
Findings Security Errors in Java Applications
Using Lightweight Static Analysis

V. Benjamin Livshits
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

livshits@cs.stanford.edu

Application security is becoming increasingly important
in Java. In this paper, we focus on security issues that fre-
quently occur in enterprise Java components. We describe
two commonly violated security patterns and show how such
violations can be prevented with static analysis of the appli-
cation source. We describe our techniques and experimen-
tally evaluate them on a set of 10 large open-source Java
applications totalling over 130,000 lines of code. Our cur-
rent approach allows us to successfully find 22 real security
errors. Finally, we outline limitations of the current ap-
proach as well future work that will allow us to increase our
analysis coverage and detect more errors.

Keywords: Database security, Electronic commerce secu-
rity, Enterprise security, Middleware and distributed sys-
tems security, Software safety and program correctness.

1. OVERVIEW
With the increased adoption of Java and J2EE technolo-

gies for critical enterprise applications, their security be-
comes increasingly important. Many Java and J2EE appli-
cation get deployed on Web servers as servlets and as such
are easily exposed to hackers. Since many e-commerce sites
depend on servlets for continuous operation, it is important
to come up with automatic approaches to improve Web ap-
plication security.

Various dynamic approaches exist that allow the execu-
tion of servlets to be monitored to disallow malicious ac-
tivity, such as returning sensitive data back to the user.
However, analysis of the application code is in many ways
advantageous to dynamic monitoring.

Static analysis allows potential problems in the programs
to be found before they have a chance to manifest them-
selves in an execution without inducing a runtime overhead.
Sound static analysis generally also allows providing security
guarantees. That is, if a program is deemed safe by a static
analyzer, than it must indeed be safe for all possible inputs.
In this paper we demonstrate how a lightweight syntactic
source-level analysis can be used to expose a number of real
application errors.

2. SECURITY ISSUES
We address the following two common security issues in

this paper: “bad session stores” and SQL injections. Both
occur in the context of servlets, Java components deployed
within application servers such as Tomcat.

2.1 Bad session stores
The “bad session store” problem arises when objects stored

in an attribute of a javax.servlet.http.HttpSession are
not subclasses of java.io.Serializable. This can cause
correctness issues because HttpSession objects may be writ-
ten out to disk, thereby requiring all objects stored as at-

tributes to be serializable, which is indicated by implement-
ing interface java.io.Serializable. Failure to do so may
cause exceptions or data corruption. The former may be
exploited by a malicious user to mount a denial-of-service
attack; the latter may cause intermittent problems that are
hard to isolate because HttpSession objects are written out
only under high load, which does not happen in the test
environment.

2.2 SQL injections
SQL injections arise from allowing user-controlled strings

to be used as part of SQL statements passed to a database.
Allowing the user to do so may allow a malicious user to get
access to unauthorized data or even delete information from
the underlying database.

This problem falls into the category of so-called “taint”
problems; a taint problem involves tracking the flow of data
between values in the set of sources and the set of sinks. In
the case of SQL injection using servlets, methods that read
user-provided data such as

javax.servlet.HttpRequest.getParameter(String name)

are the sources and methods that pass SQL strings to the
database for execution such as

java.sql.Statement.executeQuery(String query)

are the sinks. A static violation a sequence of values of the
form v0, v1, . . . vn, such that v0 is a source and vn is a sink.

3. ANALYSIS
We have implemented our static analyses as Eclipse plu-

gins. Eclipse, an open-source Java IDE, allows easy access
to ASTs for Java programs while allowing us to show to
the user precisely where errors occur. We have evaluated
our tools for both bad sessions stores and SQL injections
on 10 open-source Java blogger and bulletin board applica-
tions that are widely deployed on the Web. A summary of
information about the benchmarks is given in Figure 1.

3.1 Bad Sessions Stores
To detect bad session stores, our tool looks at the type

of parameters of HttpSession.setAttribute calls that are
used to store objects withing a session. Checking the type
of a parameter of a call to setAttribute and checking for
subclassing can be done easily using Eclipse compiler APIs.

