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Abstract

The problem of finding the dominators in a control-flow graph has a long history in the literature. The

original algorithms suffered from a large asymptotic complexity but were easy to understand. Subsequent

work improved the time bound, but generally sacrificed both simplicity and ease of implementation. This

paper returns to a simple formulation of dominance as a global data-flow problem. Some insights into

the nature of dominance lead to an implementation of an O(N2) algorithm that runs faster, in practice,

than the classic Lengauer-Tarjan algorithm, which has a timebound of O(E ∗ log(N)). We compare the

algorithm to Lengauer-Tarjan because it is the best known and most widely used of the fast algorithms

for dominance. Working from the same implementation insights, we also rederive (from earlier work on

control dependence by Ferrante, et al.) a method for calculating dominance frontiers that we show is faster

than the original algorithm by Cytron, et al. The aim of this paper is not to present a new algorithm, but,

rather, to make an argument based on empirical evidence that algorithms with discouraging asymptotic

complexities can be faster in practice than those more commonly employed. We show that, in some cases,

careful engineering of simple algorithms can overcome theoretical advantages, even when problems grow

beyond realistic sizes. Further, we argue that the algorithms presented herein are intuitive and easily

implemented, making them excellent teaching tools.

Keywords: Dominators, Dominance Frontiers

Introduction

The advent of static single assignment form (ssa) has rekindled interest in dominance and related con-
cepts [13]. New algorithms for several problems in optimization and code generation have built on dom-
inance [8, 12, 25, 27]. In this paper, we re-examine the formulation of dominance as a forward data-flow
problem [4, 5, 19]. We present several insights that lead to a simple, general, and efficient implementation in
an iterative data-flow framework. The resulting algorithm, an iterative solver that uses our representation
for dominance information, is significantly faster than the Lengauer-Tarjan algorithm on graphs of a size
normally encountered by a compiler—less than one thousand nodes. As an integral part of the process, our
iterative solver computes immediate dominators for each node in the graph, eliminating one problem with
previous iterative formulations. We also show that a natural extension of these ideas leads to an efficient
algorithm for computing the dominance frontiers used in the ssa-construction algorithm.

Allen, in her work on control-flow analysis, formulated the dominance computation as a global data-flow
problem [4]. In a 1972 paper with Cocke, she showed an iterative algorithm to solve these equations [5].
Hecht and Ullman the showed that a reverse postorder iterative scheme solves these equations in a single
pass over the cfg for reducible graphs [19]. The simple, intuitive nature of the iterative formulation makes
it attractive for teaching and for implementing. Its simplicity leads to a high degree of confidence in the
implementation’s correctness. The prime result of this paper is that, with the right data structure, the
iterative data-flow framework for dominance is faster than the well-known Lengauer-Tarjan algorithm on
graphs that arise in real programs.

∗This research was supported, in part, by Darpa through Usafrl contract F30602-97-2-298, by the State of Texas through
its Advanced Technology Program, grant number 3604-0122-1999, and by the NSF through the GrADS Project, grant number
9975020.
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In practice, both of these algorithms are fast. In our experiments, they process from 50, 000 to 200, 000
control-flow graph (cfg) nodes per second. While Lengauer-Tarjan has faster asymptotic complexity, it
requires unreasonably large cfgs—on the order of 30, 000 nodes—before this asymptotic advantage catches
up with a well-engineered iterative scheme. Since the iterative algorithm is simpler, easier to understand,
easier to implement, and faster in practice, it should be the technique of choice for computing dominators
on cfgs.

The dominance problem is an excellent example of the need to balance theory with practice. Ever since
Lowry and Medlock’s O(N4) algorithm appeared in 1969 [23], researchers have steadily improved the time
bound for this problem [7, 10, 17, 19, 22, 26, 29]. However, our results suggest that these improvements in
asymptotic complexity may not help on realistically-sized examples, and that careful engineering makes the
iterative scheme the clear method of choice.

History

Prosser introduced the notion of dominance in a 1959 paper on the analysis of flow diagrams, defining it as
follows:

We say box i dominates box j if every path (leading from input to output through the diagram)
which passes through box j must also pass through box i. Thus box i dominates box j if box j is
subordinate to box i in the program [26].

He used dominance to prove the safety of code reordering operations, but he did not explain the algorithm
to compute dominance from his connectivity matrix.

Ten years later, Lowry and Medlock sketched an algorithm to compute dominators [23]. In essence, their
algorithm considers all of the paths from the entry node to each node, b, and successively removes nodes
from a path. If the removal of some node causes b to be unreachable, that node is in b’s dominator set.
Clearly, this algorithm is at least quadratic in the number of nodes, although the actual complexity would
depend heavily on the implementation1.

