
Reflection Analysis for Java

Benjamin Livshits, John Whaley, and Monica S. Lam?

Computer Science Department
Stanford University

Stanford, CA 94305, USA

{livshits, jwhaley, lam}@cs.stanford.edu

Abstract. Reflection has always been a thorn in the side of Java static
analysis tools. Without a full treatment of reflection, static analysis tools
are both incomplete because some parts of the program may not be in-
cluded in the application call graph, and unsound because the static
analysis does not take into account reflective features of Java that al-
low writes to object fields and method invocations. However, accurately
analyzing reflection has always been difficult, leading to most static an-
alysis tools treating reflection in an unsound manner or just ignoring it
entirely. This is unsatisfactory as many modern Java applications make
significant use of reflection.
In this paper we propose a static analysis algorithm that uses points-
to information to approximate the targets of reflective calls as part of
call graph construction. Because reflective calls may rely on input to the
application, in addition to performing reflection resolution, our algorithm
also discovers all places in the program where user-provided specifications
are necessary to fully resolve reflective targets. As an alternative to user-
provided specifications, we also propose a reflection resolution approach
based on type cast information that reduces the need for user input, but
typically results in a less precise call graph.
We have implemented the reflection resolution algorithms described in
this paper and applied them to a set of six large, widely-used benchmark
applications consisting of more than 600,000 lines of code combined.
Experiments show that our technique is effective for resolving most re-
flective calls without any user input. Certain reflective calls, however,
cannot be resolved at compile time precisely. Relying on a user-provided
specification to obtain a conservative call graph results in graphs that
contain 1.43 to 6.58 times more methods that the original. In one case,
a conservative call graph has 7,047 more methods than a call graph that
does not interpret reflective calls. In contrast, ignoring reflection leads
to missing substantial portions of the application call graph.

1 Introduction

Whole-program static analysis requires knowing the targets of function or
method calls. The task of computing a program’s call graph is complicated for
a language like Java because of virtual method invocations and reflection. Past
research has addressed the analysis of function pointers in C as well as virtual
method calls in C++ and Java. Reflection, however, has mostly been neglected.

?
This work was supported by NSF Grant No. 0326227 and an Intel Graduate Fellowship.



Fig. 1: Architecture of our static analysis framework.

Reflection in Java allows the developer to perform runtime actions given
the descriptions of the objects involved: one can create objects given their class
names, call methods by their name, and access object fields given their name [1].
Because names of methods to be invoked can be supplied by the user, especially
in the presence of dynamic class loading, precise static construction of a call
graph is generally undecidable. Even if we assume that all classes that may be
used are available for analysis, without placing any restrictions of the targets of
reflective calls, a sound (or conservative) call graph would be prohibitively large.

Many projects that use static analysis for optimization, error detection, and
other purposes ignore the use of reflection, which makes static analysis tools
incomplete because some parts of the program may not be included in the call
graph and potentially unsound, because some operations, such as reflectively
invoking a method or setting an object field, are ignored. Our research is
motivated by the practical need to improve the coverage of static error detection
tools [2–4]. The success of such tools in Java is predicated upon having a call
graph available to the error detection tool. Unless reflective calls are interpreted,
the tools run the danger of only analyzing a small portion of the available code
and giving the developer a false sense of security when no bugs are reported.
Moreover, when static results are used to reduce runtime instrumentation, all
parts of the application that are used at runtime must be statically analyzed.

A recent paper by Hirzel, Diwan, and Hind proposes the use of dynamic
instrumentation to collect the reflection targets discovered at run time [5]. They
use this information to extend Andersen’s context-insensitive, inclusion-based
pointer analysis for Java into an online algorithm [6]. Reflective calls are generally
used to offer a choice in the application control flow, and a dynamic application
run typically includes only several of all the possibilities. However, analyses used
for static error detection and optimization often require a full call graph of the
program in order to achieve complete coverage.

In this paper we present a static analysis algorithm that uses points-to infor-
mation to determine the targets of reflective calls. Often the targets of reflective
calls can be determined precisely by analyzing the flow of strings that represent
class names throughout the program. This allows us to precisely resolve many
reflective calls and add them to the call graph. However, in some cases reflective
call targets may depend on user input and require user-provided specifications
for the call graph to be determined. Our algorithm determines all specification
points — places in the program where user-provided specification is needed to de-
termine reflective targets. The user is given the option to provide a specification
and our call graph is complete with respect to the specifications provided [7].

Because providing reflection specifications can be time-consuming and error-
prone, we also provide a conservative, albeit sometimes imprecise, approxima-
tion of targets of reflective calls by analyzing how type casts are used in the



program. A common coding idiom consists of casting the result of a call to
Class.newInstance used to create new objects to a more specific type before the
returned object can be used. Relying on cast information allows us to produce
a conservative call graph approximation without requiring user-provided reflec-
tion specifications in most cases. A flow diagram summarizing the stages of our
analysis is shown in Figure 1.

Our reflection resolution approach hinges on three assumptions about the use
of reflection: (a) all the class files that may be accessed at runtime are available
for analysis; (b) the behavior of Class.forName is consistent with its API definition
in that it returns a class whose name is specified by the first parameter, and
(c) cast operations that operate on the results of Class.newInstance calls are
correct. In rare cases when no cast information is available to aid with reflection
resolution, we report this back to the user as a situation requiring specification.

1.1 Contributions

This paper makes the following contributions:

– We formulate a set of natural assumptions that hold in most Java applica-
tions and make the use of reflection amenable to static analysis.

– We propose a call graph construction algorithm that uses points-to infor-
mation about strings used in reflective calls to statically find potential call
targets. When reflective calls cannot be fully “resolved” at compile time, our
algorithms determines a set of specification points — places in the program
that require user-provided specification to resolve reflective calls.

– As an alternative to having to provide a reflection specification, we pro-
pose an algorithm that uses information about type casts in the program to
statically approximate potential targets of reflective calls.

– We provide an extensive experimental evaluation of our analysis approach
based on points-to results by applying it to a suite of six large open-source
Java applications consisting of more than 600,000 lines of code combined. We
evaluate how the points-to and cast-based analyses of reflective calls com-
pare to a local intra-method approach. While all these analyses find at least
one constant target for most Class.forName call sites, they only moderately
increase the call graph size. However, the conservative call graph obtained
with the help of a user-provided specification results is a call graph than
is almost 7 times as big as the original. We assess the amount of effort re-
quired to come up with a specification and how cast-based information can
significantly reduce the specification burden placed on the user.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2, we provide background
information about the use of reflection in Java. In Section 3, we lay out the sim-
plifying assumptions made by our static analysis. In Sections 4 we describe our
analysis approach. Section 5 provides a comprehensive experimental evaluation.
Finally, in Sections 6 and 7 we describe related work and conclude.