Figure 1 shows the total number of calls to setAttribute

in column 4 and the number of calls with non-serializable
types in column 5. We have manually examined each of the
reported warnings to see if it is truly an error or a false
positives; the numbers of real errors and false positives are
summarized in columns 6 and 7, respectively. As can be
seen from the Table, we find 14 real bad store errors with an
average false positive rate of about 37%. Most false positives
are due to the fact that runtime types are different from
declared types; for instance, an object declared as a Map is



Session stores SQL injections
Benchmark LOC Classes all bad errors false pos. sources all sinks unsafe sinks errors

mapleblog 2,156 36 5 5 3 2 8 16 16 1
personalblog 2,317 38 2 0 0 0 29 35 27 3
blueblog 4,142 38 0 0 0 0 6 1 1 0
blogwelder 4,901 33 3 3 3 0 115 24 24 0
javablog 5,184 79 10 0 0 0 12 42 38 0
snipsnap 9,671 1,331 28 12 7 5 195 33 33 1
blojsom 14,382 30 0 0 0 0 12 1 1 0
jboard 17,368 138 1 0 0 0 3 18 17 3
pebble 30,319 169 2 1 1 0 109 1 1 0
roller 47,044 267 24 1 0 1 81 45 30 0

Total 137,484 2,159 75 22 14 8 570 216 188 8

Figure 1: Summary of benchmark data and experimental results.

Figure 2: Tracking a value in Eclipse GUI using the provenance tracker view. The topmost line is the sink being

explored. Blue lines indicate string constants and red lines indicate dangerous sources.

in fact a HashMap. While type HashMap is serializable, Map is
not, leading to a false positive.

3.2 SQL Injections
We address the problem of SQL injection checking by pro-

viding the following three separate custom views in Eclipse:

1. The SQL injection source view view allows the user to
easily navigate between the sources of user data.

2. The SQL injection sink view allows the user to eas-
ily navigate between the calls that pass strings to be
executed on the database.

3. Finally, the Provenance tracker view allows the user
to find origins of a particular value in the source by
tracking the flow of data backwards.

Using a combination of these views, we have managed to find
a number of real SQL injection errors in out benchmarks.
Table 1 summarizes the number of SQL injection sources
and sinks in columns 8 and 9, respectively. Column 10 shows
the number of unsafe sinks, i.e. calls that take non-constant
string parameters. Finally, the number of real errors we
detected is shown in column 11.

A typical error detection session would start by choosing
an injection sink and then using the provenance tracker view
to see if data flow ever reaches an injection source. An
example of an error we detected in personalblog is shown
in Figure 2. In that example, we start with variable cat,
which is part of the argument of a sink method call

session.find("..." + cat + "...")

and use our provenance tracker view to propagate data back
to the source, which happens to be the return result of
request.getParameter("cat").

The provenance tracker view is based on Eclipse’s infor-
mation about variable declarations. It is also important to
point out that this approach requires manual effort and is
generally incomplete, because for arguments of functions

with many callers, the number of possible origins for val-
ues we are tracking may quickly become prohibitively large,
thus calling for a more automatic technique.

4. CONCLUSIONS AND FUTURE WORK
In this section we summarize our preliminary findings and

formulate future plans. First, we believe that our tools,
while not fully automatic, are still quite practical to be used
by the average programmer. With the push of a button in
Eclipse IDE, the programmer gets reports about potential
security violations in her code. Computing and displaying
bad session stores, SQL injection sources, and SQL injection
sinks for all 10 benchmarks takes 27, 120, and 73 seconds,
respectively on an Athlon 2500+ machine. Using the prove-
nance tracker view to find origins of values is also fast in
most cases.

The results we obtain for the bad session store problem
are encouraging: we find a total of 14 errors with 8 false
positives. The number of false positives can be reduced fur-
ther by using a pointer analysis. Pointer analysis requires
a stronger semantic understanding of the program and may
generally have higher runtimes, however. In fact, we have
experimented with a cloning-based context-sensitive pointer
analysis to successfully eliminate most of false positives.

While we find a total of 8 errors in 10 applications, our
overall experience with SQL injections is somewhat less en-
couraging. Looking for injections is a difficult manual pro-
cess that requires automation. Moreover, while generally
precise in practice, the results are potentially both unsound
and incomplete. That is, while tracking where a particular
value originates, some of the results may not be correct and
some may be missing.

We are currently working on a precise static analysis for
Java that would allow us to track the flow of data in the
program between the sources and sinks precisely and effi-
ciently. Such a tool will allow us to either find more errors
and prove that they cannot exist.