The data-flow approach to computing dominance begins with Allen’s 1970 paper, where she proposed a
set of data-flow equations for the problem [4]. Two years later, Allen and Cocke showed an iterative algorithm
for solving these equations and gave its complexity as O(N2) [5]. In 1975, Hecht and Ullman published an
analysis of iterative algorithms using reverse postorder traversals. They showed that the dominance equations
can be solved in linear time on reducible graphs [19]. They restrict their algorithm to reducible graphs so
that they can achieve the desired time bound, even though iterating to a fixed point would generalize the
algorithm (but not the time bound) to handle irreducible graphs. Both Hecht’s book and Aho and Ullman’s
“dragon” book present the iterative algorithm for dominance without restricting it to reducible graphs [18,
3]. Unfortunately, Aho and Ullman mistakenly credit the algorithm to Purdom and Moore [24], rather than
to Allen and Cocke.

Aho and Ullman approached the problem from another direction [2]. Their algorithm takes the graph
and successively removes nodes. Any nodes in the entire graph (rather than a single path) that cannot
subsequently be reached are dominated by the removed node. This algorithm works in quadratic time, in
the number of nodes. With Hopcroft, they improved this time bound to O(E log E) for reducible graphs,
where E is the number of edges in the graph, by using an efficient method of finding ancestors in trees [1].

Purdom and Moore, in the same year, proposed a similar algorithm, which first builds a tree from the
graph. Dominators are then found by successively removing each node from the graph and noting which
children of that tree node can no longer be reached in the graph. This algorithm again requires quadratic
time to complete [24].

In 1974, Tarjan proposed an algorithm that uses depth-first search and union-find to achieve an asymp-
totic complexity of O(N log N +E) [29]. Five years later, Lengauer and Tarjan built on this work to produce
an algorithm with almost linear complexity [22]. Both algorithms rely on the observation that a node’s
dominator must be above it in the depth-first spanning tree. This gives an initial guess at the dominator,
which is corrected in a second pass over the nodes. The algorithm relies on the efficiency of union-find to
determine its time bound.
1Lowry and Medlock do not give enough details to assess accurately the complexity of their algorithm, but Alstrup et al. claim
that it has an asymptotic complexity of N4, where N is the number of nodes in the graph [7].
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In 1985, Harel published an algorithm built on Lengauer-Tarjan that computes immediate dominators
in linear time. He improved the time bound by speeding up the union-find operations with a technique
from Gabow and Tarjan in that same year [16]. Harel’s explanation, however, was subsequently found to be
incomplete. In 1999, Alstrup et al. published a simpler method based on Harel’s initial work that achieves a
theoretical linear-time complexity [7]. The authors posit that the actual complexity of the algorithm, using
practical data structures, is O(E + N log log log N), where N is the number of nodes in the graph, and E
is the number of edges. The paper does not provide any experimental data that shows the algorithm’s
measured behavior versus Lengauer-Tarjan.

In 1998, Buchsbaum et al. presented a linear-time algorithm based on Lengauer-Tarjan [10, 11]. Their
algorithm is essentially a divide-and-conquer algorithm that groups the bottom nodes of the depth-first
search tree into microtrees. By solving the local problem for the microtrees, they can perform the subsequent
union-find operations needed for Lengauer-Tarjan in linear time. Thus, their algorithm has better asymptotic
complexity than Lengauer-Tarjan. However, they state that their algorithm runs ten to twenty percent slower
than Lengauer-Tarjan on “real flowgraphs” [11]. As an interesting aside, their analysis suggests that, for
many classes of graphs, Lengauer-Tarjan also runs in linear time.

This paper compares an iterative scheme for finding dominators against Lengauer-Tarjan. This compari-
son is appropriate for several reasons. First, Lengauer-Tarjan is the best known and most widely implemented
of the fast dominator algorithms. Comparing our work with Lengauer-Tarjan provides meaningful informa-
tion to the many people who have implemented that algorithm. Second, the primary result of this paper is
that a simple iterative scheme for this problem can be engineered to outrun the more complicated techniques
built on union-find—despite the higher asymptotic complexity of the iterative data-flow approach. From this
perspective, Lengauer-Tarjan is an appropriate comparison; the other algorithms expend additional effort to
speed up the union-find operations when, in fact, the asymptotic advantage from union-find does not show
up until the problem size becomes unrealistically large. Third, while Alstrup et al. and Buchsbaum et al.
both have lower asymptotic complexity than Lengauer-Tarjan, the papers provide no evidence that this the-
oretical advantage translates into faster running times. Indeed, Buchsbaum et al. show that their algorithm
tends to run slower than Lengauer-Tarjan [11]. Finally, the analysis presented by Buchsbaum et al. suggests
that, for many graphs, Lengauer-Tarjan also has linear-time behavior.

