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Abstract

This paper describes Purifyru, a software testing and quality assurance Ool that detects

memory leaks and access erors. Purify inserts additional checking instructions directly
into the object code produced by existing compilers. These instructions check every
memory read and write performed by the program-under-test and detect several types of

access errors, such as reading uninitialized memory or witing to freed memory. Purify
inserts checking logic into all of the code in a program, including third-party and vendor

object-code libraries, and verifies system call interfaces. In addition, Purify tracks memory

usage and identifies individual memory leals using a novel adaptation of garbage

collection techniques. Purify produces standard executable files compatible with existing
debuggers, and currently runs on Sun Microsystems' SPARC family of workstations.
Purify's neafly-comprehensive memory access checking slows the target program down
typically by less than a facor of three and has resulted in significantly more reliable

software for several development goups.

L. Introduction

A single memory access error, such as reading from uninitialized memory or writing to freed memory can cause a

progam to act unpredicAbly or even crash. Yet, it is nearly impossible to eliminate all such errors from a non-trivial

progam For one thing, these erors may produce observable effects infrequently and intermittently. Even when

p-gru.r are tested intensively for extended periods, errors can and do escape detection. The unique combination of

litco*stanos required for an error to occur and for its symptoms lo becomc visible may be virtually impossible to

create in the development or test environment. As a result, proglammers spend much time looking for these errors,

but end-users may experience tlem first. [Miller90] empirically shows the continuing prevalence of access errors in

many widely-used Unix Programs.

Even when a memory access error triggers an observable symptom, the error can take days to nack down and

eliminate. This is due to the frequently delayed and coincidental connection between the cause, typically a memory

comrption, and the symptom, typically a crash upon the eventual reading of invalid data.

Mennry leaks, rhat is, memory allocated but no longer accessible to the program, slow program execution by

increasing paging, and can cause progams to run out of memory. Memory leaks are more difficult to detect than

illegal memory accesses. Memory leaks occur because a block of memory was not freed, and hence are errors of

omission, rather than commission. In addition, memory leaks rarely produce directly observable elrors, but instead

cumulatively degrade overall performance.
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Once found, memory leaks remain challenging to fix. If memory is freed prematurely, memory access errors can
result. Since access errors can introduce intermittent problems, memory leak fixes may require lengthy testing. Often,
complicated memory ownership prolocols are required !o administer dynamic memory. Incorrectly coded boundary
cases can lurk in otherwise stable code for years.

Both memory leaks and access errors are ffisy !o introduce into a program but hard to eliminate. Without facilities for
detecting memory access errors, it is risky for programmers to attempt to reclaim leaked memory aggressively
because that may introduce freed-memory access enors with unpredictable results. Conversely, without feedback on
memory leaks, programmers may waste memory by minimizing f ree calls in order to avoid freed-memory access
errors. A facility that reported on both a program's memory access errors and its memory leaks could greatly benefit
developers by improving the robustness and performance of their prognms.

This paper presents Puri$,, a tool that developers and testers are using to find memory leaks and access errors. If a
program reads or writes freed memory reads or writes beyond an array boundary, or reads from uninitialized
memory Purify detects the error at the point of occurrence. In addition, upon demand, Purify employs a garbage
deteclor to find and identify existing memory leaks.

2. Memory Access Errors

Some memory access elrors are detectable statically (e.g. assigning a pointer into a short); others are detectable only
at run-time (e.g. writing past the end of a dynamic array); and others are detectable only by a programmer (e.g.
storing a person's age in the memory intended to hold his heighQ. Compilers and tools such as lint find statically-
detectable errors. Purify finds run-time-detectable errors.

Errors detectable only at run-time are challenging to eliminate from a progmm. Consider ttre following example
Purify session, running an application that is using the Xll Window System Release 4 (XllR4) Intrinsics Toolkit
(Xt). The application is called my_prog, and has been prepared by Purify.

tutorial* myjrog -display exodus: 0
Pur i fy :  Dynamic  Er ror  Check ing  Enab led .  Vers ion  I .3 .2 .
(C)  1990,  1991 Pure  Sof tware ,  fnc .  Paten ts  Pend inq .

..  .program runs, untiJ. the user cJ.oses a vindow whiTe one of j ts dja-
T o g s  i s  s t i J 1  u p , .  .

