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1. Introduction 

In designing a static analysis, one has to trade-off analysis scalabil-

ity for analysis precision. While much has been said about clever 

and useful ways to create static approximations of dynamic pro-

gram behavior, at the end of the day, static analysis precision is not 

elastic. In other words, the analysis designer either over-provisions, 

designing an algorithm that overly precise, suffering in terms of 

scalability, or what is often even worse, under-provisions, design-

ing an algorithm that is insufficiently precise, often yielding an 

analysis that is too inaccurate to be deployed.  

Moreover, much of the time, precision of a given static analysis 

is both over- and under-provisioned. This is because precision is 

highly dependent on the language features and how (frequently) 

they are used in the programs of interest. For instance, 1-level ob-

ject sensitivity is overkill for most types of code, except it is needed 

for programs that use factories extensively. Moreover, often, 2-

level object sensitivity would be required to handle object factories 

more accurately.  

The lack of elasticity in terms of static analysis precision has 

lead analysis designers to combine or stage their analysis together. 

For example, reflection analysis and string analysis are frequently 

combined with a points-to and analysis of JNI constructs. For C, a 

pre-processing step may be used to identify various allocation func-

tions such as malloc, kalloc, etc. In JavaScript, aliases to eval 

may need to be identified ahead of other analysis steps. Widely us-

able analyses are therefore constructed piecemeal, ultimately re-

sulting in a patchwork of different analysis techniques connected 

together.  

2. Elasticity 

In this paper we claim that we need a more elastic approach to anal-
ysis precision. The way to achieve elasticity that we advocate is 
probabilistic static analyses. As a simple illustrative example, con-
sider a static pointer analysis that computes relation pointsTo(v, h), 
to tell whether variable v may point to heap object h. A probabilistic 
version of this analysis will also include p as in pointsTo(p, v, h); p 
is the probability associated with this points-to fact. Note that this 
change of perspective shifts our analysis away from soundness; i.e. 
if the original points-to analysis was in fact sound, the resulting one 

will not generally not yield precise facts, instead making it possible 
to make probabilistic judgments. 

3. Benefits 

When it comes to interpreting analysis results, we often observe 
fuzzy treatment: not all results are treated the same. In fact, giving 
priorities or warning levels to analysis results is an ad-hoc form of 
introducing probabilistic treatment, designed to recover some of the 
imprecision when it comes to end-user interactions. We, however, 
believe that intrinsically building probabilistic reasoning into static 
analysis design leads to a number of desirable outcomes.  
 
 Static analysis results can be naturally ranked or prioritized in 

terms of certainty, nearly a requirement in a situation where 
analysis users are frequently flooded with results (result prior-
itization). 

 Program points or even static analysis inference rules and facts 
leading to imprecision can be identified with the help of back-
ward propagation (blame assignment and analysis debugging).  

 In an effort to make their analysis fully sound, analysis design-
ers often combine certain inference rules with those that cover 
generally unlikely cases to maintain soundness. For instance, 
an analysis may have a hard rule about value flow and a soft 
rule that corresponds to the relatively unlikely flow of data via 
exceptions. Naturally blending such inference rules together, 
by giving high probabilities to the former and low probabilities 
to the latter allows us to balance soundness and utility consid-
erations. 

 End-quality of analysis results can often be improved by do-
main knowledge such as information about variable naming, 
check-in information from source control repositories, histori-
cal data from bug repositories, etc. Often times, this kind of 
data is used to prioritize or suppress analysis results. A better 
approach involves incorporating this information directly, in 
the form of priors, making it explicit in the tool. 

 
In short, probabilistic static analysis gives a fresh new way to look 
at very old problems and naturally provides solutions to problems 
that have been difficult to address in the past. 
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4. Motivating example 

We show the power of probabilistic thinking using a simple NULL 

detection analysis. The goal is to find NULL dereference errors. To 

simplify maters, we will address direct flow, object allocation and 

NULL, omitting some of the less relevant language constructs. 

Reasoning about such code can be expressed in Datalog using a 

handful of inference rules. Rules on lines 1 and 2 show two cases 

of flow propagation: the traditional transitive case on line 1 and a 

special form of conditional assignments on line 2. Conditional as-

signment relation ASSIGNCOND models assignments that are 

guarded by a conditional at runtime.  

