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ABSTRACT
Rich Internet applications are becoming increasingly distributed, as
demonstrated by the popularity of AJAX or Web 2.0 applications
such as Facebook, Google Maps, Hotmail and many others. A typ-
ical multi-tier AJAX application consists, at the least, of a server-
side component implemented in Java J2EE, PHP or ASP.NET and
a client-side component running JavaScript. The resulting applica-
tion is more responsive because computation has moved closer to
the client, avoiding unnecessary network round trips for frequent
user actions.

However, once a portion of the code has moved to the client,
a malicious user can subvert the client side of the computation,
jeopardizing the integrity of the server-side state. In this paper we
propose RIPLEY, a system that uses replicated execution to auto-
matically preserve the integrity of a distributed computation. RIP-
LEY replicates a copy of the client-side computation on the trusted
server tier. Every client-side event is transferred to the replica of the
client for execution. RIPLEY observes results of the computation,
both as computed on the client-side and on the server side using
the replica of the client-side code. Any discrepancy is flagged as a
potential violation of computational integrity.

We built RIPLEY on top of Volta, a distributing compiler that
translates .NET applications into JavaScript, effectively providing
a measure of security by construction for Volta applications. We
have evaluated the RIPLEY approach on five representative AJAX
applications built in Volta and also on Hotmail, a large widely-used
AJAX application. Our results so far suggest that RIPLEY provides
a promising strategy for building secure distributed web applica-
tions, which places minimal burden on the application developer at
the cost of a low performance overhead.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—invasive soft-
ware; D.4.7 [Operating Systems]: Organization and Design—dis-
tributed systems;
D.1.2 [Programming Techniques]: Automatic Programming—
program transformation, program modification
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1. INTRODUCTION
Web applications are becoming increasingly distributed, marked

by the emergence of popular AJAX (asynchronous JavaScript and
XML) applications such as Facebook, Google Maps, Hotmail, and
many others. A typical multi-tier AJAX application consists of
a server tier implemented in Java J2EE or Microsoft .NET and a
client tier executing in JavaScript in the browser. The resulting ap-
plication is more responsive, because computation is moved closer
to the client, thus avoiding unnecessary network round trips. Net-
work bandwidth is typically also saved for long-running applica-
tions because the client can make fine-grained data requests instead
of downloading entire HTML files [3]. Unlike a computation per-
formed entirely on the server, however, once a portion of the code
is moved to the client tier, the overall computation can no longer
be trusted. Indeed, a malicious client can easily manipulate both
the data that resides on and the code that runs within the browser
using one of many readily available proxy- or browser-based data
tampering or debugging tools [27, 29].

The application developer is typically responsible for manually
splitting the application in a way that places all security-sensitive
operations on the server. This is not an easy task because it re-
quires reasoning about the information flow throughout the appli-
cation, an inherently global property that is hard to establish, es-
pecially by manual inspection. While some language-based ap-
proaches have recently been proposed to help reason about secu-
rity [7, 8], these techniques still require a great deal of developer
involvement because code needs to be heavily annotated, making
these techniques difficult to use for large-scale code bases. For in-
stance, one such approach requires about 20–30% of program lines
to be annotated [8]. Moreover, these techniques are challenging to
retrofit into existing un-annotated code.

At the same time, manually validating the results computed on
the untrusted client tier, while maintaining responsiveness, is a very
tough approach to get right. Ensuring that these validation checks
are consistently performed on the client (to provide quick feedback
to the user) and on the server (to ensure integrity of validation)
has been challenging, as evidenced by the frequency of cross-site
scripting attacks that are the result of failing to properly sanitize or
filter all user input consistently [23, 26, 31, 34, 52].

The problem is made much more challenging if the client and
server are expected to exchange arbitrary data structures, whose in-
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Figure 1: Architecture of RIPLEY: user events are delivered to both the JavaScript client-side component C′ and its server-side
replica C. RPCs m and m′ arriving at the server component S are compared by the RIPLEY checker.

tegrity needs to be checked by the server code after each exchange.
The integrity of computation performed by the client code also
needs to be validated. Imagine a client-server email application
such as Outlook or Hotmail. Suppose the user clicks an image next
to an email message to mark it as spam. As a result, the email mes-
sage is moved to the spam folder and the underlying data structures
such as folder sizes, are updated. Note that a single event leads
to multiple complex operations on the underlying server-side email
database: the email has to be removed to one folder, added to an-
other, the counters need to be updated, rules run, etc., the integrity
checks for which would be scattered across the server code.

While a robust network protocol can be manually designed, in
general, checking that all these actions have been performed prop-
erly and the data structures are updated consistently is not a simple
task. Moreover, if the distributed application is produced using a
distributing compiler such as Links [11] or Volta [36], these in-
tegrity assertions are difficult to synthesize as the partitioning of
the program may often change as a result of application profiling
or deployment environment (e.g. desktop vs. mobile devices), thus
invalidating old integrity checks. A distributing compiler automat-
ically partitions the application to be run on multiple machines, of-
ten in different runtime environments, such as JavaScript and .NET.

Similarly, if an online maze game maintains partial game state
and performs logical checks on the client, such as, can a user move
to the right, given the current state of the maze and the user’s lo-
cation within it, such checks can be circumvented by a malicious
user. Re-executing these checks on the server offers a reliable and
conceptually straightforward model for ensuring integrity of server-
side state, no matter how the application is split across tiers.

If it is our ultimate (data integrity) goal to maintain the server-
side email data store in a consistent state, a reliable way to validate
the integrity of this computation is to repeat it on the server side by
replaying the mouse click that initiates the action. RIPLEY effec-
tively restores the level of security that has been lost by moving a
portion of an application to the client. Note that RIPLEY does not
try to enhance the security beyond that: a SQL injection or a cross-
site scripting vulnerability in the original application will persist
in the distributed version; reliance on RIPLEY does not negate the
need for input sanitization.

Architecture of RIPLEY. In this paper we propose RIPLEY, a sys-
tem that uses replicated execution to automatically preserve the in-
tegrity of a distributed computation, such as a typical AJAX appli-
cation. The architecture of RIPLEY is shown in Figure 1. RIP-
LEY replicates the client-side computation on the trusted server
tier. Every user-initiated event is transferred to the replica of the
client for execution. RIPLEY compares results of the computation,

both as computed on the client-side and on the server side using
the replica of the client-side code. Any discrepancy is flagged as a
potential violation of computational integrity.

Our secondary goal is to relieve the application developer of the
burden of ensuring distributed application integrity. RIPLEY auto-
matically provides the developer-intended protection for the appli-
cation without requiring the developer to reason about code place-
ment and trust implications. In line with our security by construc-
tion vision, RIPLEY can be fully integrated with the server cloud so
that replicated deployment is done fully automatically, as a matter
of deployment policy1. RIPLEY performs the following key steps:

1. Capture user events: RIPLEY augments the client to capture
user events within the browser.

2. Transmit events to the server for replay: The client run-
time is modified to transmit user events to the client’s replica
C for replay.

3. Compare server and client results: The server component S
is augmented with a RIPLEY checker that compares arriving
RPCs m′ and m received from the client C′ and server-based
client replica C, respectively, looking for discrepancies.

These steps are described in detail in Section 3. In summary, RIP-
LEY relies on re-execution2 to produce the correct result within
replica C based on user events that it receives, effectively ignor-
ing malicious data and code changes that occur on the client. RIP-
LEY does not rely on the integrity of the client computation. Just
as with Web 1.0 applications, the basic assumption throughout this
paper is that anything executing on the server tier is believed to
be un-compromised and trusted, whereas the client tier, including
the browser itself, may be compromised. If the malicious changes
result in different RPCs issued to the server, RIPLEY will flag a
potential exploit and terminate that client’s connection.

As shown in Figure 2, with RIPLEY, a distributed web applica-
tion can combine the best of both worlds: the application is still
responsive because of client-side execution, but the results of this
execution do not have to be trusted because they are replayed on

1Note that RIPLEY is primarily designed to protect the integrity of
distributed applications. RIPLEY does not remove the need for in-
put validation nor does it eliminate confidentiality concerns. Con-
fidentiality and input validation are important orthogonal issues ad-
dressed by prior work [17, 26, 31, 40, 41, 52]. Moreover, while this
is not a panacea, for many applications that expect users to authen-
ticate, confidentiality is often addressed through the use of roles,
which essentially propagates login credentials to the database tier,
in many settings limiting the potential for information leaks.
2Re-execution or replay, hence the name RIPLEY.
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Figure 2: An informal illustration of the responsiveness vs. in-
tegrity trade-off for the two dominant web application execu-
tion models. RIPLEY aims to combine the best of both.

the server. In other words, the integrity assurance offered by the
application is the same as if it had been run entirely on the server.