Purify: Array Bounds Violat ion:
Writ ing 88 bytes past the end of an array at 0x4a7c88 ( in heap)
Error occurred whi-Ie in:

bcopy  (bcopy .o ;  pc  -  0x5d0c)

_XtDoPhase2Dest roy  (Dest roy .o , .  I ine  259)
XtDispatchEvent (Event.o; pc = 0x33bfd8)
XtAppMain loop (Event .o ;  pc  :  0x33c48c)
XtMain loop (Event .o ;  pc  -  0x33c454)
m a i - n  ( 1 c i . o , '  1 1 n e  4 4 5 )

The ar ray  is  160 by tes  long,  and was a l loca ted  by  ma11oc ca l l_ed f rom:
X t M a I l o c  ( A I l o c . o ;  p c  :  0 x 3 2 b 7 l - c )
XtRea l - loc  (A1 loc .o ;  pc  =  0x32b754)
XtDestroywidget (Destroy. o; J- ine 2921
cl-ose_window (i-nput .  o, '  l ine 642 )
maybe_c lose_window (u t i l .  o , '  l i ne  2003)

XtCa l lCa l lbacks  (Ca l lback .o ;  l ine  294)
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The Purify eror message says that bcopy, called from _xtDoPhase2Destroy, is overwriting an array end, and
ttrat ttre target array was allocated by xtoestroywidget,lne292.

void XtDestroyWidget (widget)
Widget widget;

{

292 app->destroy_l ist  :  (DestroyRec*)XtReal loc(
293 (char*) app->destroy_I ist ,
294 (unsigned) sizeof (DestroyRec) *app->destroy_1ist_size) ;

; '

From this one can see that the target array is a destroy list, an internal data structure used as a queue of pending
destroys by the two-phase Intrinsics destroy protocol. In order !o undentand why the end of the array is geuing
overwritten, one must study the caller of bcop% _xtDoPhase2Destroy.

void _XtDoPhase2Destroy (appr dispatch_level)
XtAppcontext appt
int dispatch_level,'

2 5 3  i n t i = 0 ;
254 DestroyRec* dr :  apP->destroy_1ist ;
255 while (i < app-)destroy_count) {
256 if (dr->dispatch_1eve1 >= dispatch_Ievel) {
2 5 7  W i d g e t w : d r - ) w i d g e t ;
258 i f  (--app->destroy_count)
259 bcopy(  (char* )  (d r+ l )  '  ( char* )d r '
250 apP->destroy_count*sizeof (DestroyRec) )  , '
267  x tPhase2Dest roy(w) ;
262 l  e lse  {
263 i++ , '

d r * * ;
)

l
)

Aided by the certain knowledge that a potentially fatal bug lurks here, one can see that the bcopy on line 259 is
intended to delete an item in the destroy list by copying the succeeding items down over the deleted one.
Unfortunately, this code only works if the DestroyRec being deleted is the first one on the list, The problem is that the
app->destroy_count on line 260 should be app->destroy_count. - i. As it is, whatever memory is
beyond the desroy list will get copied over itself, shifted 8 bytes (the sizc of one DestroyRec) down. The
resemblance to reasonable data would likely confuse the programmer debugging the evennral core dump.

lvlany people find it hard to believe that such an obvious and potentially fatal bug could have been previously
undetected in code as mature and widely used as the XllR4 Xt Intrinsics. Certainly the code was extensively tested,
but it ook a particular set of circumstances (a recursive desroy) to exercise this bug, that might not have come up in
the test suite. Even if the bug did come up in the test process, the memory comrpted may not have been important
enough to cause an easily visible symptom.

Consider the testing scenario in more detail. Assume optimistically that the test team has the resources to ensure that
every basic block is exercised by the test suite, and thus a recursive destroy is added to the test suite to exercise line
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263 above. The memory overwriting will then occur in the testing, but it'may or may not be detected. Unless the
memory corrupted is vital, and causes a visible symptom such as a crash, the tester will incorrectly conclude that thc
code is performing as desired. In contrast, if the tester had used Puriff during the testing, the error would have been
detected at the point of occwrence, and the tester would not have had to depend on further events to trigger a visible
symptom.

Thus Purify does not in any way remove the need for testing, but it does make the effort put into testing more
effective, by minimizing the unpredictability of whether or not an exercised bug creates a visible symp@m.

