
SECURITY
REIMAGINED

SPECIAL REPORT

BREWING UP
TROUBLE:
Analyzing Four Widely Exploited
Java Vulnerabilities

Authors: Abhishek Singh,
Josh Gomez and Amit Malik

1 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

CONTENTS

Introduction ... 2

 Exploitation Activity...2

Technical Details ...3

Conclusion ... 18

 About FireEye, Inc. ..18

http://www.fireeye.com

2 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

Exploitation Activity
Figure 1 shows the detection prevalence of CVEs
exploited in the wild. Judging from the frequency
of exploited vulnerabilities, Java Runtime
Environment (JRE 7) appears to be the most
frequently exploited platform.

Introduction
Java is widely used by developers—so much so that many applications and websites do not
run properly without Java installed in users’ systems. This widespread adoption makes the
near-universal platform fertile ground for cybercriminals. Exploit kits have pounced on
Java vulnerabilities with virtually every major discovery.

Forget exploiting simple browser and client-side application flaws to distribute pay-per-
install spyware. Today’s exploit kits are smarter, abusing legitimate Web components and
infrastructure to selectively deliver the right exploits to the right targets. That is why Java
exploits have become the vehicle of choice for quickly dispersing lucrative crimeware
packages to a wide pool of targets.

This report examines the technical details of the four most commonly exploited Java
vulnerabilities. In addition to describing the inner workings of each vulnerability, this
report outlines each step of the infection flow of in-the-wild exploit kits that target them.

47%

17%

13%

12%

9%
2%

FE-CVE-2012-4681

FE-CVE-2013-2471

FE-CVE-2013-2465

Metasploit

FE-CVE-2013-2423

Unknown

Figure 1: Vulnerabilities,
by frequency of exploit

http://www.fireeye.com

3 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

Figure 2: Vulnerable Java code

Technical Details
 The following sections explain the technical
details of the four most commonly exploited
vulnerabilities, including exploit kits that leverage
these weaknesses:

 CVE-2013-2471

 CVE-2013-2465

 CVE-2013-2423

CVE-2012-4681

CVE-2013-2471
Java provides several functions to create and
manipulate raster objects. A raster object can be
created by calling the CreateWritableRaster
method of the Raster class. It uses the
following prototype:

Public static WritableRaster
createWritableRaster(SampleModel s,
DataBuffer buf, Point location)

The return object depends on the SampleModel
class. The SampleModel class defines an interface
for extracting pixels from an image. When creating
a raster object, Java calls a function verify() of the
integerComponentRaster class to validate the
input data. Internally, the verify() function uses
getNumDataElements() method of the
SampleModel class to validate the data (see
Figure 2).

Overriding the getNumDataElements method
and returning 0 allows an attacker to bypass the
checks in the above loop and create malicious
raster objects. The unvalidated raster objects can
be passed to the compose() method of
AlphaCompositeClass so that the compose()
method calls the native function blit.blit(), which
could corrupt memory, depending on the
input parameters.

http://www.fireeye.com

4 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

Analysis
Figure 3 shows the decompiled code of a malware
sample in the wild that exploits CVE-2013-2471.
The code first overrides the
getNumDataElements method to bypass the
verify() method. Then as shown in Figure 4, it calls
the compose() method, leading to the memory.

After exploiting the vulnerability, the code disables
the Java security manager and downloads the
malicious executable file (see Figure 5).

Figure 3: Malware overrides
the getNumDataElements
method to bypass the
verify() method

Figure 4: Malware calling
the compose() method of
the AlphaCompositeClass
class

Figure 5: Malware elevating
security privileges

http://www.fireeye.com

5 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

Figure 6: Infection

chain, from landing

page to Java exploit

1 Robert Westervelt (CRN). “Microsoft: Don’t Be Fooled By The Cool Exploit Kit.” May 2013..

Exploitation in the wild
CVE-2013-2471 is often exploited in drive-by
download attacks to deliver ransomware. These
attacks typically employ off-the-shelf exploit kits,
including Cool. Developed by the malware author
who created the popular Blackhole exploit kit,
Cool in its heyday commanded some of the
highest prices on the malware market—licenses
went for as much as $10,000 a month.1 Along with
several browser, PDF, and Windows
vulnerabilities, Cool exploited the following Java
vulnerabilities, some of which were zeroday
vulnerabilities at the time they were integrated:

• CVE-2012-0507

• CVE-2012-4681

• CVE-2013-0422

• CVE-2013-0431

• CVE-2013-1493

• CVE-2013-2471

Figure 6 demonstrates a Cool-based malware
infection chain that exploits CVE-2013-2471.

After loading the landing page, the browser is
directed through the infection chain, starting with
a plugin detection script. Plugin detection scripts
normally consist of benign server-side code that
checks for the presence of various browser
plugins (such as Flash and Java) and determines
their version number to tailor content to
the viewer.