The Data-flow Approach

To compute dominance information with data-flow techniques, we can pose the problem as a set of data-
flow equations and solve them with a reverse-postorder iterative algorithm. This approach builds on the
well-understood principles of iterative data-flow analysis to guarantee termination and correctness and to
provide insight into the algorithm’s asymptotic complexity.

This section presents the iterative data-flow solver for dominance. It discusses the properties of the
algorithm that we can derive from the theory of iterative data-flow analysis. Finally, it shows how simple
insights into the nature of dominance information and a carefully engineered data structure lead to a more
efficient implementation—one that competes favorably with Lengauer-Tarjan.

To compute dominance information, the compiler can annotate each node in the cfg with a Dom set.

Dom(b): A node n in the cfg dominates b if n lies on every path from the entry node of the cfg to b.
Dom(b) contains every node n that dominates b. For x, y ∈ Dom(b), either x ∈ Dom(y) or y ∈ Dom(x).
By definition, for any node b, b ∈ Dom(b).

While Dom(b) contains every node that dominates b, it is often useful to know b’s immediate dominator.
Intuitively, b’s immediate dominator is the node n ∈ Dom(b) which is closest to b. Typically, the compiler
captures this information in a set IDom(b).2

IDom(b): For a node b, the set IDom(b) contains exactly one node, the immediate dominator of b. If n is
b’s immediate dominator, then every node in {Dom(b) − b} is also in Dom(n).

2Since IDom(b) always has exactly one member, we could describe it as a function on Dom(b). For consistency in the paper,
we write it as a set; the implementation realizes it as a trivial function of Dom(b).
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for all nodes, n
DOM[n] ← {1 . . . N}

Changed ← true
while (Changed)

Changed ← false
for all nodes, n, in reverse postorder

new set ←
(⋂

p∈preds(n) DOM[p]
) ⋃ {n}

if (new set �= DOM[n])
DOM[n] ← new set
Changed ← true

Figure 1: The Iterative Dominator Algorithm

This formulation lets the compiler compute Dom sets as a forward data-flow problem [5, 19]. Given a cfg,
G = (N, E, n0), where N is a set of nodes, E is a set of directed edges, and n0 is the designated entry node
for the cfg, the following data-flow equations define the Dom sets:

Dom(n0) = {n0}

Dom(n) =


 ⋂

p∈preds(n)

Dom(p)


 ∪ {n}

We assume that the nodes are numbered in postorder, and that preds is a relation defined over E that maps
a node to its predecessors in G.

To solve these equations, the compiler can use an iterative algorithm, as shown in Figure 1. Correct
initialization is important; the algorithm must either initialize each Dom set to include all the nodes, or it
must exclude uninitialized sets from the intersection. Both Allen and Cocke [5] and Hecht [18, pp. 179–180]
show similar formulations.

Properties of the Iterative Framework

This algorithm produces correct results because the equations for Dom, as shown above, form a distributive
data-flow framework as defined by Kam and Ullman [20]. Thus, we know that the iterative algorithm will
discover the maximal fixed-point solution and halt. Since the framework is distributive, we know that the
maximal fixed-point solution is identical to the meet-over-all paths solution—which matches the definition
of Dom.

The equations for Dom are simple enough that they form a rapid framework [20]. Thus, an iterative
algorithm that traverses the graph in reverse postorder will halt in no more than d(G) + 3 passes, where
d(G) is the loop connectedness of the graph. For a reducible graph, d(G) is independent of the depth-first
spanning tree used to generate the postorder numbering.3 With an irreducible graph, d(G) depends on the
specific depth-first spanning tree used to compute reverse postorder. Thus, on an irreducible graph, the
running time of the algorithm depends on the traversal order.

An Example

Figure 2 shows a small irreducible graph, along with the results of the iterative dominators computation.
Each node is labelled with its postorder number, and we will refer to each node by that number. The
right side shows the sets computed on each iteration over the graph. After the first iteration, node 2 has
the wrong dominator set because the algorithm has not processed node 1. Since node 1 is one of node 2’s

3Two studies suggest that, even before the advent of “structured programming,” most procedures had reducible cfgs [5] and
that d(G) is typically ≤ 3 for cfgs [21].
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Dom[b]
Node First Pass Second Pass Third Pass

5 {5} {5} {5}
4 {5, 4} {5, 4} {5, 4}
3 {5, 3} {5, 3} {5, 3}
2 {5, 3, 2} {5, 2} {5, 2}
1 {5, 1} {5, 1} {5, 1}

Figure 2: Computing Dominators on an Irreducible Graph

predecessors, the intersection that computes Dom[2] uses the initial value for Dom[1], and overestimates
Dom[2] as Dom[3] ∪ {2}. On the second iteration, both of node 2’s predecessors have been processed, and
their intersection produces the correct dominator set for node 2. The third iteration changes no sets, and
the algorithm halts.