The effects of a library vendor missing a single memory comrption error like this Xt bug are quite serious:
applications using the Intrinsics will occasionally trash part of their memory, and some percentage of the time this
memory will be important enough to cause the application to later crash for seemingly mysterious reasons. Without a
tool like Purify to watch over a library's use and possible misuse of dynamic memory, the application developer never
knows if his application's crashes are his own code's fault or the fault of some infrequently exercised library code.
This vulnerability and uncertainty is part of the reason that many developers still insist on "rolling their own', when it
comes O utility routines.

3. Detecting Memory Access Errors

To achieve nearly-comprehensive detection of memory access errors, Purify "Eaps" every memory access a prognm
makes, other than those for instruction fetch, and maintains and checks a state code for each byte of memory.
Accesses inconsistent with the crurent state cause a diagnostic message o be printed, and the function CATCH_I\,IE
is called, on which the programmer can set a breakpoint.

Modifying the operating system to run a software trap upon every memory access would be prohibitively expensive,
because of the context switch overhead. Instead, Purify inserts a function call instruction dlecdy into a program's
object code, before every load or store. The functions called, in conjunction with ma1loc and f ree, maintain a bit
table that holds a two-bit state code for each byte in the heap, stack, data, and bss sections (the daa and bss sections
contain statically-allocated daa). The three possible states and their transitions are shown in Figure l.

FIGURE 1. Memory State Thansition Diagram

Unallocated
(unwritable and unreadable)

Allocated but uninitialized
(writable but unreadable)

Allocated and initialized
(writable and readable)

initialize
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A write to memory that contains any bytes that are currently in an unwritable state causes a diagnostic message to be
printed; a similar message is printed if the program-under-test reads bytes marked unreadable. Writing uninitialized
memory causes the memory's state to become initialized When malloc allocates memory, the memory's state is
changed from unallocated to allocated-but-uninitialized. Calling free causes ttre affected memory to enter the
unallocated state.

To carch array bounds violations, Purify allocates a small "red-zone" at 0re beginning and end of each block returned
by maIloc. The bytes in the red-zone are recorded as unallocated (unwritable and unreadable). If a program
accesses these bytes, Purify signals an array bounds error.[l]

To carch reads of uninitialized automatic variables, upon every function entry Purify sets the state of the stack frame
bytes to the allocated-but-uninitialized state. In addition, each frame is separated with a red-zone to catch overwriting
stack frame errors.

To catch aray bounds violations in statically allocated arrays, Purify separates each static datum with a red-zone.
Unfortunately some C code depends upon the contiguity of data statically defined ogether, and indexes directly from
one static array into the middle of another. While this may seem a questionable practice, machine-generated code
such as yacc parsers do make this assumption. Thus separating statically allocated arrays with red-zones has to be
user supprcssible, and Purify automatically suppresses it for yacc parsers.

To minimize the chance that accesses to freed memory will go undetect€d because the affected memory is quickly
reallocated, Purify does not reallocate memory until it has "aged", and is thus less likely to still be incorrectly pointed
into. The aging is user specifiable and measured in the number of calls to f ree.

In order to identify otherwise anonymous heap chunks, the call chain at the time malloc is called is recorded in the
bytes that make up the chunk's red-zone. The depth of functions recorded is user speciflable.

Since there are three states, two bits are required to record the state of each byte. Thus there is a 25Vo memory
overhead during development for state storage. In essence, Purify implements a byte-level tagged architecture in
software, where the tags reprcsent the memory state.

The adrantage of maintaining byteJevel state codes is that C and C+r progmms can exhibit off-by-one byte-level
errorst'r that would go undetected if a word-level state code approach was used. In fact, there is a continuum of
choices here. Purify will catch+he read of an uninitialized byte (representing a boolean flag in a struct, say), but will
not necessarily catch an uninitialized bit field read. In the extreme case, Puriry could maintain a two-bit state code for
each bit of memory, giving a2A0Vo overhead. In the autlors' judgement, going from word tagging (6.25Vo overhead)
to byte tagging (25Vo overtrcad) is quite worthwhile because of ttre additional error detection this change permits, but
going to bit tagging (200Vo overhead) is not worthwhile.