In the same way, exploit kits use the results of the
plugin detection routine to tailor exploits to the
target. Many vulnerabilities apply to specific
versions of Java, so the success of an attack can
hinge on delivering the right exploit.

http://www.fireeye.com

6 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

The version of Java is determined by loading the
Java Deployment Toolkit, as shown in Figure 7.
The globally unique identifiers (GUIDs) are visible
in the plugin detect JavaScript file.

After identifying the Java version number, the
browser downloads a .jar file containing CVE-
2013-2471 exploit (see Figure 8).

Figure 7: A segment of

plugin detect code that

checks which Java version

is installed

Figure 8: Code to download

a .jar file containing the

CVE-2013-2471 exploit

http://www.fireeye.com

7 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

The decompiled .jar file reveals the vulnerable
getNumDataElements method, as shown
in Figure 9.

One unique characteristic of this .jar file from the
Cool exploit kit is the presence of an embedded
executable (shown near the bottom of Figure 10).

Figure 9: The vulnerable

Java method

getNumDataElements

appears within the

downloaded .jar code

Figure 10: Contents of

the .jar file exploiting

CVE-2013-2471

http://www.fireeye.com

8 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

CVE-2013-2465
Classes defined in the Abstract Window Toolkit
handle various operations on images. They include
the following:

• Images.java.awt.images. LookupOp

• ConvolveOP

• RescaleOP

• AffineTransformOp

These classes expose the method filter(), defined
as follows:

Public final BufferedImage filter
(BufferedImage src, BufferedImage
dst)

This call is passed to the native function that
performs filtering operations. The function parses
the src and dst values of the BufferedImage
subclass, populating the hint object (hintP-
>dataOffset hint- >numChans) attached to each
of them with values contained in the ColorModel
and SampleModel members of the BufferedImage
objects. Because no bound check occurs while
copying the data, the vulnerable code assumes
that the hints values of the images are consistent
with their corresponding rasters. If malicious code
overrides the hint Objects values, the copying
code writes more data to the output buffer,
corrupting heap memory.

Analysis
As shown in Figure 11 the malware code calls
BufferedImage with class b() as a parameter

Figure 11: Malicious code calling the vulnerable

BufferedImage subclass

http://www.fireeye.com

9 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

The class b() shown in Figure 12 then makes a call
to the class a() by using the super function. The
super function, in turn, overloads
getNumComponents(), exploiting the vulnerability

Once the vulnerability is exploited, permission is
set to all permission, as shown in Figure 13.

Then the malicious code downloads the malware
payload, as shown in Figure 14.

Figure 14:

Dowloading the

malware payload

Figure 13:

Malicious code

elevating

permissions

Figure 12: The flow of

vulnerable parameters

in the malware code

http://www.fireeye.com

10 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

CVE-2013-2465 in the wild
Like CVE-2013-2471, the CVE-2013-2465
vulnerability is proliferating via exploit kits, in this
case, White Lotus. This relatively new exploit kit
delivers crimeware in drive-by download attacks.

An example infection chain includes a plugin
detection routine and a .jar file disguised as a
portable network graphics (.png) file, as shown in
Figure 15.

When the target visits a compromised website, an
iframe loads in the background (see Figure 16).
The iframe starts a plugin detection routine and—
apparently to confuse targets—loads dozens of
images from an unrelated shopping website (see
Figure 17).

Figure 15: White

Lotus infection

chain exploiting

CVE-2013-2465

Figure 16: An iframe

loading in the

background

Figure 17: Plugin

Detection routine

checking for versions

of various plugins

http://www.fireeye.com

11 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

Once the code determines what version of Java
the target is running, the exploit is delivered. The
exploit is disguised as a .png file to evade visual
detection, as shown in Figure 18.

When analyzed, the .jar file reveals a call to the
vulnerable getNumComponents method, as
shown in Figure 19.

Figure 18: Malicious

jar file disguised as a .

png downloaded onto

target system

Figure 19: Decompiled

CVE-2013-2465.jar file

showing vulnerable

getNumComponents

method

http://www.fireeye.com

12 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

CVE-2012-4681
The vulnerability exists in the findMethod method
of the com.sun.beans.finder.MethodFinder class.
Due to the insufficient permission checks, the
immediate caller on the stack is com.sun.bean.
MethodFinder, which is trusted, bypassing the
security check in getMethods. By exploiting the
vulnerability, an attacker can get a method object
for a method defined in restricted packages such
as sun.awt.SUN.Toolkit.

Analysis
Malware exploiting CVE-2012-4681 first calls the
vulnerable findMethod function, as shown in
Figure 20.

Then the malware creates the local protection
domain to elevate its privilege and disables the
security manager, as shown in Figure 21.

Figure 20: Call to the

vulnerable findMethod

function

Figure 21: Privilege-

elevating code

http://www.fireeye.com

13 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

From there, the code downloads the malicious
payload and executes it, as seen in Figure 22.