Engineering the Data Structures

This iterative algorithm is both easy to understand and easy to implement. However, it is impractically
slow. A version that uses distinct bit-vector Dom sets at each node is up to 900 times slower than our
implementation of the Lengauer-Tarjan algorithm. With large graphs, considerable time is wasted performing
intersections on sparsely populated sets and copying these sets from one node to another. When we tried
to reduce the time necessary to do the intersections by substituting SparseSets for the bit vectors [9], the
increased memory requirements again made the algorithm impractical.

To improve the iterative algorithm’s performance, we need a memory-efficient data structure that supports
a fast intersection. Keeping the Dom sets in a consistent order is one way to speed up intersection. If we
think of the set as a list, and require that the union always add to the end of the list, then the Dom sets will
reflect the order in which nodes are added. With this order, if Dom(a)∩Dom(b) �= ∅, then the resulting set
is a prefix of both Dom(a) and Dom(b).

This observation lets us implement intersection as a forward walk through the ordered sets, performing
a pairwise comparison of elements. If the elements agree, that node is copied into the result set, and the
comparison moves to the next element. When the elements disagree or the end of the sets is reached, the
intersection terminates, and the current node is added as the last element of its own dominator set.

To improve memory efficiency, we rely on a subtle property of these ordered Dom sets. Notice that, for
all nodes except n0

Dom(b) = {b} ∪ IDom(b) ∪ IDom(IDom(b)) · · · {n0}
This suggests a relationship between the ordered Dom set and an auxiliary data structure called the domi-
nator tree. It contains the nodes of the cfg, with edges that reflect dominance. In the dominator tree, each
node is a child of its immediate dominator in the cfg.

Dom(b) contains exactly those nodes on a path through the dominator tree from the entry node n0 to
b. Our ordered intersection operator creates Dom(b) in precisely the order of that path. The first element
of Dom(b) is n0. The last element of Dom(b) is b. The penultimate element of Dom(b) is b’s immediate
dominator—the node in Dom(b) that is closest to b. Thus, with these ordered Dom sets, we can read IDom
directly from the sets.

This relationship between the Dom sets and the dominator tree suggests an alternative data structure.
Rather than keeping distinct Dom sets, the algorithm can represent the dominator tree and read the Dom
sets from the tree. The algorithm keeps a single array, doms, for the whole cfg, indexed by node. For
a node b, we represent b’s inclusion in Dom(b) implicitly. The entry doms(b) holds IDom(b). The entry
doms(doms(b)) holds the next entry, which is IDom(IDom(b)). By walking the doms array, starting at b, we
can reconstruct both the path through the dominator tree from b to n0 and b’s Dom set.

To use this representation, the algorithm must perform intersection by starting at the back of the Dom
set and moving toward the front—the opposite direction from our earlier description. This reverses the sense
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for all nodes, b /* initialize the dominators array */
doms[b] ← Undefined

doms[start node] ← start node
Changed ← true
while (Changed)

Changed ← false
for all nodes, b, in reverse postorder (except start node)

new idom ← first (processed) predecessor of b /* (pick one) */
for all other predecessors, p, of b

if doms[p] �= Undefined /* i.e., if doms[p] already calculated */
new idom ← intersect(p, new idom)

if doms[b] �= new idom
doms[b] ← new idom
Changed ← true

function intersect(b1, b2) returns node
finger1 ← b1
finger2 ← b2
while (finger1 �= finger2)

while (finger1 < finger2)
finger1 = doms[finger1]

while (finger2 < finger1)
finger2 = doms[finger2]

return finger1

Figure 3: The Engineered Algorithm

and termination condition of the intersections: under this scheme, we move backwards through the lists,
comparing elements until they are the same.

Figure 3 shows the code for the iterative algorithm with these improvements. The intersection routine
appears at the bottom of the figure. It implements a “two-finger” algorithm – one can imagine a finger
pointing to each dominator set, each finger moving independently as the comparisons dictate. In this case,
the comparisons are on postorder numbers; for each intersection, we start the two fingers at the ends of
the two sets, and, until the fingers point to the same postorder number, we move the finger pointing to the
smaller number back one element. Remember that nodes higher in the dominator tree have higher postorder
numbers, which is why intersect moves the finger whose value is less than the other finger’s. When the two
fingers point at the same element, intersect returns that element. The set resulting from the intersection
begins with the returned element and chains its way up the doms array to the entry node.