An alternative scheme for state storage, that would completely forego byte and two-byte access checking, would be !o
store ttre state information directly in the data by using one "unusual" bit pattern !o represent the unallocated state,
and another to represent the allocated-but-uninitialized state. All other bit patterns would represent real data in the
allocated and initialized stat€. This is the implementation strategy that Saber [Kaufer88], C-atalytix [Feuer85] and
various similar malloc-debug packages use. Byte and two-byte checking cannot be performed with this technique
because tlere are no 8- or 16-bit paaems unusual enough to prevent false positives from occurring frequently.

l. Since arrays in C & C++ arc little more than a convenient syntax for pointer arithmaic, it is not possible to perform complete array bounds
checking.  Inpanicular ,erronof theform'x = rnal loc(100), .  x t5000l  = 1;"wi l lnotalwaysbecaughtbecausethJaddrcssx+50O0
could point into another piece of valid merno,ry. Purify allows the user to adjust the size of the red-zone ro suir his paniorlar space vr. thoroughness
requirernents.

2. Such as those caused by incorrect handling of a string's null terminaring byte.
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4. Object Code Insertion

Purify uses object code insertion to augment a program with checking logrc.

Object code insertion can be performed either before linking or after linking. pi*i"t3l is one program that does object
code insertion after linking. Purify does it before linking, which is slightly easier, at least on Sun sys0ems, since the
code has not yet been relocated. Purify reads object files generated by existing compilers, adds error checking
instructions without disturbing the symbol table or progEm logic, and feeds the output o existing linkers
Consequently, existing debuggers continue to work with Prnified code.

FIGURE 2. ExampleMake

Compiling Purifying Linking

t..--*@--- t.o

Class.C -*@F-* Class.o

libc.a

Another way to augment the program-under-test with ttre necessary checking logic would be to enhance the compiler
to emit the required sequences, or to employ a portable pre-compiler. This would mean, however, thai the
programmer would have to recompile his files in order to use Purify, and that there would be no error checking in any
libraries for which he did not have source code available.

Thus an advantage of object code insertion vs. a compiler or pre-compiler approach is setup performance. Since the
re-translation from C or C++ to assembler is avoided, object code insertion can be much faster then recompilation.
Our un-nrned implementation of object code insertion is more than 50 times faster (on a SPARC) than compiiation.

Another advantage of object code insertion is convenience. The source for a large prognm lives in many directories,
and the object code is already aggregated by the linker. To use object code insertion only the link target in the primary
Makefile must change, instead of the ".c.o" compilation rules in every Makefile in the application.

Another advantage of object code insertion is multiJanguage support; many languages are quite similar at the object-
code level. C and C++, for example, differ only in the encoding of the C++ names into "mangled name,s". Thus with
the minor addirion of a demangler !o assist in the printing of symbol names, objecrcode insertion programs such as
Purify work with C+r as well as they work wiilr C. We are currently exploring an ADA version.

A final advantage of object code insertion is completeness: c/l of the code, including third-party and vendor libraries,
is checked. Even hand-optimized assembly code is checked. This completeness me:ms bugs in application code (such
as calling strcpy with too short a destination array) that manifest themselves.in vendor or *rird-party libraries are
detected. Also, serious bugs in third-party libraries (ike writing into freed memory) can be detected, and the purify
messages can form the basis for highly-specific bug reports. Moreover, the detection or absence of such potentially
fatal errors in a particular third-prty library during the library's evaluation phase can increase ttre developeri
knowledge of the quality of the code that will be included in his application.

3. Pixie is a program that MIPS Comprten Systems distributes to insert profiling code directly in an executable MIpS program.
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The disadvantage of object code insertion is that it is largely instruction-set dependent, and somewhat operating

system dependent-rouitrty tit" the back end of a compiler. This makes porting Purify to new architectures a

substantial task.

5. Memory Leaks

Memory leaks are even harder than memory access errors tro detecl The dfficulty in detecting access errors is that the

direct symptoms of such a bug may appear only sporadically--$ut amemory leak typically doesn't even have a direct

.y*pro*. rne cumulative etrtts or tn"rory leaks is that data locality is lost which increases the size of the working

set and leads to more memory pagtng. In the worst case, the program can consume the entire virtual memory of the

host system.