 

Relation NULLABLE corresponds to variables that can assume 

NULL as a possible value, whereas ISNULL is a given fact about 

variables that are initialized to NULL in the program.  Finally, rules 

on lines 5 and 6 identify possible errors that stem from dereferenc-

ing NULL values. 

Note that rules on lines 1 and 2 are different in that 2 is signif-

icantly less likely than one, which is a certain rule. Similarly, 4 is 

a certain rule and 5 is not necessarily as likely. Our insight is that 

modeling these levels of certainly is helpful for analysis quality.  

To add probabilities to these rules in this paper, we chose to encode 

static analysis problems in the form of Markov logic using Al-

chemy, a Markov logic tool from the University of Washington.  

We show Alchemy rules below. Note that for the most part they 

directly correspond to Datalog rules, except the implication nota-

tion goes left-to-right (antecedent => consequent as opposed con-

sequent :- antecedent). Additionally, Alchemy support more of 

first-order logic than most Datalog systems.  

 

We add weights to rules on lines 2 and 6 to match the fact that 

these are uncertain rules, compared to certain flow propagation and 

NULL dereference rules. Intuitively, higher the weight, the 

stronger the propagation rule.  Line 7 shows an example of provid-

ing priors; in this case we specify that the likelihood of FLOW(x,y) 

is low. This will make it so that FLOW(x,y) has a high probability 

value only if we have direct evidence for it.  

To illustrate the power of probabilistic reasoning, we run Al-

chemy interference on a small program, whose flow graph is shown 

below.  

 

 
 

 

 

Nodes represent variables and edges represent assignments 

(ASSIGN). Dotted edges represent conditional assignments (AS-

SIGNCOND). Here, red nodes for variables X1 and U1 are sources 

of NULL (ISNULL). Nodes in blue are dereference nodes 

(DEREF), which are potential locations of errors. The green node 

for Y1 is an object allocation node (NEWOBJ).  

Analysis results are shown next to the graph. We see that W3 

and Z3 are more certain than W4 because here is a conditional edge 

from U1 to W4. Also, as expected, the probability goes down as we 

traverse further down the path from W3 to W8 to W11. 

This example shows the power of probabilistic analysis to pri-

oritize errors depending on how they are inferred.  

5. Challenges 

We see the following challenges taking these ideas forward.  First, 

the effectiveness of the probabilistic inference system relies on the 

weights assigned to each of the rules. We can imagine an expert 

user to provide a set of initial weights. We can also try to leverage 

the learning facilities in tools such as Alchemy to learn the 

weights, or improve the initial estimates. However, that would ne-

cessitate the presence of labeled training datasets for the underly-

ing domain. Second, one broad question is to investigate is the 

class of static analysis techniques that are naturally amenable to 

an elastic analysis. It would be beneficial to leverage the powers 

of existing static analysis based on symbolic techniques.  

 

// transitive flow propagation 
1. FLOW(x,z):- FLOW(x,y), ASSIGN(y,z) 

2. FLOW(a,c) :- FLOW(a,b), ASSIGNCOND(b,c) 

3. FLOW(x,x). 

 

// nullable variables 
4. NULLABLE(x) :- FLOW(x,y), ISNULL(y) 

 
// error detection 
5. ERROR(a) :- ISNULL(a), DEREF(a) 

6. ERROR(a) :- !ISNULL(a), NULLABLE(a), DEREF(a) 

// transitive flow propagation 
1. FLOW(x,y) ^ ASSIGN(y,z) => FLOW(x,z). 

2. 1 FLOW(a,b) ^ ASSIGNCOND(b,c) => FLOW(a,c) 

3. FLOW(x,x). 

 
// nullable variables 
4. FLOW(x,y) ^ ISNULL(y) => NULLABLE(x). 

 
// error detection 
5. ISNULL(a)^ DEREF(a) => ERROR(a). 

6. 0.5 !ISNULL(a) ^ NULLABLE(a) ^ DEREF(a)                 

=> ERROR(a) 

 
// priors and shaping distributions 
7. 3 !FLOW(x,y) 

ERROR(W3) 0.616988 
ERROR(Z3) 0.614989 
ERROR(W4) 0.567993 
ERROR(W8) 0.560994 
ERROR(W11) 0.544996 