This scheme has several advantages. It saves space by sharing representations—IDom(b) occurs once,
rather than once in each Dom set that contains it. It saves time by avoiding the cost of allocating and
initializing separate Dom sets for each node. It avoids data movement: with separate sets, each element in
the result set of an intersection was copied into that set; with the doms array, none of those elements are
copied. Finally, it explicitly represents IDom.

An Example

Figure 4 shows a somewhat more complex example. This graph requires four iterations instead of three,
since its loop connectedness, d(G), is one greater than the example of Figure 2. The right side of the figure
shows the contents of the doms array at each stage of the algorithm. For brevity, we have omitted the fourth
iteration, where doms does not change.

The doms array is indexed by node name, and all entries are initialized with a recognizable value to
indicate that they are not yet computed. At each node, b, we intersect the dominator sets of b’s predecessors.
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Before 1st

Iteration:

doms
6
u
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u
u

After 1st

Iteration:

doms
6
6
6
4
4
6

After 2nd

Iteration:

doms
6
6
6

6
6

4

After 3rd

Iteration:

doms
6
6
6
6
6
6

Node
Node
Node
Node
Node
Node

6
5
4
3
2
1

Figure 4: An Example with the Engineered Algorithm

At node 2, in the first iteration, we call the intersect routine with 3 and 4. An intuitive way to view
the intersect routine is to imagine that it walks up the dominator tree from two different nodes until a
common parent is reached. Thus, intersect sets finger1 to 3 and finger2 to 4. Since finger1 is less
than finger2 (remember that we are using postorder numbers as node names), we set finger1 equal to
doms[finger1], which is 4. (This moved finger1 up the dominator tree to its parent.) The two fingers now
point to the same node, so intersect returns that node, which is 4. Next, we look at 2’s last predecessor,
node 1, but, since its dominator has not yet been calculated, we skip it and record new idom (in this case, 4)
in doms[2].

Of course, node 2’s dominator is not node 4, but this is only the result of the first iteration. The second
iteration is more interesting. The first intersection at node 2 compares 3 and 4, and produces 4. The second
intersection compares 1 and 4, and produces 6, which becomes the final value for 2. It takes one more
iteration for 6 to filter over to node 3. The algorithm then makes one final pass (not shown) to discover that
none of the information changes.

Complexity Analysis

Traversing the graph to compute the reverse postorder sequence takes O(N) time. The resulting sequence
has N elements. The traversal that computes Dom and IDom visits each node. At each node, it performs
a set of pairwise intersections over the incoming edges. (The unions have been made implicit in the data
structure.) Taken over the entire traversal, this is O(E) intersections that require time proportional to the
size of the Dom sets they consume. Thus, the total cost per iteration is O(N + E · D) where D is the size of
the largest Dom set. The number of iterations depends on the shape of the graph. Kam and Ullman showed
that the iterative algorithm will halt in no more than d(G)+3 iterations. Of course, this is an upper bound,
and the loop connectedness of an irreducible graph is a function of the order in which the depth-first search
computes the reverse postorder numbering.

Dominance Frontiers

The other part of dominance that plays an important part in the ssa construction is the calculation of
dominance frontiers for each node in the cfg. Cytron et al. define the dominance frontier of a node, b, as:

. . . the set of all cfg nodes, y, such that b dominates a predecessor of y but does not strictly

dominate y [13].

Dominance frontiers have applications to algorithms other than ssa, as well. For example, finding postdom-
inance frontiers is an efficient method of computing control dependence, a critical analysis for automatic
parallelization [6].
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for all nodes, b
if the number of predecessors of b ≥ 2

for all predecessors, p, of b
runner ← p
while runner �= doms[b]

add b to runner’s dominance frontier set
runner = doms[runner]

Figure 5: The Dominance-Frontier Algorithm

Cytron et al. propose finding the dominance frontier set for each node in a two step manner. They begin
by walking over the dominator tree in a bottom-up traversal. At each node, b, they add to b’s dominance-
frontier set any cfg successors not dominated by b. They then traverse the dominance-frontier sets of b’s
dominator-tree children – each member of these frontiers that is not dominated by b is copied into b’s
dominance frontier.

We approach the problem from the opposite direction, based on three observations. First, nodes in a
dominance frontier represent join points in the graph, nodes into which control flows from multiple predeces-
sors. Second, the predecessors of any join point, j, must have j in their respective dominance-frontier sets,
unless the predecessor dominates j. This is a direct result of the definition of dominance frontiers, above.
Finally, the dominators of j’s predecessors must themselves have j in their dominance-frontier sets unless
they also dominate j.