The indirect symptom of a memory leak is that a process' address space grows during an activity where one would

have expected it to remain constanl Thus the typical test methodology for finding memory leaks is to repeat an

action, sucn as opening and closing a document, many times and to conclude that there are no leaks if the address

space growth levels oul

However, there are two problems wirh this methodology. The fust problem is that it does not rule out that there

simpty was enough unallo,cated heap memory in the existing ad&ess space to accommodate the leaks. In other words

me adaress space does not grow, but ttrere does exist a leak. The assumption that testers have is that if the leak was

significant enough to care ibout, it would have consumed all of the unallocated heap memory within the chosen

number of repetitions and forced an expansion of the process's address space'

The second problem with this repetition methodology is that it is quite time consuming to build test suites that

repetitively eiercise every feature, and automatically watch for improper address space growth. In fact, it is generally

so time consuming that it is not done at all.

Suppose, however, rhat a developer is sufficiently motivated to build a leak-detecting test suite, and finds tlnt the

address spirce grows unacceptablt, due to one or more leaks. The developer still must spend a considerable amount of

time to rrack down ttre probiems. rypi""tty, he would either (1) shrink the test suite bit by bit until the address space

growth is no longer observed, or (2j modify malloc and f ree to record tleir arguments and perform an analysis of

what was maf loc'd but not-freed. The first technique is fairly brute-force, and can take many iterations to ffick

down a single leak.

The second technique seems powerful but in practice has problems. In any given repetition loop, such as opening and

closing a document, there may be malloc chunks that are matloc'd but legitimately not freed until the next

iteratiJn. Thus just because a chunk was maf loc'd but not freed during an iteration does not mean the chunk

represents a leak. It may represent a carry-over from a previous iteration. An improved technique [Banach82] is to

record the malloc -i rt"" calls for an entire progpm run, and look for chunks malloc'd but not freed' The

problem with this is the existence of permanently-allocated data, such as a symbol table, that is designed to be

ieclaimed only when the process terminates. Such permanently-allocated data incorrectly show up as leaks, i.e.

malloc'd but not freed, with this technique (2) and its variants'

Memory leaks are so hard to detect and track down that they are often simply tolerated. In short-lived programs such

us.o*iil"o this is not serious, but in long-running programs it is a major problem. Consider how many hours have

probably been spent eliminating leaks in the X11R4 server for Sun workstations. All that effort, yet dozens of leaks

still exist-small, but leaks that accumulate into big effects. Here is one example session with the XllR4 server

program, prepared by purify, and running under tle dbx debugger. It shows Purify catching the X server leaking one
't 
Uiof a megabyte from a single place, and the 10 minute sequence of events required to fix the leak.
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This example shows fwo leaks that have appeared so far in the current run of the X server. The first is the dominantleak, so let us walk through how to go from this information to find"ing the bug. The fust leak has occurred 43026times so far' and each time leaked 12 bytes. The first leak was proffi-no, the responsibility of xartoc, so we lookat line 279 of miRegioncreate. It creates a region .t ort*" and simply returns it. So we n,,o ,o the caller ofmiRegionCreate: miBSExposeCopy, line 345g:
tempRgn : (* pcc->pScreen_)RegionCreate) (NULL, 1);

A scan of the function confirms that tempRgn is never freed. A one line fix suffices.[4]

tutorial-% dbx Xsun
(dbx) run

Pur i fy :  Dynamic  Er ror  check ing  Enabr -ed .  vers i_on r .3 .2 .
( C )  1 9 9 0 ,  1 9 9 1  p u r e  S o f t w a r e ,  I n c .  p a t e n t s  p e n d i n g .

" 'x server runs' we write more of this paper, then we i .nterrupt theseryer with control-C, and ca-l-I  the Jeak f inding routine, . .

(dbx) cal l  puri fy_newleaks o
P u r i f y :  s e a r c h i n g  f o r  n e w  m e m o r y  l e a k s . . .

F o u n d  4 3 0 3 7  l e a k s .

: l : r : ^ : : "  
s l6 is2  reaked byres ,  wh i .ch  is  35 .er  o f  rhe  1437704 byres  in

12 (43026 t imes) .  Las t  memory  l_eak  a t  Ox35a058
516312 to ta l  by tes  1os t ,  a l loca ted  by  mal loc ,  ca l led  f rom:

X a . j - 1 o c  ( u t i 1 s . o ;  l i n e  5 1 5 )
miReq ionCreate  (mi reg ion .  o , .  l i ne  27  9)
mi -BSExposeCopy (mibs tore .o , .  l i ne  3459)
miHand leExposures  (mj_expose.o , .  l i ne  209)
mfbCopyArea (mfbb i tb l t .o ;  L ine  283)
miBSCopyArea (mibstore. o,.  L j .ne 13 91)
miSpr i teCopyArea (mispr i te .o ;  l ine  999)
ProcCopyArea (d ispat .ch .o ;  l ine  1563)
Dispatch  (d ispatch .  o , .  l i ne  256)
m a i n  ( m a i n . o , .  l _ i n e  2 4 g )
s t a r t  ( c r t o . o ;  p c  :  0 x 2 0 6 4 )

4 0  ( 1 1  t i m e s ) .  L a s t  m e m o r y  l e a k  a t  0 x 3 6 e e 9 g
440 to ta l  by tes  los t ,  a l loca ted  by  mal loc ,  ca l led  f rom:
X a 1 l o c  ( u t i l s . o ;  ] i n e  5 L 5 )
miRectAL loc  (mi reg ion .o ;  l ine  361)
miReg ionOp (mi reg ion .  o , .  l i ne  660)
mi ln te rsec t  ( rn i reg ion .o ;  l ine  975)
miBSExposeCopy (mibs tore .o , .  l i ne  3460)
miHandleExposures (miexpose. o,.  l  j_ne 209)
mfbCopyArea (nfbbitblt .o,.  l ine 2g3)
ProcCopyArea (d ispatch .o , .  I ine  1563)
Dispatch  (d ispatch .o , .  l i ne  256)
main  (ma in .  o , .  l i ne  248)
s t a r t  ( c r t o . o ;  p c  :  0 x 2 0 6 4 )

132
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6. Detecting MemorY Leaks

Memory leaks are allocated memory no longer in use. They should have been freed, but were not. In languages sirch

as lisp and Smalltalk garbage collectors find and reclaim such memory so that it does not become a leak.

There are two parts to a garbage colleclor: a garbage detector and a garbage reclaimer. To achieve some of the

benefis of garbage collection (lack of memory leaks) without the associated run-time costs or risks, Purify makes an

important ana novet change of focus. Instead of p.roviding an aulomatic garbage collector, Purify provides a callable

garbage dztector that idintifies memory leaks.tsl The garbage deteclor is a subroutine library that helps the

f.ogrun,,rn"t find and eliminate memory leaks during development. By using garbage detection to track down leaks,

O"u-"top"rr can benefit from garbage collection technology without suffering the normally associated delivery

runtime costs.

Although the purpose is different, purify uses an algorithm similar to the conventional mark and sweep. In the mark

phase, ilyify-recursively follows potential pointers from the data and stack segments into the heap and marks all

blocks referenced in the standard"conservative" and "pessimistic" [6] manner. In the sweep phase, Purify steps

through the heap, and reports allocated blocks that no longer seem to be referenced by the program'

Identifying leaked blocks only by address would not help programmers track down the source of the leak; it would

onty conn m that leaks existed. Therefore, Purify modifies malloc to label each allocated block with the return

addiesses of the functions then on the call stack. These addresses, when translated into function names and line

numbers via the symbol table, identify rhglode path rhat allocated the leaked memory and often make it fairly easy

for the programmer to eliminate the error.l'I

By moving the garbage collector technology from run-time to development, we are able to avoid t}le serious

.onr"qu"n-"s of the fundamental problem with garbage collectors for C & C++, namely that there is always

amOiguity in what is and what is not garbage. Orn garbage detector separates the heap chunks into three classes:

1. chunks rlat are almost certainly garbage (no potential pointers into them), and

2. chunks that are potentially garbage (no potential pointers to the beginnings of the them), and

3. chunks that are probably not garbage (potential pointers do exist to the beginnings them).

4. We don't mean o pick on XllR4 code; it's just widely-used, neady-connnercial-quality coda This leak, by the way, is also in Xl lR5'

J. John Dawes, of Stanford Univenity, co-invented this teclmology'

6. See rhe following long footnote for an explanation of these terms'
'/. 

Obviously, bener than fixing memory leaks would be avoiding rhern. Garbage collecton [Moon84] have been wrinen for C and C++' Like other

grrbage collecto.r, rhey attem"pt to pto"ia" automatic and_reliable storage mansSement at some runtime cost. Generally they follory -".+ 9d
i*""f,agoririrms, and use oe'srr.t,'rna"trine registen, and dara ,"gn"ni"r root pointen into the heap. Since an inreger in c is indistinguishable

form'a $inrer, every plausiblepointer, me.nini"rery 32brt word orr most current machines, has to be considered a pocsible root pointer' It.is