2 Overview of Reflection in Java

In this section we first informally introduce the reflection APIs in Java. The
most typical use of reflection by far is for creating new objects given the object
class name. The most common usage idiom for reflectively creating an object
is shown in Figure 2. Reflective APIs in Java are used for object creation,
method invocation, and field access, as described below. Because of the space
limitations, in this section we only briefly outline the relevant reflective APIs.
Interested readers are encouraged to refer to our technical report for a complete
treatment and a case study of reflection uses in our benchmarks applications [8].

Object Creation Object creation APIs in Java provide a way to program-
matically create objects of a class, whose name is provided at runtime; param-
eters of the object constructor can be passed in as necessary. Obtaining a class
given its name is most typically done using a call to one of the static functions
Class.forName(String, ...) and passing the class name as the first parameter. We
should point out that while Class.forName is the most common way to obtain a
class given its name, it may not be the only method for doing so. An application
may define a native method that implements the same functionality. The same
observation applies to other standard reflective API methods.

The commonly used Java idiom T.class, where T is a class is translated by the
compiler to a call to Class.forName(T.getName()). Since our reflection resolution
algorithm works at the byte code level, T.class constructs do not require a special
treatment. Creating an object with an empty constructor is achieved through a
call to newInstance on the appropriate java.lang.Class object, which provides a
runtime representation of a class.

Method Invocation Methods are obtained from a Class object by supplying
the method signature or by iterating through the array of Methods returned by one
of Class functions. Methods are subsequently invoked by calling Method.invoke.

Accessing Fields Fields of Java runtime objects can be read and written at
runtime. Calls to Field.get and Field.set can be used to get and set fields
containing objects. Additional methods are provided for fields of primitive types.

3 Assumptions About Reflection

This section presents assumptions we make in our static analysis for resolving
reflection in Java programs. We believe that these assumptions are quite reason-
able and hold for many real-life Java applications.

The problem of precisely determining the classes that an application may
access is undecidable. Furthermore, for applications that access the network,

1. String className = ...;
2. Class c = Class.forName(className);
3. Object o = c.newInstance();
4. T t = (T) o;

Fig. 2: Typical use of reflection to create new objects.



the set of classes that may be accessed is unbounded: we cannot possibly hope
to analyze all classes that the application may conceivably download from the
net and load at runtime. Programs can also dynamically generate classes to be
subsequently loaded. Our analysis assumes a closed world, as defined below.

Assumption 1. Closed world.
We assume that only classes reachable from the class path at analysis time can
be used by the application at runtime.

In the presence of user-defined class loaders, it is impossible to statically deter-
mine the behavior of function Class.forName. If custom class loaders are used,
the behavior of Class.forName can change; it is even possible for a malicious class
loader to return completely unrelated classes in response to a Class.forName call.
The following assumption allows us to interpret calls to Class.forName.

Assumption 2. Well-behaved class loaders.
The name of the class returned by a call to Class.forName(className) equals
className.

To check the validity of Assumption 2, we have instrumented large applications
to observe the behavior of Class.forName; we have never encountered a violation
of this assumption. Finally, we introduce the following assumption that allows
us to leverage type cast information contained in the program to constrain the
targets of reflective calls.

Assumption 3. Correct casts.
Type cast operations that always operate on the result of a call to newInstance

are correct; they will always succeed without throwing a ClassCastException.

We believe this to be a valid practical assumption: while it is possible to have
casts that fail, causing an exception that is caught so that the instantiated object
can be used afterwards, we have not seen such cases in practice. Typical catch
blocks around such casts lead to the program terminating with an error message.

4 Analysis of Reflection

In this section, we present techniques for resolving reflective calls in a program.
Our analysis consists of the following three steps:

1. We use a sound points-to analysis to determine all the possible sources of
strings that are used as class names. Such sources can either be constant
strings or derived from external sources. The pointer analysis-based approach
fully resolves the targets of a reflective call if constant strings account for
all the possible sources. We say that a call is partially resolved if the sources
can be either constants or inputs and unresolved if the sources can only be
inputs. Knowing which external sources may be used as class names is useful
because users can potentially specify all the possible values; typical examples
are return results of file read operations. We refer to program points where
the input strings are defined as specification points.



2. Unfortunately the number of specification points in a program can be large.
Instead of asking users to specify the values of every possible input string, our
second technique takes advantage of casts, whenever available, to determine
a conservative approximation of targets of reflective calls that are not fully
resolved. For example, as shown in Figure 2, the call to Class.newInstance,
which returns an Object, is always followed by a cast to the appropriate
type before the newly created object can be used. Assuming no exception is
raised, we can conclude that the new object must be a subtype of the type
used in the cast, thus restricting the set of objects that may be instantiated.

3. Finally, we rely on user-provided specification for the remaining set of calls —
namely calls whose source strings are not all constants — in order to obtain
a conservative approximation of the call graph.

We start by describing the call graph discovery algorithm in Section 4.1 as well
as how reflection resolution fits in with call graph discovery. Section 4.2 presents
a reflection resolution algorithm based on pointer analysis results. Finally, Sec-
tion 4.3 describes our algorithm that leverages type cast information for conser-
vative call graph construction without relying on user-provided specifications.

4.1 Call Graph Discovery

Our static techniques to discover reflective targets are integrated into a context-
insensitive points-to analysis that discovers the call graph on the fly [9]. As
the points-to analysis finds the pointees of variables, type information of these
pointees is used to resolve the targets of virtual method invocations, increasing
the size of the call graph, which in turn is used to find more pointees. Our analysis
of reflective calls further expands the call graph, which is used in the analysis to
generate more points-to relations, leading to bigger call graphs. The discovery
algorithm terminates when a fixpoint is reached and no more call targets or
points-to relations can be found.

By using a points-to analysis to discover the call graph, we can obtain a more
accurate call graph than by using a less precise technique such as class hierarchy
analysis CHA [10] or rapid type analysis RTA [11]. We use a context-insensitive
version of the analysis because context sensitivity does not seem to substantially
improve the accuracy of the call graph [9, 12].

4.2 Pointer Analysis for Reflection

This section describes how we leverage pointer analysis results to resolve calls to
Class.forName and track Class objects. This can be used to discover the types of
objects that can be created at calls to Class.newInstance, along with resolving
reflective method invocations and field access operations. Pointer analysis is also
used to find specification points: external sources that propagate string values
to the first argument of Class.forName.

Reflection and Points-to Information The programming idiom that moti-
vated the use of points-to analysis for resolving reflection was first presented in
Figure 2. This idiom consists of the following steps:



1. Obtain the name of the class for the object that needs to be created.
2. Create a Class object by calling the static method Class.forName.
3. Create the new object with a call to Class.newInstance.
4. Cast the result of the call to Class.newInstance to the necessary type in order

to use the newly created object.