These observations lead to a simple algorithm.4 First, we identify each join point, j – any node with
more than one incoming edge is a join point. We then examine each predecessor, p, of j and walk up
the dominator tree starting at p. We stop the walk when we reach j’s immediate dominator – j is in the
dominance frontier of each of the nodes in the walk, except for j’s immediate dominator. Intuitively, all of
the rest of j’s dominators are shared by j’s predecessors as well. Since they dominate j, they will not have j
in their dominance frontiers. The pseudo code is given in Figure 5.

There is a small amount of bookkeeping not shown; specifically, any j should be added to a node’s dominance
frontier only once, but the data structure used for the dominance frontier sets will dictate the amount of
additional work necessary. In our implementation, we use linked lists for dominance-frontier sets, so we keep
a SparseSet [9] to restrict multiple entries – when a join point is entered into a node’s dominance-frontier
set, we put that node into the SparseSet, and, before a join point is entered into a node’s dominance-frontier
set, we check to see if that node is already in the SparseSet.

Complexity Analysis

Traversing the cfg requires O(N) time. If each node in the graph were a join point, we would have to
do at least N × 2 walks up the dominator tree giving us a quadratic timebound. But remember that the
walks always stop as early as possible. That is, we only touch a node, n, if the join point belongs in the
dominance frontier of n. Thus, the number of nodes touched is equal to the sum of the sizes of all of the
dominance-frontier sets. This sum can be quadratic in the number of nodes, but we contend that the sets
cannot be built any more efficiently. In other words, we do no more work than is required.

As we shall see, this approach tends to run faster than Cytron et al.’s algorithm in practice, almost
certainly for two reasons. First, the iterative algorithm has already built the dominator tree. Second, the
algorithm uses no more comparisons than are strictly necessary.

4This algorithm first appeared in a paper by Ferrante et al. in the context of control dependence [14]. We believe that its value
as a method of computing dominance frontiers has not been studied prior to this work.
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Experiments

The iterative formulation of dominators, with the improvements that we have described, is both simple and
practical. To show this, we implemented both our algorithm and the Lengauer-Tarjan algorithm (with path
compression but not balancing) in C in our research compiler and ran a series of experiments to compare
their behavior. With our algorithm, we built the dominance-frontier calculation as described in the previous
section. Alongside our Lengauer-Tarjan implementation, we built the dominance-frontier calculation as
described by Cytron et al. [13]. The timing results for our algorithm include the cost of computing the
reverse postorder numbers, although in neither case do we include the cost of building the dominator tree –
it is a natural byproduct of our algorithm, and so we felt it an unfair test to include the time to build the
tree in the Lengauer-Tarjan/Cytron et al. implementation.

One of the first problems that we encountered was the size of our test codes. They were too small to
provide reasonable timing measurements. All the experiments were run on a 300 MHz Sun Ultra10 under the
Solaris operating system. On this machine, the clock() function has a granularity of only one hundredth
of a second.5 Our standard test suite contains 169 Fortran routines taken from the SPEC benchmarks and
from Forsythe, Malcolm, and Moler’s book on numerical methods [15]. The largest cfg in the suite is from
field, with 744 basic blocks.6 On this file, the timer only measures one hundredth of a second of cpu
time to compute dominators using the iterative algorithm. The vast majority of the codes in our test suite
registered zero time to compute dominators.

This result is significant in its own right. On real programs, both of the algorithms ran so fast that their
speed is not a critical component of compilation time. Again, this suggests that the compiler writer should
choose the algorithm that is easiest to understand and to implement.

We performed two sets of experiments to better understand the tradeoff of complexity with runtime. In
the first experiment, we modified the dominator calculation to run multiple times for each cfg, carefully
making sure that each iteration did the same amount of work as a single, isolated run. In the second
experiment, we created artificial graphs of a size which would register reliably on our timer.

Our Test Suite

For our first experiment, we modified each of the two dominator algorithms to iterate over the same graph
multiple times and recorded the total time. To ensure that the smaller graphs – those of fewer than twenty-
five nodes – register on our timer, we build the dominator information 10, 000 times on each example. To
allow for comparison, all graphs were run that many times.

We ran the two algorithms on an unloaded 300 MHz Sun Ultra 10 with 256 megabytes of RAM. To adjust
for interference, we ran each graph through both algorithms ten times and recorded the lowest run time.2

For each graph, we measured the time to compute dominators and the time to compute dominance frontiers.
We also measured the time to compute postdominators and postdominance frontiers.3 The postdominance
computation has a different behavior, because the reversed cfg has a different shape. This gives us additional
insight into the behavior of the algorithms.

