DynaMine: Finding Common Error Patterns
by Mining Software Revision Histories

Benjamin Livshits Thomas Zimmermann
Microsoft Research Saarland University
livshits@microsoft.edu tzQacm.org

A great deal of attention has lately been given to addressing software bugs such
as errors in operating system drivers or security bugs. However, there are many other
lesser known errors specific to individual applications or APIs and these violations of
application-specific coding rules are responsible for a multitude of errors. For instance,
many APIs rely on methods being called in a specific order. These low-level rules are
often not recorded and even developers familiar with the code base may not always
know the invariants present in the code. In this paper we propgseMine, a tool
that analyzes source code check-ins to find highly correlated method calls as well as
common bug fixes in order to automatically discover application-specific coding pat-
terns. Potential patterns discovered through mining are passed to a dynamic analysis
tool for validation; finally, the results of dynamic analysis are presented to the user.

The combination of revision history mining and dynamic analysis techniques lever-
aged inDynaMine proves effective for both discovering new application-specific pat-
ternsand for finding errors when applied to very large applications with many man-
years of development and debugging effort behind them. We have analyzed Eclipse and
jEdit, two widely-used, mature, highly extensible applications consisting of more than
3,600,000 lines of code combined. By mining revision histories, we have discovered
56 previously unknown, highly application-specific patterns. Out of these, 21 were dy-
namically confirmed as very likely valid patterns and a total of 263 pattern violations
were found.

Categories and Subject Descriptors:D.2.5 [Testing and Debugging] Tracing; D.2.7
[Distribution, Maintenance, and Enhancement] Version control; H.2.8 [Database Ap-
plications] Data mining

General Terms: Management, Measurement, Reliability

Keywords: Error patterns, coding patterns, software bugs, data mining, revision histo-
ries, dynamic analysis, one-line check-ins.

1 Introduction

A great deal of attention has lately been given to addressing application-specific soft-
ware bugs such as errors in operating system drivers [4, 14], security errors [24, 43], or
errors in reliability-critical embedded software in domains like avionics [7, 8]. These
represent critical errors in widely used software and tend to get fixed relatively quickly
when found. A variety of static and dynamic analysis tools have been developed to
address these high-profile bugs.

However, many other errors are specific to individual applications or platforms.
This is especially true when it comes to extensible development platforms such as
J2EE, .NET, and others that have a variety of programmers at all skill levels writing
code to use the same sets of APIs. Violations of these application-specific coding rules,
referred to a®rror patterns are responsible for a multitude of errors. Error patterns
tend to be re-introduced into the code over and over by multiple developers working
on a project and are a common source of software defects. While each pattern may be
only responsible for a few bugs in a given project snapshot, when taken together over
the project’s lifetime, the detrimental effect of these error patterns is quite serious and
they can hardly be ignored in the long term if software quality is to be expected.

However, finding the error patterns to look for with a particular static or dynamic
analysis tool is often difficult, especially when it comes to legacy code, where error
patterns either are recoded as comments in the code or not documented at all [15].
Moreover, while well-aware of certain types of behavior that causes the application
to crash or well-publicized types of bugs such as buffer overruns, programmers often
have difficulty formalizing or even expressing APl invariants. In additional to a handful
of patterns that can be collected from the literature, newsgroups, and previous bug
reports, application programmers are rarely able to tell which invariants the APIs they
use have. The situation is only slightly better when it comes to software architects and
API designers who are generally much more aware of application-specific patterns.

In this paper we propose an automatic way to extract likely error patterns by mining
software revision histories. Moreover, in order to ensure that all the errors we find are
relatively easy to confirm and fix, we pay particular attention in our experiments to
errors that can be fixed with ane-line change It is worth pointing out that many
well-known error patterns such as memory leaks, dotbkee’s, mismatched locks,
open and close operations on operating system resources, buffer overruns, and format
string errors can often be addressed with a one-line fix. Looking at incremental changes
between revisions as opposed to complete snapshots of the source allows us to better
focus our mining strategy and obtain more precise results. Our approach uses revision
history information to infer likely error patterns. We then experimentally evaluate the
patterns we extracted by checking for them dynamically.