When interpreting this idiom statically, we would like to “resolve” the call to
Class.newInstance in step 3 as a call to the default constructor T(). However,
analyzing even this relatively simple idiom is nontrivial.

The four steps shown above can be widely separated in the code and reside
in different methods, classes, or jar libraries. The Class object obtained in step 2
may be passed through several levels of function calls before being used in step 3.
Furthermore, the Class object can be deposited in a collection to be later re-
trieved in step 3. The same is true for the name of the class created in step 1 and
used later in step 2. To determine how variables className, c, o, and t defined
and used in steps 1–4 may be related, we need to know what runtime objects
they may be referring to: a problem addressed by points-to analysis. Point-to
analysis computes which objects each program variable may refer to.

Resolution of Class.newInstance of Class.forName calls is not the only thing
made possible with points-to results: using points-to analysis, we also track
Method, Field, and Constructor objects. This allows us to correctly resolve re-
flective method invocations and field accesses. Reflection is also commonly used
to invoke the class constructor of a given class via calling Class.forName with
the class name as the first argument. We use points-to information to determine
potential targets of Class.forName calls and add calls to class constructors of the
appropriate classes to the call graph.

The bddbddb Program Database In the remainder of this section we describe
how pointer information is used for reflection resolution. We start by describing
how the input program can be represented as a set of relations in bddbddb, a
BDD-based program database [9, 13]. The program database and the associated
constraint resolution tool allows program analyses to be expressed in a succinct
and natural fashion as a set of rules in Datalog, a logic programming language.
Points-to information is compactly represented in bddbddb with binary decision
diagrams (BDDs), and can be accessed and manipulated efficiently with Datalog
queries. The program representation as well as pointer analysis results are stored
as relations in the bddbddb database. The domains in the database include invo-
cation sites I, variables V , methods M , heap objects named by their allocation
site H, types T , and integers Z.

The source program is represented as a number of input relations. For in-
stance, relations actual and ret represent parameter passing and method returns,
respectively. In the following, we say that predicate A(x1, . . . , xn) is true if tuple
(x1, . . . , xn) is in relation A. Below we show the definitions of Datalog relations
used to represent the input program:

actual : I × Z × V . actual(i, z, v) means that variable v is zth argument of the
method call at i.

ret : I × V . ret(i, v), means that variable v is the return result of the method
call at i.



assign: V × V . assign(v1, v2) means that there is an implicit or explicit assign-
ment statement v1 = v2 in the program.

load : V ×F ×V . load(v1, f, v2) means that there is a load statement v2 = v1.f
in the program.

store: V ×F×V . store(v1, f, v2) means that there is a store statement v1.f = v2

in the program.
string2class: H×T . string2class(s, t) means that string constant s is the string

representation of the name of type t.
calls: I × M is the invocation relation. calls(i,m) means that invocation site

i may invoke method m.

Points-to results are represented with the relation vP :

vP : V × H is the variable points-to relation. vP(v, h) means that variable v
may point to heap object h.

A Datalog query consists of a set of rules, written in a Prolog-style notation,
where a predicate is defined as a conjunction of other predicates. For example,
the Datalog rule D(w, z) : – A(w, x), B(x, y), C(y, z). says that “D(w, z) is true
if A(w, x), B(x, y), and C(y, z) are all true.”

Reflection Resolution Algorithm The algorithm for computing targets of
reflective calls is naturally expressed in terms of Datalog queries. Below we define
Datalog rules to resolve targets of Class.newInstance and Class.forName calls.
Handling of constructors, methods, and fields proceed similarly.

To compute reflective targets of calls to Class.newInstance, we define two
Datalog relations. Relation classObjects contains pairs 〈i, t〉 of invocations sites
i ∈ I calling Class.forName and types t ∈ T that may be returned from the call.
We define classObjects using the following Datalog rule:

classObjects(i, t) : – calls(i, “Class.forName”),
actual(i, 1, v), vP(v, s), string2class(s, t).

The Datalog rule for classObjects reads as follows. Invocation site i returns
an object of type t if the call graph relation calls contains an edge from i to
“Class.forName”, parameter 1 of i is v, v points to s, and s is a string that
represents the name of type t.

Relation newInstanceTargets contains pairs 〈i, t〉 of invocation sites i ∈ I
calling Class.newInstance and classes t ∈ T that may be reflectively invoked by
the call. The Datalog rule to compute newInstanceTargets is:

newInstanceTargets(i, t) : – calls(i, “Class.newInstance”),
actual(i, 0, v), vP(v, c),
vP(vc, c), ret(ic, vc), classObjects(ic, t).

The rule reads as follows. Invocation site i returns a new object of type t if the call
graph relation calls contains an edge from i to Class.newInstance, parameter 0
of i is v, v is aliased to a variable vc that is the return value of invocation site
ic, and ic returns type t. Targets of Class.forName calls are resolved and calls to
the appropriate class constructors are added to the invocation relation calls:

calls(i,m) : – classObjects(i, t),m = t + “. < clinit >”.



loadImpl() @ 43 InetAddress.java:1231 => java.net.Inet4AddressImpl
loadImpl() @ 43 InetAddress.java:1231 => java.net.Inet6AddressImpl
...
lookup() @ 86 AbstractCharsetProvider.java:126 => sun.nio.cs.ISO_8859_15
lookup() @ 86 AbstractCharsetProvider.java:126 => sun.nio.cs.MS1251
...
tryToLoadClass() @ 29 DataFlavor.java:64 => java.io.InputStream
...

Fig. 3: A fragment of a specification file accepted by our system. A string identifying
a call site to Class.forName is mapped to a class name that that call may resolve to.

(The “+” sign indicates string concatenation.) Similarly, having computed re-
lation newInstanceTargets(i, t), we add these reflective call targets invoking the
appropriate type constructor to the call graph relation calls with the rule below:

calls(i, m) : – newInstanceTargets(i, t),m = t + “. < init >”.

Handling Constructor and Other Objects Another technique of reflective
object creation is to use Class.getConstructor to get a Constructor object, and
then calling newInstance on that. We define a relation constructorTypes that
contains pairs 〈i, t〉 of invocations sites i ∈ I calling Class.getConstructor and
types t ∈ T of the type of the constructor:

constructorTypes(i, t) : – calls(i, “Class.getConstructor”),
actual(i, 0, v), vP(v, h), classObjects(h, t).

Once we have computed constructorTypes, we can compute more
newInstanceTargets as follows:

newInstanceTargets(i, t) : – calls(i, “Class.newInstance”),
actual(i, 0, v), vP(v, c), vP(vc, c), ret(ic, vc),
constructorTypes(ic, t).