In cfgs generated from real-world codes, it is more common to encounter irreducible graphs when
calculating postdominance information. Broadly speaking, irreducible loops are caused by multiple-entry
loops. While few modern languages allow a jump into the middle of a loop, almost all languages allow a
jump out of the middle of the loop, and real-world codes tend to do this with some frequency. When we
walk backwards through the cfg, jumps out of a loop become jumps into a loop, and irreducibility results.

5The manual page for clock() says that the time returned is in microseconds; however, we found that in practice, the amount
of cpu time is reported only down to the hundredth of a second.
6This number includes empty basic blocks put in to split critical edges, a transformation often done to enable or simplify
optimizations.
2Choosing the lowest time, instead of, as is often done, the average time, makes sense when comparing deterministic algorithms.
Measurements on real machines, necessary to show that the theory is working in practice, will have variance due to external
factors, such as context switching. These factors can only increase the running time. Thus, the most accurate measure of a
deterministic algorithm’s running time is the one that includes the lowest amount of irrelevant work.
3Postdominators are dominators on the reversed cfg.
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Iterative Algorithm Lengauer-Tarjan/Cytron et al.
Number Dominance Postdominance Dominance Postdominance
of Nodes Dom DF Dom DF Dom DF Dom DF
> 400 3148 1446 2753 1416 7332 2241 6845 1921

201–400 1551 716 1486 674 3315 1043 3108 883
101–200 711 309 600 295 1486 446 1392 388
51–100 289 160 297 151 744 219 700 191
26–50 156 86 165 94 418 119 412 99
<= 25 49 26 52 25 140 32 134 26

Average times by graph size, measured in 1
100 ’s of a second

Table 1: Runtimes for 10, 000 Runs of Our Fortran Test Suite, aggregated by Graph Size

The timing results are shown in Table 1. For the dominance calculation, the iterative algorithm runs
about 2.5 times faster than Lengauer-Tarjan, on average. The improvement slowly decreases as the number
of blocks increases. This is what we would expect: the Lengauer and Tarjan algorithm has a greater startup
cost, which gets amortized in larger graphs. Of course, the Lengauer-Tarjan results should catch up quickly
based on the relative asymptotic complexity. That this is not the case argues strongly that real-world codes
have low connectivity of irreducible loops and their shapes allow for comparatively fast intersections.

For computing dominance frontiers, the times begin to diverge as the number of blocks increases. It
appears that the advantage of our algorithm over Cytron et al.’s algorithm increases as the cfg gets larger,
ultimately resulting in an approximately 30% speedup for the largest graphs. We believe this is because, in
general, larger graphs have more complicated control flow. The amount of work done by the Cytron et al.
algorithm grows as a function of the size of the dominance-frontier sets, whereas our formulation grows with
the size of the cfg.

Larger Graphs

We believe that the sizeable improvement in running time only tells part of the story. While the advantage in
asymptotic complexity of Lengauer-Tarjan should give it better running times over the iterative algorithm,
we need to ask the question of when the asymptotic advantage takes over. To answer this, we built huge
graphs which, as we will show, provide an insight into the value of the iterative algorithm.

Building Random Graphs

To obtain appropriate cfgs, we had to design a mechanism that generates large random cfgs.4 Since
we were primarily interested in understanding the behavior of the algorithms on programs, as opposed to
arbitrary graphs, we measured the characteristics of the cfgs of the programs in our test suite and used
these statistics to generate random graphs with similar properties.

Our test suite contains, in total, 11,644 blocks and 16,494 edges. Eleven percent of the edges are back
edges. Sixty-one percent of the blocks have only one outgoing edge, and fifty-five percent of the blocks have
only one incoming edge. Blocks with two incoming or outgoing edges were thirty-four percent and forty-three
percent of the total, respectively. The remaining incoming and outgoing edges were grouped in sets of three
or more per block.

Using these measurements, we built a program that performs a preorder walk over an imaginary graph.
As the “walk” progresses, it instantiates nodes as it reaches them. It starts by creating a single, initial block,
n0. It randomly determines the number of edges coming out of that block, based on the statistics from our
test suite, and instantiates those edges. Next, it walks those edges in a recursive depth-first search. Each

4Note that this analysis concerns only the structure of the cfg, so the basic blocks in our random graphs contain nothing except
branching operations.
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Iterative Algorithm Lengauer-Tarjan/Cytron et al.
Dominance Postdominance Dominance Postdominance

Dom DF Dom DF Dom DF Dom DF
Average (.01-secs) 39.72 18.91 38.68 12.63 41.80 25.21 39.75 18.85

Standard Deviation 2.30 1.86 2.12 0.58 0.92 2.88 0.78 0.51

Table 2: Runtime Statistics for the 100-graph Test Suite

time it traverses an edge, it creates a new block to serve as its sink, determines the number and kind of
successor edges that the new block should have, and instantiates them. It continues in this fashion until it
has generated the desired number of nodes. At that point, there will be a number of edges that do not yet
have a sink. It connects those edges to blocks that already exist.