Most existing approaches to ensuring integrity of client compu-
tation involve the client sending a proof of certain properties that its
execution state holds. The server efficiently validates these proofs
convincing itself of the integrity of the client execution. For in-
stance, the client could periodically send over its stack traces to the
server, and the server could check the traces for any properties it
desires. Or the server could build a model of proper client behav-
ior and flag behavioral violations of this model [16]. While they
are valuable, these techniques only provide a partial enforcement
of integrity.

Feasibility of our approach. In general, replicating the client-
side component running in JavaScript on the server is far from
easy. We discuss the issues involved in creating a deterministic
replay system [6, 39] in detail in Section 5. While the ideas pro-
posed in this paper apply in the context of regular AJAX applica-
tions, to simplify the process of replication, RIPLEY capitalizes on
a recent trend towards distributing compilers such as Links [11],
Hilda [54], Hop [46], and Swift [7]. Distributing compilers allow
both the client and the server portion of the distributed application
to be developed together. We have closely integrated RIPLEY with
Volta [33, 36], a distributing compiler that splits .NET applications,
translating them into JavaScript as needed.

Integration with Volta significantly simplifies the process of code
replication because the entire application is given to the Volta com-
piler at compile time. Moreover, Volta provides a relatively nar-
row, standards-based API for DOM manipulation, freeing us from
worrying about accurately mimicking browser-specific peculiari-
ties within the replica. RIPLEY also integrates into the RPC in-
frastructure of Volta, making the process of communication be-
tween RIPLEY components across different application tiers con-
venient. However, the ideas of RIPLEY are fully applicable to Sil-
verlight [37], Flash [18], as well as regular AJAX applications.

Performance and scalability implications. Another challenge of
the RIPLEY approach is that it places an additional re-execution
burden on the server. This is reflected in the form of CPU and
memory overhead, as the replicas run on the server, as well as net-
work overhead because of the need to transmit events.

To reduce the CPU overhead, the re-execution takes place within
a client replica that runs in .NET on the server; because it is JIT-ed
and the IL is strongly typed, .NET is in many cases considerably
faster than JavaScript. While it is possible to run the replica within
a browser on the server, this is generally prohibitively expensive if
the server needs to support multiple concurrent clients: in this naïve

approach, the memory overhead alone would be about 50 MB per
replica. For efficiency and scalability, we run the replica within
a lightweight headless browser emulator instead of a full-fledged
browser. We are careful not to create unnecessary network traffic:
we combine event transfer with existing RPC into the same net-
work packets. While the focus of this paper is full replication,
it is possible to replicate only certain, integrity-critical parts of the
application to cut down the overhead.

Paradoxically, sometimes RIPLEY can even lead to better per-
formance: since the application is replicated on the server, and the
server is typically faster than the client, the client replica running
on the server enables it to anticipate RPCs from the client in ad-
vance. This helps it to prepare and send the reply to the client
ahead of time, using a push technology such as Comet[43]. In the
best case, the client has the illusion of the server taking zero time
for executing the RPC, leading to zero-latency RPCs and further
improvements in responsiveness.

Contributions. This paper makes the following contributions:

• We demonstrate that replication is a practical and effective
solution to the pressing problem of preserving computational
integrity of distributed web applications, all without requir-
ing developer involvement or changes to the development
process.

• We propose a number of performance optimizations that al-
leviate the network, memory, and CPU overhead imposed by
the use of replication. Surprisingly, RIPLEY may make ap-
plications more responsive: because the replica often finishes
before the client, RPC results can be pro-actively pushed to
the browser, effectively resulting in 0-latency RPCs.

• We evaluate the effectiveness and overhead of RIPLEY on
five representative security-sensitive Volta applications. To
give a sense of how RIPLEY might scale to larger applica-
tions, we also estimate the overhead of replicating the client-
side portion of Hotmail, an existing widely-used Web 2.0 ap-
plication.

Paper Organization. The rest of the paper is organized as follows.
Section 2 summarizes the threat model and provides an overview of
RIPLEY assurances. Section 3 gives a detailed description of RIP-
LEY implementation choices. Section 4 describes the results of ap-
plying RIPLEY to five security-sensitive AJAX applications. Sec-
tion 5 presents a discussion of RIPLEY design. Section 6 presents
related work and Section 7 concludes. Appendix A describes our
benchmarks in detail, and Appendix B provides a brief formaliza-
tion of integrity guarantees provided by RIPLEY.

2. THREATS AND ASSURANCES
While distributing compilers [11, 36, 46] propose a powerful pro-

gramming model for distributed application development, moving
execution to the untrusted client tier clearly diminishes the security
of the resulting distributed application compared to the single-tier
original [19]. It is the primary goal of RIPLEY to restore the level
of security that has been lost. Note that RIPLEY does not try to en-
hance the security beyond that: a SQL injection [2] or a cross-site
scripting vulnerability [5, 13] in the original application will persist
in the distributed version; reliance on RIPLEY does not negate the
need for input sanitization. However, with RIPLEY, we ensure that
distributing the application will not worsen the application security
posture. For instance, input sanitization checks are automatically
replicated on the server, ensuring that a malicious client cannot



bypass them. Replicating such checks also automatically ensures
that the client- and the server-side sanitization checks are consistent
with each other.

Basic assumptions. RIPLEY does not rely on the integrity of the
client computation. Just as with Web 1.0 applications, the basic
assumption throughout this paper is that anything executing on the
server tier is believed to be un-compromised and trusted, whereas
the client tier, including the browser itself, may be compromised.
In practice, tampering is typically performed by either manipulat-
ing HTTP requests or editing the code executing on the client; the
interested reader is referred to Hoffman and Sullivan [20] for more
details about specific AJAX vulnerabilities and exploits. Further-
more, the basic replication technology is part of our trusted comput-
ing base: we assume that the translation from .NET to JavaScript
provided by Volta is faithful.

Just as with a Web 1.0 application, the computation is performed
based on the user-provided input (captured as an event stream). If
the user is malicious and is deliberately manufacturing events, or
even if the browser or the underlying OS are compromised, RIP-
LEY is not going to provide worse (or better) integrity compared
to a fully server-side Web 1.0 application. Of course, completely
breaking the need for user input in the form of events for a Web 2.0
or form inputs for Web 1.0 application is impossible if the applica-
tion is to interact with the user at all.

Key goals and non-goals. The key focus of RIPLEY is to provide
assurance to application developers or deployers. The key property
of the RIPLEY model is that the execution that is trusted takes place
entirely on the server. The RIPLEY server and replica pair execute
based on the event stream received from the client. Ultimately,
we are concerned with preserving the integrity of persistent state
of the application, which might include database and file system
operations executed by the server.

The client-side component is only there to enhance the respon-
siveness of the application. It is possible for the client-side state to
deviate from the replica state; this may not be noticed until the next
RPC or ever, if that difference does not affect RPCs at all. However,
we are not concerned with preserving the client-state of a malicious
user. If we do not wish to detect malicious users, we might choose
to completely ignore RPCs we are receiving from the client in the
browser, relying instead on trusted, high-integrity values computed
by the replica.

RIPLEY does not eliminate the need for input sanitization, how-
ever, the ability to not worry about the placement of sanitizers il-
lustrates the convenience of the RIPLEY model: a sanitizer check
will be first performed on the client and then re-executed within
the replica. So, for a benign user unintentionally supplying mal-
formed input, the check will fail quickly on the client. It is not our
goal to convince the user that a particular security policy is satis-
fied within the application; this is the focus on much recent work in
language-based security [7, 8, 10]. Neither it is our focus to ensure
that the user is communicating with the right application or that the
browser or user machine are un-compromised. This can be accom-
plished through remote attestation methods [28]. Also, man-in-the
middle attacks can be addressed with SSL.

In summary, RIPLEY ensures that a distributed web application
behaves just like in the Web 1.0 case: user inputs are untrusted, but
the integrity of the server-side persistent state is guaranteed.