'rumed thar rhe p.og.--". ir'nJ 'hi'ai"g- -! p"inln frsn the collector by suctr things as.byte-swapping a pointer temporarily, orleaving the

rxrly rcference to'an ou;ea in a callback dtrt "tt ,irtia" process. 'Hiding" a pointer would ca'ride the collector to reclaim something that was not

ya garbage.

tirnce pointers cannot be distinguished from other types in C and C++, an integer with an unfortunate random value can "seem" to point to a chunk

rhrr orirerwise mighr b. garbage, causing that chunik-to not be collected. This is why thes€ collectors arc often called "consewative". Such collec-

r.rn arc called *pe-sslmisic- if'rney perrit " pointer into the middle of a nal loc'dchunk to anchor that chunk. The necessity of a collector being

rrruervative and pessimistic leads to over-matking and under-collecting'
'lhc 

fundamental flaw rhis introduces is that the larger a mernory chmk becomes lhe nPre imPortant il b !ha! it b.e collected if it is garbage'

fr+:<,ruse ir,s a significant resource, and rhe less likzlyl b ilut it aitually witl be collected, because it is more likely to be accidentally anchored by

rx rnrcger valuel This phenomenon is not limired o large single chunks; a doubly-linked list with many entries is vulnerable to the same error'

!*irtc still, the error *n U" r.unrient and unpredictable.-Using a conservative garbage collector in the presence of lalge or interconnected chunks

;nry work most of the rime, -J,rr"n grow ithout bound in a panicular run, because of an rmfornrnate random value sqnewhere else in the pro-

inin thar 
..seems" to point into a churft that iE actually ga6age. In b,road terms, garbage collecton for c & c++ have excellent average case char-

itr"rirrics (high degree of de-allocaricn "o.r""mor), bw fital wont case characteristics (large chunks build up, reornively anchor enough

rrremory to crash the program).
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Each chunk is identified by its allocating call chain, and the developer uses his judgement on what and how to
additionally free. If during the process of 6xing the memory leaks tlre developer incorrectly frees a chunk
prematurely, Purify's error detection will detect tle evenhral freed-memory access as soon as it occurs. Note that
category three (3) above is all of the "live" allocated heap chunks, and can be used as profiling daa 16 help
understand where the heap space in a program is being used.

7. Previous Work

The difficulties of managing memory in C are well-tnown, and several anempts at addressing these issues have been
made. Nevertheless, few C and C++ tools have succeeded in providing comprehensive solutions and none to our
knowledge has addressed both memory leaks and memory access errors.

7.1 MaIIoc Debug

Malloc-debug packages are the most prevalent tool for finding memory access errors. These packages implement the
malloc interface, but also provide several levels of additional error checking and memory marking. They can be
useful for detecting a write past the end of a heap array, and require only a relink to use. Unfortunately malloc-debug
packages do not detect errors at the point they occur; they only detect errors at the next malroc verif v call. Since
malloc-verif y has to scan the entire heap, it is expensive to call frequently. Further, thase pickages Jo not detect
reading past the end of a heap array, accessing freed memory, or reading uninitialized memory.

Malloc debug packages do not provide any memory leak information.

7.2 Mprof

Mprof [Zorn88) provides information on a C pro$am's dynamic memory usage to help programmers reduce memory
leaks. Mprof does not provide any memory acce,ss checking.

Mprof is a two-phase tool requiring developers to exit the program under development before they can view the
information Mprof provides. Developers can only obtain global statistics from Mprof; they cannot profile memory
usage and leaks between arbitrary points of pro$am execution, as they can with Purify. Mprof implemens a"memory leak table" that identifies memory allocated but never freed. Unfornrnately, this strategy coniounds true
memory leaks with memory allocated but not cleaned up during the exit process. Consider a symbol table that maps
strings into symbols, in which the symbols are used as tokens and are never freed. When a prognm is about to e^it,
any time spent freeing memory is wasted, since the exit call will reclaim the process's entire memory. Thus, most
Unix programs conectly call exit with large amounts of memory still in use. This memory does not constitute a leak,
yet Mprof lists it as such. These false positives reduce Mprof 's diagnostic value.