This rule says that invocation site i calling “Class.newInstance” returns an object
of type t if parameter 0 of i is v, v is aliased to the return value of invocation ic
which calls “Class.getConstructor”, and the call to ic is on type t.

In a similar manner, we can add support for Class.getConstructors, along
with support for reflective field, and method accesses. The specification of these
are straightforward and we do not describe them here. Our actual implemen-
tation completely models all methods in the Java Reflection API. We refer the
reader to a technical report we have for more details [8].

Specification Points and User-Provided Specifications Using a points-
to analysis also allows us to determine, when a non-constant string is passed
to a call to Class.forName, the provenance of that string. The provenance of a
string is in essence a backward data slice showing the flow of data to that string.
Provenance allows us to compute specification points—places in the program
where external sources are read by the program from a configuration file, system
properties, etc. For each specification point, the user can provide values that
may be passed into the application.



We compute the provenance by propagating through the assignment relation
assign, aliased loads and stores, and string operations. To make the specification
points as close to external sources as possible, we perform a simple analysis of
strings to do backward propagation through string concatenation operations. For
brevity, we only list the StringBuffer.append method used by the Java compiler
to expand string concatenation operations here; other string operations work
in a similar manner. The following rules for relation leadsToForName detail
provenance propagation:

leadsToForName(v, i) : – calls(i, “Class.forName”), actual(i, 1, v).
leadsToForName(v2, i) : – leadsToForName(v1, i), assign(v1, v2).
leadsToForName(v2, i) : – leadsToForName(v1, i),

load(v3, f, v1), vP(v3, h3), vP(v4, h3), store(v4, f, v2).
leadsToForName(v2, i) : – leadsToForName(v1, i), ret(i2, v1),

calls(i2, “StringBuffer.append”), actual(i2, 0, v2).
leadsToForName(v2, i) : – leadsToForName(v1, i), ret(i2, v1),

calls(i2, “StringBuffer.append”), actual(i2, 1, v2).
leadsToForName(v2, i) : – leadsToForName(v1, i), actual(i2, 0, v1),

calls(i2, “StringBuffer.append”), actual(i2, 1, v2).

To compute the specification points necessary to resolve Class.forName calls, we
find endpoints of the leadsToForName propagation chains that are not string
constants that represent class names. These will often terminate in the return
result of a call to System.getProperty in the case of reading from a system prop-
erty or BufferedReader.readLine in the case of reading from a file. By specifying
the possible values at that point that are appropriate for the application being
analyzed, the user can construct a complete call graph.

Our implementation accepts specification files that contain a simple textual
map of a specification point to the constant strings it can generate. A specifica-
tion point is represented by a method name, bytecode offset, and the relevant
line number. An example of a specification file is shown in Figure 3.

4.3 Reflection Resolution Using Casts

For some applications, the task of providing reflection specifications may be too
heavy a burden. Fortunately, we can leverage the type cast information present in
the program to automatically determine a conservative approximation of possible
reflective targets. Consider, for instance, the following typical code snippet:

1. Object o = c.newInstance();
2. String s = (String) o;

The cast in statement 2 post-dominates the call to Class.newInstance in state-
ment 1. This implies that all execution paths that pass through the call to
Class.newInstance must also go through the cast in statement 2 [14]. For state-
ment 2 not to produce a runtime exception, o must be a subclass of String. Thus,
only subtypes of String can be created as a result of the call to newInstance.



More generally, if the result of a newInstance call is always cast to type t, we say
that only subtypes of t can be instantiated at the call to newInstance.

Relying on cast operations can possibly be unsound as the cast may fail, in
which case, the code will throw a ClassCastException. Thus, in order to work, our
cast-based technique relies on Assumption 3, the correctness of cast operations.

Preparing Subtype Information We rely on the closed world Assumption 2
described in Section 3 to find the set of all classes possibly used by the appli-
cation. The classes available at analysis time are generally distributed with the
application. However, occasionally, there are classes that are generated when
the application is compiled or deployed, typically with the help of an Ant script.
Therefore, we generate the set of possible classes after deploying the application.

We pre-process all resulting classes to compute the subtyping relation
subtype(t1, t2) that determines when t1 is a subtype of t2. Preprocessing even
the smallest applications involved looking at many thousands of classes because
we consider all the default jars that the Java runtime system has access to. We
run this preprocessing step off-line and store the results for easy access.

Using Cast Information We integrate the information about cast operations
directly into the system of constraints expressed in Datalog. We use a Datalog
relation subtype described above, a relation cast that holds the cast operations,
and a relation unresolved that holds the unresolved calls to Class.forName. The
following Datalog rule uses cast operations applied to the return result vret of a
call i to Class.newInstance to constrain the possible types tc of Class objects c
returned from calls sites ic of Class.forName:

classObjects(ic, t) : – calls(i, “Class.newInstance”), actual(i, 0, v), vP(v, c),
ret(i, vret), cast(_, tc, vret), subtype(t, tc),
unresolved(ic), vP(vc, c), ret(ic, vc).

Information propagates both forward and backward—for example, casting the
result of a call to Class.newInstance constrains the Class object it is called upon.
If the same Class object is used in another part of the program, the type con-
straint derived from the cast will be obeyed.

Problems with Using Casts Casts are sometimes inadequate for resolv-
ing calls to Class.newInstance for the following reasons. First, the cast-based
approach is inherently imprecise because programs often cast the result of
Class.newInstance to a very wide type such as java.io.Serializable. This pro-
duces a lot of potential subclasses, only some of which are relevant in practice.
Second, as our experiments show, not all calls to Class.newInstance have post-
dominating casts, as illustrated by the following example.

Example 1. As shown in Figure 4, one of our benchmark applications, freetts,
places the object returned by Class.newInstance into a vector voiceDirectories

(line 5). Despite the fact that the objects are subsequently cast to type
VoiceDirectory[] on line 8, intraprocedural post-dominance is not powerful
enough to take this cast into account. 2

Using cast information significantly reduces the need for user-provided spec-
ification in practice. While the version of the analysis that does not use cast



1. UniqueVector voiceDirectories = new UniqueVector();
2. for (int i = 0; i < voiceDirectoryNames.size(); i++) {
3. Class c = Class.forName((String) voiceDirectoryNames.get(i),
4. true, classLoader);
5. voiceDirectories.add(c.newInstance());
6. }
7.
8. return (VoiceDirectory[]) voiceDirectories.toArray(new
9. VoiceDirectory[voiceDirectories.size()]);

Fig. 4: A case in freetts where our analysis is unable to determine the type of objects
instantiated on line 5 using casts.

information can be made fully sound with user specification as well, we chose to
only provide a specification for the cast-based version.