3. RIPLEY IMPLEMENTATION
This section focuses on the implementation details of RIPLEY.

In Section 3.1 we describe Volta, the distributing compiler we used
in our implementation. Although RIPLEY does not have to rely
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Figure 3: Tier-splitting in Volta: an application is split into
a server-side component S and a client-side component C.
The original .NET client-side component C is translated into
JavaScript C′ to be run within the browser.

on Volta to work, integrating with Volta makes our approach con-
siderably cleaner. The techniques in RIPLEY are in fact suitable
for any distributed Web application written in JavaScript [12], Sil-
verlight [37], or Flash [18], once the client logic is mimicked on
the server with the help of a replication technology such as server-
side JavaScript. However, Volta allows us to both perform replica-
tion and restrict the expressiveness of the programming model to
limit some of the difficult-to-replicate features; Section 5 provides
a more detailed discussion of replication issues.

The remainder of the section provides a deep dive into the RIP-
LEY implementation. Throughout this section the reader may find
it helpful to refer to the following list of components, whose rela-
tionship is shown in Figure 1:

• The server-side component S running in a .NET CLR within
the web application server;

• The client-side component C′ running in JavaScript within
the browser;

• The replica of the client-side component C running in a .NET
CLR within the web application server.

RIPLEY is implemented as an optional extension to the Volta tier-
splitting process. This process takes the original application and
produces S and C, optionally translating C into C′ that runs in
JavaScript. Integrating with the Volta tier-splitter allows RIPLEY
to be implemented as several simple IL-to-IL bytecode rewriting
passes. We assume that the Volta translation (RPC introduction,
etc.) preserves the original application semantics. We also as-
sume that the emulator further described in Section 3.4 is going
to faithfully represent key portions of the client state such as the
DOM and cookies. Given enough assumptions about the original-
to-Volta program and Volta program-to-Ripley program mappings,
we can for example argue that if the server is connected to an ex-
ternal store, such as a SQL database, running a RIPLEY-protected
version of the application and a standalone version of the applica-
tion will result in the same queries sent to the database. Of course,
from the standpoint of the developer, enabling RIPLEY on an ex-
isting Volta application is as easy as ticking a checkbox in a Volta
project configuration. In the rest of this section, we shall describe
each of the components above in detail.

3.1 Volta Background
While the RIPLEY approach can be used for general AJAX-based

Web applications, integrating with Volta provides a number of clear
advantages. As illustrated in Figure 3, the Volta compiler is a dis-
tributing compiler that takes a .NET application as input and tier-
splits it into a client and a server component by replacing appro-
priate cross-tier method calls with AJAX RPCs. Data is serialized
before being sent to the server and deserialized on the server once
received. A similar serialization-deserialization happens when the
server returns control to the client. The client-side component is



// a custom button handler
this.button.Click += delegate {

var name = this.userName.Value;
var pass = this.passWord.Value;
Login l = new Login();
l.attempt(name, pass);

}

(a) A typical button on-click handler

// our rewriter adds the following handler
this.button.Click += delegate {

// capture the event
HtmlEventArgs evt = this.Window.Event;
// read target object ID
var id = evt.__ObjectId;
// event type: keyboard, click, etc.
var type = evt.Type;
// extra event-specific data
var data = serializeData(evt);

// enqueue event for transfer
__ClientManager.

enqueueEvent(type, data, id);
}

Figure 4: (b) RIPLEY-generated handler for event interception.

translated into JavaScript for execution in an unmodified standards-
compliant browser [33, 36].

Volta allows the developer to declaratively define which por-
tion of the application runs on the server and which part on the
client with the help of class-level annotations. Tier-splitting is per-
formed subsequently as a .NET bytecode rewriting pass that reads
the placement annotations, introducing RPCs as needed. To imple-
ment RIPLEY, we have augmented the Volta tier-splitter to perform
additional rewriting steps described in Section 3. We have also
augmented the base Volta libraries to provide support for browser
emulation, as described in Section 3.4.

Volta simplifies some of the emulation challenges: because the
Volta interface to the DOM is a relatively narrow, standards-based
API, we do not have to worry about faithfully reproducing browser
incompatibilities for every known browser in the emulator. More
specifically, Volta disallows free-form HTML manipulation, expos-
ing a well-typed DOM API that can be replicated on the server
without the need for an HTML renderer or JavaScript interpreter.
The alternative of checking the browser User-Agent string and
customizing emulator behavior based on that is possible, but re-
quires more implementation effort.

3.2 C ′: Instrumenting the Client
Prior to being translated to JavaScript, the client binary C gener-

ated by the tier-splitter is rewritten to capture client-side user events
and send them to the server. Note that in the RIPLEY model, the
server is trusted; we assume that sending events to the server does
not violate the privacy of the user. If, for example, mouse click
coordinates are used as a source of randomness on the client to per-
form client-side data encryption, sending them to the server might
be undesirable, as it will undo the point of client-side encryption.

3.2.1 Event Handling
In RIPLEY, events are classified into two kinds — primitive events

and custom events. Primitive events include each key press and
mouse click event, regardless of whether the application actually
has registered any handlers for them. Custom events are those that

the application has registered explicit handlers for. A typical han-
dler for a button click event is shown in Figure 4a. Clearly, it is
crucial to intercept these events on the client and relay them to C
for replay. Tracking primitive events helps maintain the state of
crucial elements such as text areas and radio buttons. For instance,
each keystroke a user types into an HTML form will produce a sep-
arate keyboard event that is intercepted by RIPLEY and transferred
to the replica. As an optimization, multiple keyboard events sent to
the same HTML element can be combined into a single meta-event.

Note that we do not handle all JavaScript events that occur on the
client; doing so would involve listening to all MouseMove events,
for example, which occur every time the user repositions the mouse
pointer. Clearly, this would be prohibitively expensive and gener-
ally unnecessary. Another reason is that our DOM emulation dis-
cussed in Section 3.4 is only an approximation of the real DOM
and does not maintain information about the mouse position, etc.
This seems sufficient for applications we study in our experiments.

3.2.2 Event Interception
Primitive events are intercepted by registering a handler for each

on the HTML BODY element. Since in the HTML event model,
all events bubble up (or propagate) to the top-level document BODY
element, it is a convenient point to intercept them. To intercept
custom events, RIPLEY registers an extra handler shown in pseudo-
code in Figure 4b for each event of interest, via bytecode rewriting.
Note that we perform this rewriting at the .NET level, before the IL
is translated into JavaScript.

RIPLEY-generated event handlers enqueue details about the event
into an application-specific queue. In addition to the event type
(key press, key release, etc.), the serialized event details include the
key code for keyboard-related events, mouse button information for
mouse events, etc. Finally, the unique identifier corresponding to
the DOM object which raised this event is also sent over, so that
the event can be delivered to the corresponding DOM object within
the replica.

3.2.3 Event Transfer
To reduce the number of round trips to the server, which is likely

to become a bottleneck on high-latency connections, events are
asynchronously relayed to the server in batches. Figure 5a and 5b
show two scenarios of how events may be batched on the client
and transmitted to the server. There is a natural trade-off between
eager and lazy event transfer. As Figure 5a demonstrates, send-
ing events eagerly will result in excess of network usage, which
might be costly on a mobile connection, for instance, but will en-
sure speedy replication on the server. On the other hand, batching
events longer as in Figure 5b would result in minimal network us-
age, but will delay the integrity checking and resulting server up-
dates and responses.

To resolve this trade-off between responsiveness and network us-
age, we adopt a simple middle-path strategy. Events are batched
until the queue reaches the maximum size of a network packet, in
which case they are sent over immediately. Otherwise, whenever
there is a RPC call, all events in the queue are flushed to the server.

3.3 S: Adding a Ripley Checker
RIPLEY modifies the server binary S to receive and properly

handle events arriving from the client and relay them to the client
replica C for replay. Events are deserialized from the wire be-
fore being delivered to C. RIPLEY intercepts the RPCs that are
received from both the JavaScript client and the replica and records
them into audit logs, as shown in Figure 6. Note that checking is
only needed if we wish to actively detect malicious clients — other-
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Figure 6: Audit logs from C and C′.

wise, the application can simply ignore RPCs m′ received from C′,
replying on m values instead, with the server integrity fully pre-
served.

By default, RIPLEY waits until it receives and compares RPCs
m and m′. Only when they are equivalent does the runtime relay
the RPC call to the application server code. The return response
from the server is again intercepted as a string at the HTTP level.
Copies of the response are relayed to both the client replica C and
the actual client C′ over the network.

Lock-step execution fashion is not the only option. Alternatively,
RIPLEY could allow the server-side client replica C to move ahead,
by relaying m to the server and sending back the response. When
m′ arrives, the server can confirm its equivalence with m. This is
a likely scenario with well-provisioned servers and relatively slow
clients. An alternative approach consists of keeping audit logs for
messages arriving from both C and C′ and to do periodic random-
ized cross-checking offering a lower overhead at the cost of a prob-
abilistic integrity guarantee. Moreover, if RPCs are large, send-
ing the entire RPCs is entirely unnecessary — to save bandwidth,
we can simply compute Message Authentication Codes (MAC) and
send them over.