CVE-2012-4681 in the wild
A high volume of drive-by attacks have exploited
this vulnerability, using compromised websites to
first serve visitors the malicious .jar, then infect

them with a password-stealing IRC bot. The
exploit is also part of the Metasploit framework;
attackers have weaponized it to distribute a
Trojan known as Dorkbot that also has worm
capabilities. As shown in Figure 23, the infection
chain is short and results in a flood of HTTP
requests from infected systems.

Figure 23: Infection chain from

initial page to jar file download,

followed by malware callbacks

Figure 22: Code downloading

the malicious payload and

executing it

http://www.fireeye.com

14 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

For users running a vulnerable version of Java,
merely visiting a site hosting the malicious .jar file
is enough to become infected.

Here the system is using Java 7 update 2.

The obfuscated script on the site instructs the
browser to load the malicious Exploit.jar file, as
shown in Figure 25.

Figure 24: HTTP code

of compromised site

exploiting CVE-2012-

4681

Figure 25: Malicious

CVE-2012-4681 jar file

being downloaded

http://www.fireeye.com

15 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

Attackers are quick to leverage publicly disclosed
Java vulnerabilities. This exploit is one of the most
commonly detected in the wild, enhanced by the
payload’s knack for spreading.

CVE-2013-2423
The vulnerability stems from insufficient
validation in the findStaticSetter() method. The
method fails to validate whether a static field is

final, returning a MethodHandle of a setter
method for a static final field. That lack of
validation, in turn, permits malicious code to
modify the static field to create type confusion
and disable the Java security manager.

Analysis
As shown in Figure 27, the findStaticSetter
method is used to get the MethodHandle.

Figure 26: Contents of

the weaponized .jar

file exploiting

CVE-2012-4681

Figure 27: Malware

code exploiting

CVE-2013-2423

http://www.fireeye.com

16 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

As shown in Figure 28, this MethodHandle is then
used to set value to NULL. That leads to disabling
the Java security manager, allowing attackers to
launch malicious activity.

CVE-2013-2423 in the wild
RedKit is one professional exploit kit that exploits
CVE-2013-2423. The example in Figure 29
demonstrates how attackers leverage the

vulnerability to deliver the ZeroAccess botnet
Trojan onto the target machine. The infection
chain is complex, involving multiple hosts for
exploit and payload delivery. The .jar file is
disguised as a Microsoft .asp file, and the .exe file
is encoded, making detection trickier.

Figure 28:

Malware

disabling the

Java security

manager

Figure 29: Redkit

infection chain with a

malicious .jar file

disguised as an .asp

file

http://www.fireeye.com

17 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

As shown in Figure 30, the contacts.asp file shown
in is actually the malicious .jar file containing the
CVE- 2013-2423 exploit.

The decompiled .jar file, shown in Figure 31,
reveals the findStaticSetter() call.

Figure 30: Malicious .jar

file being downloaded

as a .asp file

Figure 31: Decompiled

.jar file

http://www.fireeye.com

18 www.fireeye.com

Brewing Up Trouble: Analyzing Four Widely Exploited Java Vulnerabilities

FireEye, Inc. | 1440 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) | info@fireeye.com | www.fireeye.com

© 2014 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye,
Inc. All other brands, products, or service names are or may be trademarks or service
marks of their respective owners. – RPT.JV.EN-US.082014

Conclusion
Java’s popularity among developers and
widespread usage in Web browsers all but
guarantees continuing interest from threat actors
seeking new lines of attack. Malware authors have
advanced quickly—not just finding new
vulnerabilities, but developing clever ways to
exploit them.

Multiple payload downloads in a single attack
session have grown common, maximizing the
profit potential from crimeware. Using .jar files
themselves to carry malware payloads (as seen in
the Cool exploit kit example) allows attackers to
bundle multiple payloads with one attack and
bypass detection.

Motivated by profits, cyber attackers are bound
to adopt more intelligent exploit kits that “know
their victim.” That was the case in several recent
attacks. These attacks used plugin-detection
scripts and advanced exploit chains to evade
discovery and compromise websites for drive-by
malware downloads. Post-exploit, multi-stage
malware downloads will continue to mushroom
as more threat actors scramble for a piece of the
crimeware pie.

The threat landscape is constantly evolving. A
long as vulnerabilities exist—and we can bet they
always will—count on more exploit kits to take
advantage of them.

About FireEye, Inc.
FireEye has invented a purpose-built, virtual
machine-based security platform that provides
real-time threat protection to enterprises and
governments worldwide against the next
generation of cyber attacks. These highly
sophisticated cyber attacks easily circumvent
traditional signature-based defenses, such as
next-generation firewalls, IPS, anti-virus, and
gateways. The FireEye Threat Prevention
Platform provides real-time, dynamic threat
protection without the use of signatures to
protect an organization across the primary threat
vectors and across the different stages of an
attack life cycle. The core of the FireEye platform
is a virtual execution engine, complemented by
dynamic threat intelligence, to identify and block
cyber attacks in real time. FireEye has over 1,500
customers across more than 40 countries,
including over 100 of the Fortune 500.

http://www.fireeye.com
mailto:info%40FireEye.com
http://www.fireeye.com