5 Experimental Results

In this section we present a comprehensive experimental evaluation of the static
analysis approaches presented in Section 4. In Section 5.1 we describe our ex-
perimental setup. Section 5.2 presents an overview our experimental results.
Section 5.3 presents our baseline local reflection analysis. In Sections 5.4 and 5.5
we discuss the effectiveness of using the points-to and cast-based reflection reso-
lution approaches, respectively. Section 5.6 describes the specifications needed to
obtain a sound call graph approximation. Section 5.7 compares the overall sizes
of the call graph for the different analysis versions presented in this section.

5.1 Experimental Setup

We performed our experiments on a suite of six large, widely-used open-source
Java benchmark applications. These applications were selected among the most
popular Java projects available on SourceForge. We believe that real-life ap-
plications like these are more representative of how programmers use reflection
than synthetically created test suites, or SPEC JVM benchmarks, most of which
avoid reflection altogether.

Line File Available
Benchmark Description count count Jars classes

jgap genetic algorithms package 32,961 172 9 62,727
freetts speech synthesis system 42,993 167 19 62,821

gruntspud graphical CVS client 80,138 378 10 63,847

jedit graphical text editor 144,496 427 1 62,910

columba graphical email client 149,044 1,170 35 53,689

jfreechart chart drawing library 193,396 707 6 62,885

Total 643,028 3,021 80 368,879

Fig. 5: Summary of information about our benchmarks. Applications are sorted by the
number of lines of code in column 3.



None Local Points-to Casts Sound

Benchmark T T FR UR T FR PR UR T FR PR UR T FR UR

jgap 27 27 19 8 28 20 1 7 28 20 4 4 89 85 4
freetts 30 30 21 9 30 21 0 9 34 25 4 5 81 75 6
gruntspud 139 139 112 27 142 115 5 22 232 191 19 22 220 208 12
jedit 156 156 137 19 161 142 3 16 178 159 12 7 210 197 12
columba 104 105 89 16 105 89 2 14 118 101 10 7 173 167 6
jfreechart 104 104 91 13 104 91 1 12 149 124 10 15 169 165 4

Fig. 6: Results of resolving Class.forName calls for different analysis versions.

Summary of information about the applications is provided in Figure 5. No-
tice that the traditional lines of code size metric is somewhat misleading in the
case of applications that rely on large libraries. Many of these benchmarks de-
pend of massive libraries, so, while the application code may be small, the full
size of the application executed at runtime is quite large. The last column of the
table in Figure 5 lists the number of classes available by the time each application
is deployed, including those in the JDK.

We ran all of our experiments on an Opteron 150 machine equipped with 4GB
or memory running Linux. JDK version 1.4.2_08 was used. All of the running
times for our preliminary implementation were in tens of minutes, which, al-
though a little high, is acceptable for programs of this size. Creating subtype
information for use with cast-based analysis took well under a minute.

5.2 Evaluation Approach

We have implemented five different variations of our algorithms: None, Local,
Points-to, Casts, and Sound and applied them to the benchmarks described
above. None is the base version that performs no reflection resolution; Local

performs a simple local analysis, as described in Section 5.3. Points-to and
Casts are described in Sections 4.2 and 4.3, respectively.

Version Sound is augmented with a user-provided specification to make the
answer conservative. We should point out that only the Sound version provides
results that are fully sound: None essentially assumes that reflective calls have
no targets. Local only handles reflective calls that can be fully resolved within
a single method. Points-to and Casts only provide targets for reflective calls
for which either string or cast information constraining the possible targets is
available and unsoundly assumes that the rest of the calls have no targets.

Figure 6 summarizes the results of resolving Class.forName using all five an-
alysis versions. Class.forName calls represent by far the most common kind of
reflective operations and we focus on them in our experimental evaluation. To
reiterate the definitions in Section 4, we distinguish between:

– fully resolved calls to Class.forName for which all potential targets are class
name constants,

– partially resolved calls, which have at least one class name string constant
propagating to them, and

– unresolved calls, which have no class name string constants propagating to
them, only non-constant external sources requiring a specification.

The columns subdivide the total number of calls (T) into fully resolved
calls (FR), partially resolved (PR), and unresolved (UR) calls. In the case of



Local analysis, there are no partially resolved calls — calls are either fully re-
solved to constant strings or unresolved. Similarly, in the case of Sound analysis,
all calls are either fully resolved or unresolved, as further explained in Section 5.5.

5.3 Local Analysis for Reflection Resolution (Local)

To provide a baseline for comparison, we implemented a local intra-method
analysis that identifies string constants passed to Class.forName. This analysis
catches only those reflective calls that can be resolved completely within a single
method. Because this technique does not use interprocedural points-to results,
it cannot be used for identification of specification points. Furthermore, because
for method invocations and field accesses the names of the method or field are
typically not locally defined constants, we do not perform resolution of method
calls and field accesses in Local.

A significant percentage of Class.forName calls can be fully resolved by local
analysis, as demonstrated by the numbers in column 4, Figure 6. This is partly
due to the fact that it is actually quite common to call Class.forName with a
constant string parameter for side-effects of the call, because doing so invokes
the class constructor. Another common idiom contributing the number of calls
resolved by local analysis is T.class, which is converted to a call to Class.forName

and is always statically resolved.

5.4 Points-to Information for Reflection Resolution (Points-to)

Points-to information is used to find targets of reflective calls to Class.forName,
Class.newInstance, Method.invoke, etc. As can be seen from Figure 6, for all of
the benchmarks, Points-to information results in more resolved Class.forName

calls and fewer unresolved ones compared to Local.

Specification Points Quite frequently, some sort of specification is required
for reflective calls to be fully resolved. Points-to information allows us to provide
the user with a list of specification points where inputs needs to be specified for
a conservative answer to be obtained. Among the specification points we have
encountered in our experiments, calls to System.getProperty to retrieve a system
variable and calls to BufferedReader.readLine to read a line from a file are quite
common. Below we provide a typical example of providing a specification.

Example 2. This example describes resolving reflective targets of a call to
Class.newInstance in javax.xml.transform.FactoryFinder in the JDK in order
to illustrate the power and limitation of using points-to information. Class
FactoryFinder has a method Class.newInstance shown in Figure 7. The call to
Class.newInstance occurs on line 9. However, the exact class instantiated at run-
time depends on the className parameter, which is passed into this function.
This function is invoked from a variety of places with the className parameter
being read from initialization properties files, the console, etc. In only one case,
when Class.newInstance is called from another function find located in another
file, is the className parameter a string constant.