Since there could be multiple clients connected to the same server
at runtime, the client replica C is executed in its own APPDOMAIN,
a lightweight process-like abstraction in the .NET runtime [42].
At runtime, RIPLEY maintains a separate APPDOMAIN associated
with each user session, and looks it up each time a batch of events
is received from the client.

The main advantage of using separate APPDOMAINs is memory
isolation: each uses its own heap and loads its own copy of dynam-

ically linked libraries and maintains its copy of global data struc-
tures. Moreover, cross-APPDOMAIN communications are cheaper
than inter-process communication in general as they do not re-
quire a process context switch and APPDOMAINs can share certain
DLLs. We should point out that on a multi-core machine the RIP-
LEY replicas can be put on the extra cores, if those are currently
unused. In this architecture, it would also be desirable to co-locate
the client-side replica on the same core as the server thread it is
communicating with. We further address the question of server
scalability in the next section.

3.4 C: Emulator and the Client Replica
By now, one question begs to be asked: how are we going to

scale a RIPLEY server? Not only are we running the existing server
code, for reasons of security, we have also migrated client replicas
for all clients connected to the server. Our goal of faithfully repli-
cating the client execution on the server can be accomplished by
running an instance of the actual full-fledged browser loaded with
the application code on the server, one per user, as proposed by
Deepfish [35]. However, for a popular and complex application,
this approach is difficult to scale because the browser is a highly
memory- and CPU-intensive piece of software.

There are two primary reasons that we believe that our solution
will scale. First, we run the replicas in .NET instead of JavaScript,
making it significantly faster in our experiments. One reason for
the speed difference is that .NET has a JIT-ing highly optimized
interpreter operating on a low-level strongly-typed IR. JIT inter-
preters for JavaScript are not as matured yet, and might still require
dynamic type checks since it is not strongly typed. Second, we use
a lightweight emulator instead of a full-fledged browser to reduce
the memory and CPU utilization, as demonstrated in Section 4.1.

Much of the execution and state of the client does not affect the
server state. For instance, any of the DOM rendering code or the
state associated with the layout of the UI widgets do not feature
in the application logic that updates application state on the server
or the database. Clearly, such details can be abstracted away when
we execute the client replica. We accomplish this by building a
browser emulator that hosts the client replica C instead of an actual
browser. The emulator is a lightweight browser that keeps track of
the relevant UI state including the structure of the DOM and con-
tents of editable elements. Since it performs no rendering or layout
related computations, it avoids a lot of computation. As shown in
Section 4.1, the memory footprint is an order of magnitude less for
the emulator compared to a full browser.

The emulator is built as a dynamically linked library that ex-



Lines of code Frequency of remote procedure calls (RPCs)
Benchmark application JavaScript C# with RIPLEY w/o RIPLEY

Shopping Cart 698,832 594 one at checkout on every cart update
Game of Sudoku 699,873 658 one at the end on every game cell entry
Blog Application 699,071 341 submit, load each blog submit, load each blog
Speed Typing Test 697,782 363 initialization, finish on every word entry
Online Quiz 699,056 416 load questions, finish on every question

Figure 7: Summary of statistics pertaining to the RIPLEY benchmark applications.

Application Network overhead for event transfer
RPCs Uncompressed Compressed

Benchmark RPCs Bytes Events RPCs Total Norm. Total Norm.

Shopping Cart 1 157 13 1 1,548 119 300 23
Game of Sudoku 1 160 146 8 16,953 116 812 5.6
Blog Application 9 1,595 252 11 31,090 123 863 3.4
Speed Typing Test 4 1,598 556 28 63,945 115 1,422 2.6
Online Quiz 2 275 66 4 7,801 118 445 6.7

Figure 8: Network overhead measurements after applying RIPLEY.

poses a DOM manipulation interface, with which the client replica
C links at runtime. For reasons of efficiency, in addition to using
the emulator, the replica is linked against a slightly modified Volta
client runtime, that relays the HTTP requests to the server compo-
nent S directly using a .NET method call instead of sending it over
the network.

To ensure that the replica exhibits the same observable behavior
as an actual JavaScript client, some further machinery is required.
Relaying events to the right object within the replica is done by as-
sociating each DOM node with a unique ID. Each time a new DOM
node is created, either on the actual client or on the replica, a new
ID is created and stored within the node. Since the runtime behav-
ior of the actual client and its replica is identical, new DOM objects
are created in the same order, providing a deterministic mapping
between DOM elements of the client and its replica.

When an event is raised on a client DOM object, the ID of the
target object is sent over the wire to the replica on the server, as
shown in Figure 1. The APPDOMAIN hosting the replica maintains
a lookup table of IDs-to-object references, which allows RIPLEY to
identify the appropriate object instance to deliver the event to. The
method to be invoked on that instance and the parameters that need
to be sent are provided as part of the event.

4. EXPERIMENTAL RESULTS
A comprehensive evaluation of RIPLEY presents a serious chal-

lenge: interesting third-party security-sensitive benchmarks appli-
cations are hard to come by. While our reliance on Volta makes
implementation easier, it makes finding good benchmarks harder,
since none of the existing Volta applications are security-critical.
To get a better sense of runtime overhead RIPLEY induces, we used
a combination of five representative security-relevant applications
we have developed using Volta, as described in Section 4.1, which
we evaluate in detail with a focus on absolute overheads. In Sec-
tion 4.2, we show the overhead of applying RIPLEY-style replica-
tion to Hotmail, a large-scale AJAX application. We show RIPLEY
overhead relative to the resource and CPU requirements of existing
Hotmail code.

Volta benchmarks. Our Volta benchmark applications and the
benefits of applying RIPLEY to them are described in detail in Ap-
pendix A. A brief summary of information about them is given in

Figure 7. All of these applications were originally developed in
C# and (partially) translated into JavaScript by the Volta compiler.
Columns 2 and 3 provide the line-of-code metric for the result-
ing JavaScript and original C# code. Note that the JavaScript code
includes the translated versions of the required system classes that
may be needed at runtime, which causes it to be quite substantial; if
GWT experience is any indication, we expect code size to decrease
drastically in subsequent Volta releases [30]. Column 4 shows the
frequency of RPCs in the version of the application protected with
RIPLEY. In most cases, there is only one RPC required at the end of
the execution: in a way, we were trying to push the limit of client-
side computation without excessive server interaction. Many of our
benchmarks were inspired by existing game exploits found in the
book “Exploiting Online Games” [21].
Comparing with hand-secured applications. To put the benefits
of automatic replication into perspective, for each of our bench-
marks we also consider an application that would have the same
strong integrity properties written by hand or with the help of a
compiler such as Jif [7, 8]. In the majority of cases, engineering
such an application requires manually moving significant portions
of the computation to the server to preserve integrity. Column 5
shows the number of RPCs for such an application. Clearly, RIP-
LEY results in fewer RPCs for the same integrity guarantee. This
is particularly important when extra network round-trips come at a
high premium, such as in the case of mobile phone environments.

4.1 Volta Applications:
Overhead Micro-measurements

We focus on three dimensions of overhead: extra network uti-
lization, extra memory utilization, and extra CPU time. This sec-
tion focuses on micro-measurements of performance overhead.

4.1.1 Network Overhead
The network overhead was measured for each application by

performing a pre-determined series of user events for each, mir-
roring typical use of that application. The amount of network us-
age in terms of the stream of events sent to the server was mea-
sured in each case, using Firebug [29]. The first group of columns,
columns 2–3, in Figure 8 shows the network usage of the appli-
cation itself. Most applications in our benchmark suite send only
a few RPC messages to the server. The Blog application has been



Volta RIPLEY

Server 23 – 26 27 – 32
Client (IE) 59 – 64 59 – 65
Client (FF) 69 – 77 69 – 78

Figure 9: Comparison of memory utilization, measured in MB.

written to produce one RPC per blog entry read, and so it uses more
messages than other applications.

Columns 4–7 show the network overhead introduced by using
RIPLEY. The “Total” column shows the total number of bytes and
the “Norm.” column shows number of bytes per event. Extra net-
work activity is only due to transmission of event data to the server.
Unsurprisingly, applications such as the Speed Typing and the Blog
that generate a lot of key strokes consume more network resources.
However, network messages containing event data are sent asyn-
chronously and thus do not significantly slow down the client-side
execution. The bandwidth requirement is directly proportional to
the number of events, as can be seen in the last column. All appli-
cations use up about 120 bytes per event, uncompressed.