Creating back edges is problematic. The classic method used to identify a back edge has an implicit
assumption that the entire graph has been defined [28]. Since the random graph builder does not have access
to the entire graph, it cannot tell, for certain, whether an edge will be a back edge in the completed graph.
Thus, it cannot add the back edges as it builds the rest of the graph. Instead, the graph builder builds a
queue of all the edges that it intends to be back edges. It does not traverse these edges in the depth-first
search. Instead, it waits until all of the nodes have been instantiated and then processes the prospective
back edges on the queue, connecting them to appropriate nodes.

The resulting graphs matched the characteristics of the test suite codes almost exactly, with two vari-
ations, back edges and loop connectedness. Because the graph builder must add edges before the graph is
fully defined, it cannot know the total number of successors that a node will have. This uncertainty shows
up in two ways. First, the generated graphs have fewer back edges than the cfgs in the test suite—eight
percent versus eleven percent. Second, the loop connectedness of the generated graphs is higher than that
of the cfgs in the test suite—slightly over three versus 1.11 for the test suite.

These differences have an important implication for measuring the running time of our algorithm versus
Lengauer-Tarjan. The complexity of our algorithm depends on the loop connectedness of the graph, since
it uses Kam and Ullman’s formulation of the iterative algorithm. The Lengauer-Tarjan algorithm always
requires two passes, independent of the graph’s structure. Thus, the higher value for d(G) should favor
Lengauer-Tarjan, at our algorithm’s expense.

Measurements on Large Random Graphs

Because graphs with 500 nodes barely registered on our system’s timer, we needed graphs that were at least
an order of magnitude larger. To fill this need, we used the graph builder to create a test suite of 100 graphs
of 30, 000 nodes each.

Table 2 shows the results of our timing experiments for the test suite of 100 large, random graphs. It
reports the numbers for dominance and postdominance, under the iterative scheme and under the Lengauer-
Tarjan algorithm. The first row shows the average solution time, across all 100 graphs. The second row
shows the standard deviation in that time, across all 100 graphs. Within each category, two numbers appear.
The column labelled Dom reports the time for the dominator calculation, while the column labelled DF
reports the time for the dominance-frontier calculation.

If we add the times to compute dominators and dominance frontiers, our algorithms run about 12%
faster than Lengauer-Tarjan. The main advantage is from the faster dominance-frontier calculation, which is
about 25% faster on the forward problem, and about 33% faster on the backward problem. We conjectured
that the asymptotic differences between the dominance algorithms would shift the advantage from the
iterative algorithm to the Lengauer-Tarjan, and this graph suggests that this point is near 30, 000 nodes;
however, computing the crossover is complicated by the variability of the shape of the graph. For example, on
a cfg with 30, 000 nodes in a straight line—each node has only one parent and only one child—the iterative
scheme takes only four hundredths of a second, while the Lengauer-Tarjan algorithm takes its standard 0.4
seconds. The conclusion to be drawn from this experiment is nonetheless clear: the iterative algorithm is
competitive with Lengauer-Tarjan even on unrealistically large graphs.
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Summary and Conclusions

In this paper, we have presented a technique for computing dominators on a control-flow graph. The
algorithm builds on the well-developed and well-understood theory of iterative data-flow analysis. By relying
on some fundamental insights into the nature of the dominance information, we were able to engineer
a representation for the dominator sets that saves on both space and time. The resulting algorithm is
2.5 times faster than the classic Lengauer-Tarjan algorithm on real programs. On control-flow graphs of
30, 000 nodes—a factor of almost 40 times larger than the largest cfg in the SPEC benchmarks—our
method and Lengauer-Tarjan take, essentially, the same time.

Our simple iterative technique is faster than the Lengauer-Tarjan algorithm. Its simplicity makes it
easy to implement, easy to understand, and easy to teach. It eliminates many of the costs that occur
in an implementation with separate sets—in particular, much of the allocation, initialization, and data
movement. This simple, fast technique should be the method of choice for implementing dominators – not
only is development time very short, but the compiler writer can have a high degree of confidence in the
implementation’s correctness. The algorithm for the dominance frontier calculation is not only simpler but
also faster than the original algorithm by Cytron et al.
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