This example makes the power of using points-to information apparent — the
Class.newInstance target corresponding to the string constant is often difficult to



1. private static Object newInstance(String className,
2. ClassLoader classLoader) throws ConfigurationError {
3. try {
4. Class spiClass;
5. if (classLoader == null) {
6. spiClass = Class.forName(className);
7. }
8. ...
9. return spiClass.newInstance();
10. } catch (...)
11. ...
12. }

Fig. 7: Reflection resolution using points-to results in
javax.xml.transform.FactoryFinder in the JDK.

find by just looking at the code. The relevant string constant was passed down
through several levels of method calls located in a different file; it took us more
that five minutes of exploration with a powerful code browsing tool to find this
case in the source. Resolving this Class.newInstance call also requires the user
to provide input for four specification points: along with a constant class name,
our analysis identifies two specification points, which correspond to file reads,
one access of system properties, and another read from a hash table. 2

In most cases, the majority of calls to Class.forName are fully resolved. How-
ever, a small number of unresolved calls are potentially responsible for a large
number of specification points the user has to provide. For Points-to, the aver-
age number of specification points per invocation site ranges from 3 for freetts

to 9 for gruntspud. However, for jedit, the average number of specification points
is 422. Specification points computed by the pointer analysis-based approach can
be thought of as “hints” to the user as to where provide specification.

In most cases, the user is likely to provide specification at program input
points where he knows what the input strings may be. This is because at a
reflective call it may be difficult to tell what all the constant class names that
flow to it may be, as illustrated by Example 2. Generally, however, the user
has a choice. For problematic reflective calls like those in jedit that produce
a high number of specification points, a better strategy for the user may be to
provide reflective specifications at the Class.forName calls themselves instead of
laboriously going through all the specification points.

5.5 Casts for Reflection Resolution (Casts)

Type casts often provide a good first static approximation to what objects can
be created at a given reflective creation site. There is a pretty significant increase
in the number of Class.forName calls reported in Figure 6 in a few cases, includ-
ing 93 newly discovered Class.forName calls in gruntspud that apprear due to a
bigger call graph when reflective calls are resolved. In all cases, the majority of
Class.forName calls have their targets at least partially resolved. In fact, as many
as 95% of calls are resolved in the case of jedit.

As our experience with the Java reflection APIs would suggest, most
Class.newInstance calls are post-dominated by a cast operation, often located



within only a few lines of code of the Class.newInstance call. However, in our
experiments, we have identified a number of Class.newInstance call sites, which
were not dominated by a cast of any sort and therefore the return result of
Class.newInstance could not be constrained in any way. As it turns out, most
of these unconstrained Class.newInstance call sites are located in the JDK and
sun.∗ sources, Apache libraries, etc. Very few were found in application code.

The high number of unresolved calls in the JDK is due to the fact that
reflection use in libraries tends to be highly generic and it is common to have
“Class.newInstance wrappers” — methods that accept a class name as a string
and return an object of that class, which is later cast to an appropriate type in
the caller method. Since we rely on intraprocedural post-dominance, resolving
these calls is beyond our scope. However, since such “wrapper” methods are
typically called from multiple invocation sites and different sites can resolve to
different types, it is unlikely that a precise approximation of the object type
returned by Class.newInstance is possible in these cases at all.

Precision of Cast Information Many reflective object creation sites are lo-
cated in the JDK itself and are present in all applications we have analyzed.
For example, method lookup in package sun.nio.cs.AbstractCharsetProvider re-
flectively creates a subclass of Charset and there are 53 different character sets
defined in the system. In this case, the answer is precise because all of these
charsets can conceivably be used depending on the application execution envi-
ronment. In many cases, the cast approach is able to uniquely pinpoint the target
of Class.newInstance calls based on cast information. For example, there is only
one subclass of class sun.awt.shell.ShellFolderManager available to gruntspud,
so, in order for the cast to succeed, it must be instantiated.

In general, however, the cast-based approach provides an imprecise up-
per bound on the call graph that needs to be analyzed. Because the re-
sults of Class.newInstance are occasionally cast to very wide types, such
as java.lang.Cloneable, many potential subclasses can be instantiated at the
Class.newInstance call site. The cast-based approach is likely to yield more pre-
cise results on applications that use Java generics, because those applications
tend to use more narrow types when performing type casts.

5.6 Achieving a Sound Call Graph Approximation (Sound)

Providing a specification for unresolved reflective calls allows us to achieve a
sound approximation of the call graph. In order to estimate the amount of effort
required to come up with a specification for unresolved reflective calls, we decided
to start with Points-to and add a reflection specification until the result became
sound. Because providing a specification allows us to discover more of the call
graph, two or three rounds of specification were required as new portions of the
program became available. In practice, we would start without a specification
and examine all unresolved calls and specification points corresponding to them.
Then we would come up with a specification and feed it back to the call graph
construction algorithm until the process converges.

Coming up with a specification is a difficult and error-prone task that re-
quires looking at a large amount of source code. It took us about ten hours to
incrementally devise an appropriate specification and ensure its completeness



Starting with Strings Starting with Casts

Benchmark Specs Sites Libs App Types/site Specs Sites Libs App Types/site

jgap 1,068 25 21 4 42.72 16 2 2 0 8.0
freetts 964 16 14 2 60.25 0 4 3 1 0.0
gruntspud 1,014 27 26 1 37.56 18 4 4 0 4.5
jedit 1,109 21 19 2 52.81 63 3 2 1 21.0
columba 1,006 22 21 1 45.73 16 2 2 0 8.0
jfreechart 1,342 21 21 0 63.90 18 4 4 0 4.5

Fig. 8: User-provided specification statistics.

by rerunning the call graph construction algorithm. After providing a reflection
specification stringing with Points-to, we then estimate how much of the user-
provided specification can be avoided if we were to rely on type casts instead.

Specification Statistics The first part of Figure 8 summarizes the effort
needed to provide specifications to make the call graph sound. The second col-
umn shows the number of specifications of the form reflective call site => type,
as exemplified by Figure 3. Columns 3–5 show the number of reflection calls sites
covered by each specification, breaking them down into sites that located within
library vs application code. As can be seen from the table, while the number of
invocation sites for which specifications are necessary is always around 20, only
a few are part of the application. Moreover, in the case of jfreechart, all of the
calls requiring a specification are part of the library code.

Since almost all specification points are located in the JDK and library
code, specification can be shared among different applications. Indeed, there
are only 40 unique invocation sites requiring a specification across all the bench-
marks. Column 6 shows the average number of types specified per reflective call
site. Numbers in this columns are high because most reflective calls within the
JDK can refer to a multitude of implementation classes.

The second part of Figure 8 estimates the specification effort required if were
were to start with a cast-based call graph construction approach. As can be seen
from columns 8–10, the number of Class.forName calls that are not constrained
by a cast operation is quite small. There are, in fact, only 14 unique invocation
sites — or about a third of invocation sites required for Points-to. This suggests
that the the effort required to provide a specification to make Casts sound is
considerably smaller than our original effort that starts with Points-to.

Specification Difficulties In some cases, determining meaningful values to
specify for Class.forName results is quite difficult, as shown by the example below.