Fortunately, the event stream is highly compressible; applying
GZip compression reduces the size of a single event on the wire
to just 3–4 bytes on average, as shown in columns 8–9. The ef-
fectiveness of compression is most noticeable in highly interactive
benchmarks such as Speed typing, reducing the number of needed
network packets to just a single one in most cases. Unfortunately,
the current generation of browsers do not support automatic com-
pression of HTTP requests, only HTTP responses, requiring it to
make compression part of Volta tier splitting, which is part of fu-
ture work.

4.1.2 Memory Overhead in the Emulator
In the presence of multiple replicas running alongside the server

it is possible for the replicas to use up quite a bit of extra memory.
Of course, the emulator is significantly less memory-consuming
than running a full-fledged version of the browser.

To experimentally demonstrate this point we first considered a
version of the Shopping cart application running without RIPLEY
and then with RIPLEY enabled, with both Internet Explorer and
Firefox running on the client. A summary of information about
this experiment is shown in Figure 9. The table shows the range
of memory utilization, in megabytes, to support a single client for
each version with and without RIPLEY; in most cases, more mem-
ory was allocated as the application progressed. We used Internet
Explorer version 7.0.6001 and Firefox version 2.0.0.16 on Win-
dows Vista to perform these measurements. The server memory
utilization goes up by about 5 MB by adding the RIPLEY em-
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Figure 10: Memory footprint, in MB, as a function of the num-
ber of replicas.

Server checks Event capture
Benchmark Max Min Avg Max Min Avg Med

Shopping Cart 0.083 0.083 0.083 8 0 1.21 1
Game of Sudoku 0.462 0.462 0.462 87 0 1.25 1
Blog Application 0.079 0.002 0.012 8 0 0.676 1
Speed Typing Test 0.078 0.004 0.023 84 0 0.8 1
Online Quiz 0.078 0.004 0.041 162 0 3.044 1

Figure 11: CPU overhead in ms after applying RIPLEY.

ulator. The experiment was conducted thrice to verify that the
increase is always about 5 MB. This is an order of magnitude
cheaper than adding a full-fledged browser with a memory foot-
print of over 50 MB.

Furthermore, we modified the server to create more client repli-
cas to simulate the process of a multitude of clients that are simulta-
neously connected to the server. Figure 10 shows the server mem-
ory size as we increase the number of replicas to 100. Because of
DLL sharing across the different APPDOMAINs, the marginal cost
of an additional replica is only about 1.3 MB compared to 5 MB.

To put this into perspective, we have consulted recent capac-
ity planning guidelines for Microsoft Sharepoint, a sophisticated
Web 2.0 application providing wiki and document sharing func-
tionality. In many ways, Sharepoint is a good application to con-
sider: unlike search, which is server-bound, it performs a reason-
able amount of computation on the client, but the reason to have
client-side computation is responsiveness, not to unload computa-
tion from the server. Capacity planning guidelines suggest 100–
190 concurrent users per machine [1, 47]. At 1.3 MB per user, this
requires 130–247 MB of extra memory per server, which is a rea-
sonable overhead.

4.1.3 CPU Overhead
RIPLEY introduces CPU overhead on both the server and the

client. Clearly, running the replica on the server also consumes
CPU resources, despite the fact that running within the emulator
described in Section 3.4 makes things considerably faster.

RIPLEY checking on the server introduces some latency for reg-
ular requests, as shown in columns 2–4 in Figure 11. The server
runs an ASP.NET application server on a dual-core 3-GHz ma-
chine with 4 GB of RAM running Microsoft Vista. We run each
application with the same input as for the network overhead exper-
iments and measure the time that each client-side request spends
waiting for the replica to generate the corresponding request and
to compare the two to verify its integrity. In most cases, the for-
mer component forms the bulk of the overhead, since the replica
receives the event information in batches and needs time to catch
up with the actual client.

The maximum overhead of the Shopping Cart and Sudoku is due
to this effect, since the events are sent to the replica right before the
checkout and finishgame RPCs are sent to the server. The max-
imum overhead for the other applications is observed during the
application initialization phase and typically involves application-
specific IO on the server. For instance, in the Blog application,
it involves fetching the blog data and in the Quiz application, it
involves initializing the database of questions. Despite this, this
overhead is mostly negligible for all benchmarks. The minimum
times were fractions of milliseconds, since for these requests, the
replica is already in sync when the requests arrive. The overhead is
only due to the string comparison of messages.

Client-side instrumentation for capturing and serializing event
information to the server adds execution overhead in the browser.
The overhead is low as shown in columns 5–8 in Figure 11, typi-



cally about a couple of milliseconds on average. The extremes of
minimum and maximum are shown to indicate the spread. The high
extremes are believed to be statistical anomalies since the median
overhead is 1 ms for all applications, which is not noticeable for
interactive GUI applications. This is the typical overhead we might
expect, since the events are sent asynchronously to the server. Mov-
ing event capture to the browser as discussed in Section 5 is likely
to reduce the client-side CPU overhead even further.

4.2 Hotmail Experiments:
Overhead Macro-measurements

The experimental evaluation thus far has focused on studying
several relatively small Volta applications in much detail. To pro-
vide an estimate of how RIPLEY ideas might extend to an existing
large scale Web 2.0 AJAX application, we have devised a series of
experiments focusing on replicating the client-side Hotmail state
“by hand”, without automatic deployment provided by RIPLEY for
Volta applications.

4.2.1 Hotmail Experimental Setup
The Hotmail mailbox in our setup consisted of 32 email mes-

sages, about half of which were HTML-heavy. The entire appli-
cation download with a clean browser cache consists of 793 KB
of both code and data, uncompressed. Much of that — 703 KB to-
tal — is JavaScript. When pretty-printed, the downloaded JavaScript
adds up to 31,178 lines.

Pretty-printing is necessary, because often, to save space, JavaScript
is shipped as a long line of code. Note that the DOM representing
the mail application UI is partially downloaded from the server and
partially created on the client, through JavaScript client-side logic
and XmlHttpRequest calls.

4.2.2 Network Overhead
To measure the network overhead of event capture, we loaded

a Hotmail inbox window and waited for network activity to qui-
esce. For this run, the mailbox contained a total of 8 unread email
messages and several dozen read ones. We used Hotmail for a to-
tal of 5 minutes, starting by reading the messages, replying to mail,
deleting spam, cleaning the junk mail folder, searching the mailbox
for and removing some large HTML emails, etc.

This entire experiment produced a total of 491 keyboard and
mouse events (subsequent keyboard presses sent to the same HTML
element were compressed into one event), captured using a key log-
ger. When saved to disk, the event trace was 8,673 bytes or 2,889,
when compressed with GZip (for this experiment we used exact
screen coordinates instead of element ids, leading to a slightly more
verbose representation). Next, we examined the amount of traffic
that exists between Hotmail servers and the browser.

For this experiment, we ignore traffic generated by viewing email
messages to other hosts: for instance, viewing a message from
Amazon.com results in numerous requests for book cover images,
etc. We also discount requests that the browser makes to exten-
sion vendor sites, etc. At the end, we end up with a total of 328
requests, some going directly to Hotmail servers, others going to
affiliated advertising sites.

The aggregate size of the requests is 617,297 bytes; the aggre-
gate size of responses is 3,045,249 bytes. Part of the reason HTTP
requests are generally larger than expected is because they contain
sizable tracking cookies: cookies of 1–2 KB in size are not uncom-
mon. The extra network traffic because of event capture is negli-
gible in comparison: it constitutes 1.4% if we do not compress the
event stream and 0.4% otherwise.

Page JavaScript heap

Hotmail homepage 0.815 MB
Inbox page 1.25 MB
HTML-heavy email 1.291 MB

Figure 12: JavaScript live heap sizes for Hotmail.

4.2.3 Memory Footprint
Client-side state, which is what our replica needs to keep track

of efficiently, consists of three major components. First, there is the
DOM displayed in the browser. The DOM is not displayed in the
RIPLEY emulator, but its representation needs to be kept in mem-
ory. Second, there are non-DOM client-side data structures main-
tained in the JavaScript heap. Third, there is the JavaScript code
maintained on the client. Our assumption is that within the replica,
this code will be represented in .NET and shared across the instan-
tiated replicas, so that the code footprint does not grow as more
concurrent clients are added. Therefore, we focus on measuring
the amount of per-client DOM and heap state.