7.3 Saber-C and Saber-C++

Saber [Kaufer88] detects many run-time memory access errors in interpreted C and C++ source code. However,
loading source code is time-consuming, and interpreting source code takes more than an order-of-magnitude longer
than executing object code. Typically, programmers load only a few files in source form and load the rest in object
form. As a result, many memory :rccess errors remain undetected. Even if developers source load their entire
application into Saber, it can not detect improper memory accesses from system libraries. For example, Saber does
not detect the common case of calling sprintf with too short a destination string, even when called from
interpreted code. Saber's interpreter also misses byte-level memory access errors, such as reading an uninitialized
byte, due to the implementation of its state storage, discussed in section 3.

saber does not provide memory leak information or memory usage statistics.
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8. Measurements

The overhead that Purify introduces into a program is dependent on the density of memory accesses in that program.
In tle worst case, where ttre program does nothing but copy memory in a tight loop,luJ Purify's run-time overhead is a
factor of 5.5 over the optimized C code. This compares with a factor of 3.2 slowdown for the same prog:rm compiled
for debugging, and a factor of 300 slowdown for the same progmm running under a C interpreter.

Below we present data on Purify's overhead when used with two programs: the GNU compiler gcc, and the Xl1R4
demo program maze that animates the solving of amaze. The maze prognm was modifled to remove its sleep
calls. gcc is actually a small driver program, and cc1 is the program that does the bulk of the work. It is cc1 that
was tested, although for simplicity we will refer to it below uls gcc. The data was collected on a Sun SPARCstation
SLC running SLTNOS 4.1.1, and all times are real times.

Run time[9] (seconds)
optimized / Purified & optimized

a.our sizettol (kb)

tdax heap sizetlll (kb)

Build time (seconds)
link/Purify & link

Y v v

2618r

815 / 1570

maze average multiple

rr7 /r78 2.3

674 /93r r.7

1486 /1775 5401ffi8 r.2

7  t 7 5 5 /24 4.9

The run-time overhead is mostly in the checking functions that. execute before every memory access. The increased
a.out size is due to the function call instructions inserted before every load and slore. The heap size overhead is due to
the red-zones kept around every heap chunk. The default red-zone policy, used in the test cases; gives each chunk a
16 byte initial red-zone and a 28 byte trailing ted,-znne. The build time overhead is half due to the Purifying prccess,
and half due to the increased demands on the linker for resolving all of the references to the checking functions.

9. Summary

Pwify provides nearly-comprehensive memory access checking and memory leak detecrion. It fits cleanly into the
Unix file-processing paradigm and only requires adding a single word to the link-line of a makefile to use on an
existing application. Importantly, Purify yields executables that are fast enough to use during the entire development
and test process. For example, this paper was written using Frame while running under a Purified R4 X server,
Purified window manager, and Purified xterms, all on Sun's bottom-of-the-line SPARCstation equipped with 12 Mb
of memory. Purify's relatively low overhead, ease of setup, and thoroughness of error detection permits more robust.
software !o be developed faster, yet it entails no overhead in code delivered to crrstromers.

Purify can help bridge ttre gap between a program plagued by intermittent errors and that same program working
robustly and continuously over long periods of time. Of course, Purify is not a panacea, and it does not result in bug-
lrce code. Nevertheless, used in conjunction with good test suites Purify can result in significantly more correct and

ll. Specifically, the program allocates one megabyte, initializes it to zero, and then performs 50 iteratiqrs of shifring the megabyte down one byte,
by copyng byte by byte.

9- With gcc rhis is the time for cc1 to cornpile and optimize the XllR4 client xterm's file charproc.c. This fi.le was picked at random to be the
tcrt case. With ma ze the times shown are the rimes to perform 20 iterations of solving the maze wirh the s leep calls belween iterations rernoved.

I (). Measured with the s i ze command.

l l .  Measu redw i t hsb rk (0 )  -  cend .
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rcliable programs, and increase the developer's knowledge and confidence in the code. Such prcgress createsprograms that are less susceptible !o catastrophic failure from small changes-making maintenance less risky, andtesting less costly' Results from users of Purify working on large commercial progr*r-haue been very encouraging.

one of the great pleasures of c & c++ programming is being able to get tle most out of the underlying hardware.walking the tighrope of pointer arithmetic, for example, is uefo exciting but the downside is that most falls are fatal.Purify is the safety net that c and c++ always needed-it'i there during development, but does not impair tleultimate performance.
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