Example 3. One of our benchmark applications, jedit, contains an embedded
Bean shell, a Java source interpreter used to write editor macros. One of the
calls to Class.forName within jedit takes parameters extracted from the Bean
shell macros. In order to come up with a conservative superset of classes that
may be invoked by the Bean shell interpreter for a given installation of jedit,
we parse the scripts that are supplied with jedit to determine imported Java
classes they have access to. (We should note that this specification is only sound
for the default configuration of jedit; new classes may need to be added to the
specification if new macros become available.) It took us a little under an hour



to develop appropriate Perl scripts to do the parsing of 125 macros supplied with
jedit. The Class.forName call can instantiate a total of 65 different types. 2

We should emphasize that the conservativeness of the call graph depends on
the conservativeness of the user-provided specification. If the specification missed
potential relations, they will be also omitted from the call graph. Furthermore,
a specification is typically only conservative for a given configuration of an ap-
plication: if initialization files are different for a different program installation,
the user-provided specification may no longer be conservative.
Remaining Unresolved Calls Somewhat surprisingly, there are still some
Class.forName calls that are not fully resolved given a user-provided specification,
as can be seen from the last column in Figure 6. In fact, this is not a specification
flaw: no valid specification is possible for those cases, as explained below.

Example 4. The audio API in the JDK includes method
javax.sound.sampled.AudioSystem.getDefaultServices, which is not called in
Java version 1.3 and above. A Class.forName call within that method resolves
to constant com.sun.media.sound.DefaultServices, however, this class is absent
in post-1.3 JDKs. However, since this method represents dead code, our answer
is still sound. Similarly, other unresolved calls to Class.forName located within
code that is not executed for the particular application configuration we are
analyzing refer to classes specific to MacOS and unavailable on Linux, which is
the platform we performed analysis on. In other cases, classes were unavailable
for JDK version 1.4.2_08, which is the version we ran our analysis on. 2

5.7 Effect of Reflection Resolution on Call Graph Size

Figure 9 compares the number of classes and methods across different anal-
ysis versions. Local analysis does not have any significant effect on the num-
ber of methods or classes in the call graph, even though most of the calls to

Classes

Benchmark None Local Points-to Casts Sound

jgap 264 264 268 276 1,569 5.94
freetts 309 309 309 351 1,415 4.58
gruntspud 1,258 1,258 1,275 2,442 2,784 2.21
jedit 1,660 1,661 1,726 2,152 2,754 1.66
columba 961 962 966 1,151 2,339 2.43
jfreechart 884 881 886 1,560 2,340 2.65

Methods

Benchmark None Local Points-to Casts Sound

jgap 1,013 1,014 1,038 1,075 6,676 6.58
freetts 1,357 1,358 1,358 1,545 5,499 4.05
gruntspud 7,321 7,321 7,448 14,164 14,368 1.96
jedit 11,230 11,231 11,523 13,487 16,003 1.43
columba 5,636 5,642 5,652 6,199 12,001 2.13
jfreechart 5,374 5,374 5,392 8,375 12,111 2.25

Fig. 9: Number of classes and methods in the call graph for different analysis versions.



Class.forName can be resolved with local analysis. This is due to the fact that
the vast majority of these calls are due to the use of the T.class idiom, which
typically refer to classes that are already within the call graph. While these triv-
ial calls are easy to resolve, it is the analysis of the other “hard” calls with a lot
of potential targets that leads to a substantial increase in the call graph size.

Using Points-to increases the number of classes and methods in the call
graph only moderately. The biggest increase in the number of methods occurs
for jedit (293 methods). Using Casts leads to significantly bigger call graphs,
especially for gruntspud, where the increase in the number of methods compared
to None is almost two-fold.

The most noticeable increase in call graph size is observed in version Sound.
Compared to None, the average increase in the number of classes is 3.2 times
the original and the average increase for the number of methods is 3 times the
original. The biggest increase in the number of methods occurs in gruntspud,
with over 7,000 extra methods added to the graph.

Figure 9 also demonstrate that the lines of code metric is not always indica-
tive of the size of the final call graph — programs are listed in the increasing
order of line counts, yet, jedit and gruntspud are clearly the biggest benchmarks
if we consider the method count. This can be attributed to the use of large li-
braries that ship with the application in binary form as well as considering a
much larger portion of the JDK in version Sound compared to version None.

6 Related Work

General treatments of reflection in Java are given in Forman and Forman [1]
and Guéhéneuc et al. [15]. The rest of the related work falls into the following
broad categories: projects that explicitly deal with reflection in Java and other
languages; approaches to call graph construction in Java; and finally, static and
dynamic analysis algorithms that address the issue of dynamic class loading.

6.1 Reflection and Metadata Research

The metadata and reflection community has a long line of research originating
in languages such as Scheme [16]. We only mention a few relevant projects here.
The closest static analysis project to ours we are aware of is the work by Braux
and Noyé on applying partial evaluation to reflection resolution for the purpose
of optimization [17]. Their paper describes extensions to a standard partial eval-
uator to offer reflection support. The idea is to “compile away” reflective calls
in Java programs, turning them into regular operations on objects and meth-
ods, given constraints on the concrete types of the object involved. The type
constraints for performing specialization are provided by hand.

Our static analysis can be thought of as a tool for inferring such constraints,
however, as our experimental results show, in many cases targets of reflective calls
cannot be uniquely determined and so the benefits of specialization to optimize
program execution may be limited. Braux and Noyé present a description of how
their specialization approach may work on examples extracted from the JDK,
but lacks a comprehensive experimental evaluation. In related work for languages



other than Java, Ruf explores the use of partial evaluation as an optimization
technique in the context of CLOS [18].

Specifying reflective targets is explicitly addressed in Jax [19]. Jax is con-
cerned with reducing the size of Java applications in order to reduce download
time; it reads in the class files that constitute a Java application, and performs
a whole-program analysis to determine the components of the application that
must be retained in order to preserve program behavior. Clearly, information
about the true call graph is necessary to ensure that no relevant parts of the ap-
plication are pruned away. Jax’s approach to reflection is to employ user-provided
specifications of reflective calls. To assist the user with writing complete spec-
ification files, Jax relies on dynamic instrumentation to discover the missing
targets of reflective calls. Our analysis based on points-to information can be
thought of as a tool for determining where to insert reflection specifications.

6.2 Call Graph Construction

A lot of effort has been spent of analyzing function pointers in C as well as virtual
method calls in C++ and Java. We briefly mention some of the highlights of call
graph construction algorithms for Java here. Grove et al. present a parameter-
ized algorithmic framework for call graph construction [12, 20]. They empirically
assess a multitude of call graph construction algorithms by applying them to
a suite of medium-sized programs written in Cecil and Java. Their experience
with Java programs suggests that the effect of using context sensitivity for the
task of call graph construction in Java yields only moderate improvements.