DOM state. To estimate the DOM state within the replica’s heap,
we have taken a saved version of the DOM as HTML. We converted
this 20 KB HTML document into a DOM representation within the
emulator by recursively parsing the HTML and recreating the DOM
tree on the .NET emulator heap. The in-memory representation of
the DOM is 349 KB, if we enable frequent garbage collection in
.NET to simulate memory pressure, and 434 KB otherwise.

Client-side heap. Unfortunately, translating the existing 700 KB
or so of JavaScript into .NET is not a tractable approach, so instead
we have chosen to instrument the runtime execution of Hotmail
within a real browser to put an upper bound on the amount of heap
storage likely to be required within the replica.

For this experiment, we instrumented the JavaScript engine in
Mozilla Firefox to report the aggregate size of live heap objects
after each garbage collection cycle. (Again, we forced frequent
garbage collection to simulate memory pressure in a multi-user en-
vironment. As with any garbage collection environment, while a
lot of objects are allocated, a high fraction of them die young; we
focus on the aggregate size of live heap objects on the heap.) Note
that this is an upper bound because .NET, being a strongly-typed
runtime environment, generally uses the heap more efficiently than
JavaScript.

We have discovered that even an empty browser allocates a fair
bit of state — 3.1 MB in total — in the JavaScript heap, which in-
cludes browser plugin state, JavaScript built-in functions, etc., all
reflected into JavaScript. None of this needs to be represented in
the replica, so this heap size constitutes the baseline for our exper-
iments. In other words, we focus on heap size increase seen when
we run Hotmail within Firefox.

Memory footprint numbers measured in megabytes for differ-
ent Hotmail pages in our experiment are shown in Figure 12. For
none of the frequent actions, does the JavaScript heap size ex-
ceed 1.3 MB. When considered together with the DOM state, this
is still under 1.75 MB per connected client.

4.2.4 CPU Overhead
The CPU overhead for replicating the client-side of Hotmail is

quite difficult to measure accurately, given that the browser is busy
with so many activities at once. Just as with memory, we would
have to translate the existing Hotmail code into .NET and run it.
However, it has often been observed that JavaScript execution is
not the dominant part of client-side application execution, in terms



of the fraction of time it takes. For instance, a study of 100 top
sites suggests that JavaScript execution is responsible for about 3%
of overall time. For a JavaScript-heavy site such as Hotmail, the re-
ported JavaScript time is only about 14%, when run within Internet
Explorer. On the other hand, CSS, layout, rendering, DOM ma-
nipulation, and data marshalling take a total of 75% [48]. Luckily,
the emulator is “headless”: it does not need to worry about these
issues. As such, we do not expect that replicating the client-side of
Hotmail will dramatically add to the CPU load on the server.

To support our belief, we used a proxy-based JavaScript instru-
menter to parse and add time-stamps in the beginning and end of
event handlers found in JavaScript for Hotmail. The majority of
event handlers in our experiment take a very small span of time, be-
low the 15 ms granularity of the JavaScript built-in timer. Drilling
into the execution of a single action — clicking on a large, HTML
email message and waiting for it to show up in the email view-
ing pane — reveals the following. Event handlers themselves are
very fast; heavy-weight network-bound operations execute asyn-
chronously. For instance, an inbox message open operation is processed
asynchronously. The event handler itself takes only 15 ms. Email
message processing callback takes 125 ms, much of which is HTML
screen repainting. Again, the emulator does not suffer this render-
ing performance hit because it is headless.

While it is difficult to precisely estimate the effect of replicating
Hotmail onto the server, replication is not entirely unprecedented
in the AJAX world. Replication is often used in mobile browsers to
achieve compatibility. Early success of projects that use server-side
rendering include the Deepfish mobile browser project [35] and a
recent SkyFire browser [45], both of which rely at least partially
on server-side rendering, is encouraging for the feasibility of the
RIPLEY approach on a large scale.

4.2.5 Summary
In summary, while at over 31,000 lines of code Hotmail is a con-

siderably larger and more complex AJAX application than the five
Volta applications studied in the previous section, the overhead im-
posed by replication seems acceptable. The network overhead ap-
pears to be just 0.4%. The memory overhead is around 1.75 MB per
concurrently connected client, which is manageable given typical
capacity planning requirements of supporting 100–200 concurrent
users. While is it difficult to precisely ascertain the CPU overhead
of replication, is is clear that a headless browser results in a consid-
erable overhead reduction.

5. DISCUSSION
This section considers implementation and deployment issues

that arise in the design and implementation of RIPLEY. Section 5.1
discusses difficulties of faithful replication. Section 5.2 addresses
scalability issues.

5.1 Difficulties of Faithful Replication
As was pointed out earlier, the fact that Volta provides a nar-

row browser-independent interface to the DOM makes replicating
it faithfully relatively easy. Disallowing HTML injection through
direct innerHTML assignments allows us to fully mediate access to
the DOM by the application, at the cost of the code being slightly
more verbose.

The most pronounced issue that makes replication hard is the
presence of various forms of non-determinism. Isolating them all is
a tricky problem. Below we discuss ways to introduce deterministic
replay [6, 39] into replica execution with the help of additional in-
strumentation. The following sources of non-determinism are most
common in web applications.

Using the Random family of functions. JavaScript exposes a ran-
dom number generator through function Math.Random. Clearly,
unless additional measures are taken, the value returned by calls to
this function on the client and the replica will disagree. A uniform
approach to treating randomness is to perform the computation on
one, “canonical” tier. In this case, we can instrument the client-side
code to block on Math.Random in the same way it would block on
an RPC. Then the client would request the random number from
the server and we would return the same value to both the client
and the replica. Note that this value needs to originate on the server
tier to be unguessable by a malicious client. In environments where
random numbers need to be generated frequently on the client, the
quality of the random number could be traded off a little for reduced
network usage by only asking for the randomizing seed occasion-
aly.
Reading and measuring time. Access to time is provided through
the Date object in JavaScript. Similarly to the approach described
above, access to time routines can be instrumented and the replica
can be blocked until the time measured on the client is delivered to
continue the computation.
Accessing third-party servers. A systematic way to deal with
client-side code accessing third-party servers is to require that these
accesses be tunneled through the server. For servers in a different
domain, this is necessary anyway, because of the same origin policy
in JavaScript. This allows for easy centralized access to outside
data, for both the replica and the client-side code. Because calls to
external services are performed only once, this also deals with the
issue of non-idempotent calls with side-effects. We also assume
that the client-side code does not interact with other JavaScript,
because replicating that JavaScript is far from easy. In other words,
all client-side JavaScript code is generated by Volta.
Scheduling issues. Unlike many other languages, JavaScript pro-
vides a single-threaded execution environment. However, there are
still opportunities for non-determinism caused by the use of timers
(functions setTimeout and setInterval), which allow schedul-
ing a piece of code to run on a timer. Other projects have focused
on deterministic replay of multi-threaded software [6]. While log-
ging and replay of event processing order is possible, for simplicity,
we currently disallow timers in RIPLEY.
Offline storage. Our emulator supports a cookie-based data store.
The emulator faithfully replicates the data stored in the browser.
While we have not experimented with other forms of offline store
such as Gears [14], we believe it can be supported similarly. RIP-
LEY provides a nice model for offline execution: both events and
RPCs are buffered up before the client is reconnected, at which
point the entire offline client-side execution is replayed within the
replica. Offline persistent store can also be supported by RIPLEY
if the user does not have privacy objections to sending their data to
the server.

Browser Enhancements. In fact, a set of small changes to the
JavaScript interpreter would help us secure event capture and de-
livery and would also address the sources of non-determinism dis-
cussed above. In particular, instrumenting Math.Random and Date

routines as well as event handlers as described in Section 3.2 in the
interpreter is the easiest and most systematic way to treat these is-
sues that ensures that malicious JavaScript code co-existing within
the same page is unable to gain access to this data. Event capture
outside of JavaScript should result in a lower overhead.
Plugins an other client-side code. RIPLEY is not designed to in-
teroperate with plugins that might be running within the page. In
fact, the RIPLEY model discussed in this paper is targeting stand-
alone deployment of a RIPLEY application witnin an HTML frame;



allowing other code to co-exist within the same frame as part of a
mash-up, for example, can easily compromise agreement with the
replica. This is because co-located script can change both global
data structures as well as code on the client-side.

