speaks up: “Static

analysis is one of the easiest things we can do...”
•  Companies are more ready to listen after a major incident
•  For any given company at any given time the chances are low, but

eventually everyone gets burned

•  The groundwork is being laid for lower barriers
•  Coverity and others are being deployed into build systems, processes,

and management metrics
•  This will eventually lower the barrier to entry for new technologies on

top of these platforms

•  Exposure to real-world problems
•  Other academic disciplines have the notion of “field work”
•  Find ways to get out there and see what real development organizations

are facing

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 43

Academic Program

•  Get access to our static analysis product for a nominal fee (*)

•  Teaching license
•  Research license

•  Some restrictions

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 44

http://www.coverity.com

Q & A
Andy Chou
andy@coverity.com

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 45