Tip and Palsberg propose a propagation-based algorithm for call graph con-
struction and investigate the design space between existing algorithms for call
graph construction such as 0-CFA and RTA, including RA, CHA, and four new
ones [7]. Sundaresan et al. go beyond the tranditional RTA and CHA approaches
in Java and and use type propagation for the purpose of obtaining a more pre-
cise call graph [21]. Their approach of using variable type analysis (VTA) is able
to uniquely determine the targets of potentially polymorphic call sites in 32%
to 94% of the cases. Agrawal et al. propose a demand-driven algorithm for call
graph construction [22]. Their work is motivated by the need for just-in-time or
dynamic compilation as well as program analysis used as part of software de-
velopment environments. They demonstrate that their demand-driven technique
has the same accuracy as the corresponding exhaustive technique. The reduction
in the graph construction time depends upon the ratio of the cardinality of the
set of influencing nodes to the set of all nodes.

6.3 Dynamic Analysis Approaches

Our work is motivated to a large extend by the need of error detection tool to
have a static approximation of the true conservative call graph of the applica-
tion. This largely precludes dynamic analysis that benefits optimizations such
as method inlining and connectivity-based garbage collection.

A recent paper by Hirzel, Diwan, and Hind addresses the issues of dynamic
class loading, native methods, and reflection in order to deal with the full com-
plexity of Java in the implementation of a common pointer analysis [5]. Their



approach involves converting the pointer analysis [6] into an online algorithm:
they add constraints between analysis nodes as they are discovered at runtime.
Newly generated constraints cause re-computation and the results are propa-
gated to analysis clients such as a method inliner and a garbage collector at
runtime. Their approach leverages the class hierarchy analysis (CHA) to up-
date the call graph. Our technique uses a more precise pointer analysis-based
approach to call graph construction.

7 Conclusions

This paper presents the first static analysis for call graph construction in Java
that addresses reflective calls. Our algorithm uses the results of a points-to an-
alysis to determine potential reflective call targets. When the calls cannot be
fully resolved, user-provided specification is requested. As an alternative to pro-
viding specification, type cast information can be used to provide a conservative
approximation of reflective call targets.

We applied our static analysis techniques to the task of constructing call
graphs for six large Java applications, some consisting of more than 190,000 lines
of code. Our evaluation showed that as many as 95% of reflective Class.forName

could at least partially be resolved to statically determined targets with the help
of points-to results and cast information without providing any specification.

While most reflective calls are relatively easy to resolve statically, precisely in-
terpreting some reflective calls requires a user-provided specification. Our pointer
analysis-based approach also identified specification points — places in the pro-
gram corresponding to file and system property read operations, etc., where user
input is needed in order to obtain a full call graph. Our evaluation showed that
the construction of a specification that makes the call graph conservative is a
time-consuming and error-prone task. Fortunately, our cast-based approach can
drastically reduce the specification burden placed on the user by providing a
conservative, albeit potentially imprecise approximation of reflective targets.

Our experiments confirmed that ignoring reflection results in missing signifi-
cant portions of the call graph, which is not something that effective static anal-
ysis tools can afford. While the local and points-to analysis techniques resulted
in only a moderate increase in call graph size, using the cast-based approach
resulted in call graphs with as many as 1.5 times more methods than the orig-
inal call graph. Furthermore, providing a specification resulted in much larger
conservative call graphs that were almost 7 times bigger than the original. For
instance, in one our benchmark, an additional 7,047 methods were discovered in
the conservative call graph version that were not present in the original.

References

1. Forman, I.R., Forman, N.: Java Reflection in Action. Manning Publications (2004)
2. Koved, L., Pistoia, M., Kershenbaum, A.: Access rights analysis for Java. In:

Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications. (2002) 359 – 372



3. Reimer, D., Schonberg, E., Srinivas, K., Srinivasan, H., Alpern, B., Johnson, R.D.,
Kershenbaum, A., Koved, L.: SABER: Smart Analysis Based Error Reduction. In:
Proceedings of International Symposium on Software Testing and Analysis. (2004)
243 – 251

4. Weimer, W., Necula, G.: Finding and preventing run-time error handling mis-
takes. In: Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications. (2004) 419 – 431

5. Hirzel, M., Diwan, A., Hind, M.: Pointer analysis in the presence of dynamic
class loading. In: Proceedings of the European Conference on Object-Oriented
Programming, Systems, Languages, and Applications. (2004) 96–122

6. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. PhD thesis, University of Copenhagen (1994)

7. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-
rithms. ACM SIGPLAN Notices 35 (2000) 281–293

8. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java, http://
suif.stanford.edu/∼livshits/papers/tr/reflection tr.pdf. Technical re-
port, Stanford University (2005)

9. Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proceedings of the ACM Conference on Programming
Language Design and Implementation. (2004) 131 – 144

10. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. Lecture Notes in Computer Science 952 (1995) 77–
101

11. Bacon, D.F.: Fast and Effective Optimization of Statically Typed Object-Oriented
Languages. PhD thesis, University of California at Berkeley (1998)

12. Grove, D., Chambers, C.: A framework for call graph construction algorithms.
ACM Trans. Program. Lang. Syst. 23 (2001) 685–746

13. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel,
C.: Context-sensitive program analysis as database queries. In: Proceedings of the
ACM Symposium on Principles of Database Systems. (2005) 1 – 12

14. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

15. Guéhéneuc, Y.G., Cointe, P., Ségura-Devillechaise, M.: Java reflection exercises,
correction, and FAQs. http://www.yann-gael.gueheneuc.net/Work/Teaching/
Documents/Practical-ReflectionCourse.doc.pdf (2002)

16. Thiemann, P.: Towards partial evaluation of full Scheme. In: Reflection ’96. (1996)
17. Braux, M., Noyé, J.: Towards partially evaluating reflection in Java. In: Proceed-

ings of the ACM Workshop on Partial Evaluation and Semantics-based Program
Manipulation. (1999) 2–11

18. Ruf, E.: Partial evaluation in reflective system implementations. In: Workshop on
Reflection and Metalevel Architecture. (1993)

19. Tip, F., Laffra, C., Sweeney, P.F., Streeter, D.: Practical experience with an ap-
plication extractor for Java. ACM SIGPLAN Notices 34 (1999) 292–305

20. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-
oriented languages. In: Proceedings of the ACM Conference on Object-oriented
Programming, Systems, Languages, and Applications. (1997) 108–124

21. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon,
E., Godin, C.: Practical virtual method call resolution for Java. ACM SIGPLAN
Notices 35 (2000) 264–280

22. Agrawal, G., Li, J., Su, Q.: Evaluating a demand driven technique for call graph
construction. In: Computational Complexity. (2002) 29–45