5.2 Performance and Scalability
The RIPLEY model enables the following interesting optimiza-

tion opportunities.
0-latency RPCs. An advantage of the RIPLEY architecture is that,
once computed, RPC results can be actively pushed to the client [43].
This way, when the RPC is finally issued on the client, its result
will already be available, leading to 0-latency RPCs. This form
of pre-fetching demonstrates that not only does RIPLEY make the
application more secure, in many cases it can also make it more
responsive, especially for CPU-intensive workloads.
MAC-ing RPCs. To further reduce the network overhead we may
send MACs (message authentication codes) of RPCs m′ instead of
their actual values.
Deployment strategy. RIPLEY meshes nicely with the traditional
load-balancing approach to deployment of large-scale Web 2.0 ap-
plications. In particular, a load balancer could be used to repeatedly
direct the same user to the server where both its replica and the cor-
responding server threads run. Currently, this functionality is im-
plemented in the RIPLEY checker, which looks up the appropriate
APPDOMAIN for a user session. Moreover, to save memory, both
the server thread and the replica can be serialized on high server
load for long-running sessions and then brought back from disk.
Dependency analysis. An important observation is that the entire
client-side code base does not have to be included in the replica. In
particular, display code does not need to be executed on the server
because the replica is essentially “headless” — there is no user to
see the GUI. To further reduce the amount of code the replica must
run, we can use a slicing analysis [51] to only include a portion of
the client-side code that contribute to values included into RPCs.
This is left as future work.

6. RELATED WORK
The security of the Web infrastructure has been a subject of much

previous work. The various approaches to solving the problem can
be categorized roughly along four lines of inquiry. A sizable body
of literature has focused on the static analysis of web applications
using techniques such as taint-checking. Runtime monitoring of
web applications has also proved to be effective. Others have ad-
dressed the problem at a higher level by developing a cleaner and
more secure programming model, often erasing the boundaries be-
tween various tiers. Recent work has also developed techniques to
protect against untrusted clients in a networked environment. Fi-
nally, the idea of security through replication has also been well
studied in earlier work. We elaborate further on each of these.

6.1 Analysis and Monitoring
There has been a great deal of interest in static and runtime pro-

tection techniques to improve the security posture of traditional
“Web 1.0” applications [23, 26, 31, 34, 52]. Static analysis allows
the developer to avoid issues such as cross-site scripting prior to
deployment. Runtime analysis allows exploit prevention and re-
covery.

The WebSSARI project pioneered this line of research. Web-
SSARI uses combined unsound static and dynamic analysis in the
context of analyzing PHP programs [23]. Several projects subse-
quent to WebSSARI improve on the quality of static analysis for
PHP [26, 52]. The Griffin project proposes a scalable and precise

sound static and runtime analysis techniques for finding security
vulnerabilities in large Java applications [31, 34]. Static analysis is
also used to drastically reduce the runtime overhead in most cases.
The runtime system allows vulnerability recovery by applying user-
provided sanitizers on execution paths that lack them. Several other
runtime systems for taint tracking have been proposed, including
Haldar et al. for Java [17] and Pietraszek et al. [41] and Nguyen-
Tuong et al. for PHP [40]. All these techniques can be used in
conjunction with RIPLEY, by applying them on the complete code
base that includes the client and the server subprograms.

While server-side enforcement mechanisms are applicable for
traditional web applications that are composed entirely on the server
side [26, 31, 52], Web 2.0 applications that make use of AJAX of-
ten fetch both data and JavaScript code from many sources, with
the entire final HTML only available within the browser, making
runtime client-side enforcement a natural choice.

Recently, there has been a number of proposals for runtime en-
forcement mechanisms to ensure that security properties of interest
hold for rich-client applications executing within the browser [10,
22, 25, 56]. Erlingsson et al. make an end-to-end argument for the
client-side enforcement of security policies that apply to client be-
havior [10]. Their proposed mechanisms use server-specified, pro-
grammatic security policies that allow for flexible client-side en-
forcement, even to the point of runtime data tainting. Unlike RIP-
LEY, their technique can enforce some necessary, but not sufficient
conditions for establishing distributed application integrity.

Guha et al. [16] propose an analysis to construct a model of
valid client-side behavior and a security monitor that rejects client
requests that fall outside that model. This approach provides a form
of partial integrity, defeating important classes of XSS and CSRF
attacks. While it is able to impose a validity requirement on client-
side requests, it is unclear how well this approach applies to arbi-
trary data structures exchanged between the client and the server,
when data integrity is the problem. Also, this approach may suffer
from false positives. In contrast, RIPLEY’s approach is admittedly
much more blunt: it does not try to form an approximation of valid
behavior, it just runs the program and compares the end-result, pro-
viding a sufficient condition for integrity.

6.2 Web Programming Models
Tier-splitting has been proposed in settings other than Volta as a

way to program distributed web applications. Popular systems in
this space include Links [11], Hop [46], Hilda [54], etc. To the best
of our knowledge, RIPLEY is the first realistic security solution for
these kinds of frameworks.

BASS is a recent attempt to build security into a declarative
high-level web programming model, working on the observation
that security issues are often orthogonal to the main web applica-
tion logic [55]. It enables the programmer to specify the business
logic of the application without needing to write the security related
logic. Abstractions for common operations, such as form input, are
baked into the model. Secure coding practices that prevent com-
mon attacks such as CSRF, XSS and session fixation are applied by
the language compiler. A prototype implementation of the transla-
tion exists, but no applications seem to have been written in BASS.
RIPLEY, on the other hand, is a realistic programming model inte-
grated with a full-fledged Volta compiler. Instead of protecting only
against common exploits, RIPLEY defends against any client attack
that attempts to compromise application integrity. BASS does not
deal with client-side scripting at all, whereas RIPLEY works in a
model where a significant portion of the application is run on the
client for enhanced responsiveness.



6.3 Untrusted Clients
Protection against untrusted clients and eavesdropping over the

network has received much attention, especially in the context of
online gaming [21, 53]. In a distributed online game, part of the
application workload is typically delegated to the clients and the
server keeps track of only an abstract state of the game environ-
ment. As a result, the game is rendered vulnerable to malicious
clients compromising the physical and logical rules governing the
simulation in the game. Hacking popular online games is a finan-
cially viable undertaking as game “items” can be converted to real-
world currency or sold on eBay.

Jha et al. propose a solution to the distributed online game in-
tegrity problem by performing random audits of the client state
verifying that the client has not manipulated its state in violation
of the semantic rules of the game [24]. Our approach, in contrast,
provides a non-probabilistic guarantee of integrity at a potentially
higher cost. In particular, if the client-side computation is highly
CPU-intensive, as ray-tracing in games tends to be, despite reply-
ing on an emulator and running in a faster .NET environment, with
sufficiently many connected clients, the RIPLEY server might even-
tually become overwhelmed.

6.4 Replication & Replay for Security
Replication is a well-known way to increase security assurance,

previously studied in file systems and replicated state machines [4,
32, 44, 49]. The work closest to ours is that of Zheng et al. [57–
59]. In many ways a precursor to Swift [7, 8], this work focuses
on splitting programs while conforming to a set of integrity and
privacy policies. The latter are addressed by computing in the hash
space, not unlike our Quiz application described in Appendix A.

A high-level difference in philosophy with our work is that we
avoid using annotations, believing that having to write annotations
places an undue burden on the developer. For instance, one such ap-
proach requires about 20–30% of program lines to be annotated [8].
This makes such techniques challenging to retrofit into existing un-
annotated code. Instead, we “blindly” replicate the entire client-
side portion of the program on the trusted server tier, using runtime
optimizations to make this approach scalable. In doing so, we trade
increased developer productivity for runtime overhead.

Beyond our main focus on computational integrity violations
caused by malicious users, RIPLEY may also address the situation
of a benign user placed in a “malicious environment”. This could
be a propagating JavaScript worm, such as Samy [50]. Additional
RPCs issued by the worm on behalf of the user will not be gen-
erated by the replica as it runs in .NET. This discrepancy will be
spotted by RIPLEY, disallowing worm propagation. Replication
will also prevent cross-site scripting attacks that result in server
RPCs, because the extra injected JavaScript code is ignored by the
replica executing in .NET.

Revirt [9] is a system logger that records events in the operating
system so that they can be replayed later for post-mortem analysis
of attacks. The OS runs on a virtual machine and the logger runs
below the level of the virtual machine, thereby making it resistant
to kernel attacks. The logger is also able to replay the complete
instruction-by-instruction execution of the virtual machine so that
any queries about its execution can be answered to detect anom-
alous behavior. Capo [38] is an advancement on the techniques
of Revirt, enabling various styles of logging of systems on multi-
processor machines. RIPLEY also allows a complete replay of the
execution of untrusted code and is guaranteed to detect anomalous
behavior. The RIPLEY logger now runs as JavaScript, but we could
imagine moving it to the browser to enhance the integrity of log-
ging, as done by Revirt.