We have performed experiments on Eclipse and jEdit, two large, widely-used open-
source Java applications. Both Eclipse and jEdit have many man-years of software
development behind them and, as a collaborative effort of hundreds of people across
different locations, are good targets for revision history mining. By mining CVS, we
have identified 56 high-probability patterns in Eclipse and jEdit APIs, all of which
were previously unknown to us. Out of these, 21 were dynamically confirmed as valid
patterns and 263 pattern violations were found.

1.1 Contributions

This paper makes the following contributions:

1.

We presenbDynaMine,! atool for discovering usage patterns and detecting their
violationsin large software systems [29, 28]. All of the steps involved in min-

ing and running the instrumented application are accessible to the user from within
an Eclipse pluginDynaMine automates the task of collecting and pre-processing
revision history entries and mining for common patterns. Likely patterns are then
presented to the user for review; runtime instrumentation is generated for the pat-
terns that the user deems relevant. Results of dynamic analysis are also presented
to the user in an Eclipse view.

. We propose aata mining strategyhat detects common usage patterns in large

software systems by analyzing software revision histories. Our strategy is based on
a classic Apriori data mining algorithm, which we augment in a number of ways
to make it more scalable, reduce the amount of noise, and provide a new, effective
ranking of the resulting patterns.

. We present aategorization of pattern®und in large modern object-oriented sys-

tems. Our experience with two large Java projects leads us to believe that similar
pattern categories will be found in most other systems of similar size and complex-

ity.

. We propose dynamic analysis approadbr validating usage patterns and finding

their violations. DynaMine currently utilizes an off-line approach that allows us
to match a wider category of patternf®ynaMine supplies default handlers for
analyzing most common categories of patterns.

. We present aetailed experimental studyf our techniques as applied to finding

errors in two large, mature open-source Java applications with many years of de-
velopment behind them. We have identified 56 patterns in both and found 263
pattern violations with our dynamic analysis approach. Furthermore, 21 patterns
were experimentally confirmed as valid.

. Finally, we provide an overview of the possible design options that combine revi-

sion history mining and program analysis technigues. We also give justifications of
our design choices.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 provides an informal descrip-
tion of DynaMine, our pattern mining and error detection tool. In Section 3, we discuss
the design choices that we made faynaMine. Section 4 describes our revision his-
tory mining approach. Section 5 describes our dynamic analysis approach. Section 6
summarizes our experimental results for (a) revision history mining and (b) dynamic
checking of the patterns. Sections 8, 9, and 10 present related and future work and
conclude.

1The nameDynaMine comes from the combination ofypamic analysis and Ming revision histories.

Application Version Type of Extensions Number Available

Linux 2.4.xX drivers 1,739
Apache 2.0.53 modules 385
Eclipse 3.1 plugins 317
jEdit 4.2 plugins 277
Mozilla 1.7.6 plugins 56
Trillian 3.1 plugins 36

Figure 1: Extension statistics for some commonly used software platforms.

2 Overview of DynaMine

It is common for today’s large software systems to support mechanisms such as plu-
gins, extension modules, or drivers that allow expanding applications’s functionality.
Successful software platforms such as Apache, Eclipse rich client platform, Mozilla
Firefox, and others support dozens of plugins. Figure 1 summarizes approximate num-
bers of available plugins, extension modules, or drivers for various software platforms.
Extensions are written by programmers who develop code according to a set of prede-
fined APIs.

It is generally recognized that plugins typically consist of lower quality code, in
part because plugin writers are usually less aware of the requirements of the APIs they
need to use. Inadvertently violating invariants of these APIs may take the form of
forgetting to call a function such ad ose or free to release a resource or performing
an action unnecessarily in an effort to maintain consistency leading to the same action
performed multiples times. Many such programming mistakes in plugin code lead to
subtle runtime errors that often ocauutside of the plugibecause of violated program
invariants later in the program execution; this makes the cause of the error difficult to
diagnose and fix.