7. CONCLUSIONS
This paper presents RIPLEY, the first fully automated approach

to ensuring integrity of distributed web applications. To demon-
strate the efficacy of RIPLEY in practice, we have applied RIPLEY
to five realistic AJAX applications. The performance overhead in-
troduced by RIPLEY was minimal, in terms of CPU, memory, and
network overhead. While we have demonstrated our ideas in the
context of the Volta compiler, the ideas of code replication can be
easily extended to other runtime environments such as Silverlight
or server-side JavaScript.

We believe that in the future the approach pioneered by RIPLEY
may become an important building block of trustworthy distributed
applications. Our work closely follows the secure-by-construction
philosophy of building application software. In particular, we en-
vision RIPLEY becoming an integral part of the next generation of
application servers. All the application developer will have to do to
obtain the integrity-preservation benefits of RIPLEY, is to “drop”
their web application into the application server, with automatic
replication becoming part of the deployment process.
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APPENDIX
The appendix section is organized as follows: Appendix A provides
a description of our benchmarks. Appendix B outlines a formaliza-
tion approach for RIPLEY guarantees.

A. BENCHMARK APPLICATIONS
In this section we describe the benchmark applications we used

to test RIPLEY. All of these applications have been developed on
top of Volta. A summary of information about these applications
is given in Figure 7. In our choice of applications, we were in-
spired by previous application benchmarks [7] as well as attacks
presented in books “Exploiting Online Games” [21] and “AJAX Se-
curity” [19]. We particularly wanted to demonstrate how the AJAX
model allows us to migrate virtually the entire computation to the
client, with a minimum of RPCs, and how, when RIPLEY is ap-
plied, this approach does not lead to a reduction in integrity.

A.1 Client-side Shopping Cart
As in a typical shopping cart within an e-commerce application,

one can add and remove items to the cart, update their amounts,
and eventually check-out. There is a provision for using coupons
values where designed coupons C5, C10, and C15 denote 5%, 10%,
and 15% discounts, applied to the cart total. As described in Sec-
tion 1, it is typical for such an application to carry out the total
calculation on the server side, which means that every cart update
results in a RPC to the server. Our shopping cart is implemented
entirely on the client, with only one message containing the cart
total sent to the server upon check-out.

Security threats: In many ways, the shopping cart application is
a demonstration of typical client-side security threats described in
Section 2. For example, a malicious user may attempt to manip-
ulate the discount computation by using invalid coupons or using
the same coupon multiple times. Alternatively, the malicious client
can just manually set the resulting total before it is sent over to the
server without even touching the code.

Benefits of RIPLEY: With RIPLEY enabled, we can afford to do
these computations on the client side, thereby preserving the appli-
cation responsiveness. Since the user events are replicated on the
server side, the server also maintains an abstract state of the cart,
which includes values of various form fields, and can easily verify
the total amount as soon as it is received from the client.

A.2 Game of Sudoku
This online game presents one of five hard-coded Sudoku puz-

zles for the user to solve. The solution is checked on the client and



sent over to the server to be recorded for computing user ratings,
etc. As the game progresses, there are two kinds of validation
checks being performed. After a number is typed into a game cell,
the row and the column is checked to look for repetitions; repeated
numbers are flagged in red. When the user is ready to submit a
solution, the entire grid is checked for validity.
Security threats: Both the local and the global validation checks of
the game state can be easily bypassed by a malicious user, leading
them to declare the puzzle as finished without making an effort.
Benefits of RIPLEY: When the result of the game is submitted to
the server, RIPLEY will check the validity of the final solution based
on the event stream that it receives as input. A single RPC may be
used to submit all the relevant client-side events at once without
creating extra network traffic.

A.3 AJAX Blog
This online blog application allows the user to view a blog, and

to post and edit blog entries.
Security threats: Unlike the previous two applications that ad-
dress the issue of a malicious client, the focus here is on protecting
the benign client from the effects of script injection and worm at-
tacks. By default, the blog application does not perform extensive
data sanitization, leaving itself open to cross-site scripting attacks.
Worms can be used to amplify the effects of cross-site scripting. In
the case of a blog, a worm may post a blog entry on behalf of an
unsuspecting user.
Benefits of RIPLEY: In case of a JavaScript worm, when the worm
tries to propagate by uploading executable contents to the server,
it will do so by sending extra RPCs. Because the client replica
runs on the server side in .NET, it is impervious to JavaScript code
injection. As a result, the mismatch in the stream of RPCs will be
detected by RIPLEY. Also, client-side checks can now be reliably
performed on the client.

A.4 Speed Typing Test
In this application, a set of words is randomly chosen from a

dictionary and displayed to the user as a paragraph. The objective
for the user is to type as many words as she can within the time limit
of one minute. The user’s word-per-minute count and accuracy is
calculated once the time limit has passed. As the words are typed
in, their correct spelling is checked and highlighted on the fly. An
interesting property of this application is that events arrive at a very
rapid rate, thereby stressing the performance side of RIPLEY.
Security threats: A malicious user may tamper with per-word spelling
checks and also manipulate the time measurements to further rig
the test.
Benefits of RIPLEY: Just like in previous applications, RIPLEY
ignores circumvented checks on the client, performing its own com-
putation within the replica.

A.5 Online Quiz
In this quiz application, trivia questions appear one by one, and

depending on the correctness of the current answer, the next ques-
tion is selected, of a higher or same point value, respectively. After
answering a total of ten questions, the user’s score is calculated
and sent to the server for recording. The answer to each question
consists of a single word.

In an online quiz application such as this, the answer would be
sent to the server for checking after each question and the next
question would be returned. This requires a round trip after every
question, making the application less responsive. Moreover, if the
quiz is timed, the round trip overhead needs to be properly taken

into account. In contrast, our design moves the entire database of
questions (62 questions total) to the client. The next question’s se-
lection is performed on the client, so only a single RPC is required
at the end.
Security threats: An interesting twist in the Quiz application com-
pared to the ones above is that the confidentiality of the data on the
client is important. Indeed, if the client can easily learn and en-
ter the proper answers, cheating on the quiz would be trivial. In
general, RIPLEY does not do anything to address confidentiality
concerns, relegating these concerns to the developer.

For this application, we use a simple confidentiality-preserving
approach. We only send hash values of the proper answers instead
of the answers themselves. This allows us to compare hash values
of the provided answers with the correct ones. We chose to allow
for one-word answers to each question instead of multiple-choice.
This way we make dictionary attacks, while not impossible, then
considerably more difficult; they would be trivial if the space of
answers were small, consisting of choices A–E. Additionally, just
as for the applications above, a malicious client can manipulate the
solution checking code and related data.
Benefits of RIPLEY: As the entire application is run on the client
side, integrity issues like bypassing solution checking, etc. can be
handled by Ripley as the checks are replicated on the server side.
RIPLEY cannot address confidentiality concerns in general, though.

B. RIPLEY GUARANTEES
In this section we briefly outline the integrity preservation prop-

erty that we intuitively described in Section 2. A full formalization
is subject for future work and will likely require modeling Volta ap-
plications in a small, well-controlled language that is easy to reason
about. For a given non-distributed program PO , there are three sep-
arate server-based versions of PO to consider:

• PO: Original Web 1.0 program that has not been tier-split;

• PS : Tier-split program C+S with C running within a full-
fledged browser on the server; and

• PR: RIPLEY-replicated program C+S with replica C run-
ning within a RIPLEY emulator.

Let us emphasize that all these three variants of PO are executed
entirely on the server, only relying on input from the user. Let us
further assume that the program is connected to permanent database
store, and this store is the only form of persistent state the applica-
tion maintains. We are interested in ensuring that this store cannot
be affected by malicious client actions. Let us further assume that
the programs above do not have the forms of non-determinism de-
scribed in Section 5. We can then show the following.

Property: For any run of PO and PR given a stream of input
events 〈e1, e2, . . . , en〉, the sequence of SQL database calls issued
by PO and PR are exactly the same.

This property protects the integrity of persistent server-side state:
starting with the same database state, we will end up with the same
database state for both PO and PR. This is what we mean when we
say that RIPLEY restores the integrity guarantees to their Web 1.0
state. Given the same set of (untrusted) inputs communicated to the
program as well as assumptions of determinism, both the RIPLEY
and the original application will arrive at the same answer.

Proof of the Property above proceeds by showing that there is
a bi-simulation between PO and PS and another bi-simulation be-
tween PS and PR. This transitively makes PO and PR bi-similar,
which in particular implies the Property.