A great deal of research has been done in the area of checking and enforcing spe-
cific coding rules, the violation of which leads to well-known types of errors. How-
ever, these rules are not very easy to come by: much time and effort has been spent
by researchers looking for worthwhile rules to check [37] and some of the best ef-
forts in error detection come from people intimately familiar with the application do-
main [14, 41]. As aresult, lesser known types of bugs and applications remain virtually
unexplored in error detection research. A better approach is needed if we want to attack
“unfamiliar” applications with error detection tools. This paper proposes a set of tech-
nigues that automate the step of application-specific pattern discovery through revision
history mining.

2.1 Motivation for Revision History Mining

Our approach to mining revision histories hinges on the following observation:

Observation 2.1 Given multiple software components that use the same API, there are

usuallycommon errorspecific to that API.

File Revision Added method calls

Foo.java 1.12 ol.addListener
ol.removelistener

Bar.java 1.47 02.addListener
o2.removelListener
System.out.println

Baz.java 1.23 o3.addListener
o3.removelListener
list.iterator
iter.hasNext

iter.next
Qux.java 1.41 o4.addListener
1.42 o4.removelListener

Figure 2: Method calls added across different revisions.

In fact, much of research done on bug detection so far can be thought of as focusing
on specific classes of bugs pertaining to particular APIs: studies of operating-system
bugs provide synthesized lists of API violations specific to operating system drivers
resulting in rules such as “do not call the interrupt disabling function() twice in a

row” [14]. In order to locate common errors, we mine for frequent usage patterns in
revision histories, as justified by the following observation.

Observation 2.2 Method calls that are frequently added to the source code simultaneously
often represent a pattern.

Looking at incremental changes between revisions as opposed to full snapshots of the
sources allows us to better focus our mining strategy. However, it is important to notice
that not every patterminedby considering revision histories is an actushgepattern.

Example 1. Figure 2 lists sample method calls that were added to revisions of files
Foo.java, Bar.java, Baz.java, andQux.java. All these files contain a usage pattern
that says that methods

{addListener, removeListener}

must be precisely matched. However, mining these revisions yields additional patterns
like
{addListener,println}

and
{addListener, iterator}

that are definitelynot usage patterns. Furthermore, we have to take into account the
fact that in reality some patterns may be inserted incompletely, e.g., by mistake or to

Extract Mine likely pattemns

Present
cvs revisions Revision from revision DB Likely for review Eclipse
histories database patterns pattern view
Confirmed
patterns
Pattern
violations

Run instrumented program;
Instrumented load dynamic results into Eclipse Eclipse dynamlc‘
program results view

Figure 3: Architecture of our tool. The first row represents revision history mining. The second row represents dynamic
analysis.

fix a previous error. In Figure 2 this occurs in fijex. java, whereaddListener and
removeListener were inserted independently in revisions 1.41 and 1.42.

The observation that follows gives rise to an effective ranking strategy used in
DynaMine.

Observation 2.3 Small changes to the repository such as one-line additions often repre-
sent bug fixes.

This observation is supported in part by anecdotal evidence and also by recent research
into the nature of software changes [36] and is further discussed in Section 4.3. To
make the discussion in the rest of this section concrete, we present the categories of
patterns discovered with our mining approach.

e Matching method pairs represent two method calls that must be precisely matched
on all paths through the program.

e State machinesare patterns that involve calling more than two methods on the
same object and can be captured with a finite automaton.

e More complex patternsare all other patterns that fall outside the categories above
and involve multiple related objects.

The categories of patterns above are listed in the order of frequency of high-likelihood
pattern in our experiments.

2.2 DynaMine System Overview

We conclude this section by summarizing how the various stagegrafMine process-

ing work when applied to a new application. All of the steps involved in mining and
dynamic program testing are accessible to the user from within custom Eclipse views.
A diagram representing the architecturedDyhaMine is shown in Figure 3.

1. Pre-process revision history, compute methods calls that have been inserted, and
store this information in a database.

2. Mine the revision database for likely usage and error patterns.

3. Present mining results to the user in an Eclipse plugin for assessment.

4. Generate instrumentation for patterns deemed relevant and selected by the user
throughDynaMine’s Eclipse plugin.

5. Run the instrumented program and dynamic data is collected and post-processed
by dynamic checkers.

6. Dynamic pattern violation statistics are collected and presented to the user in
Eclipse.

Steps 4-6 above can be performed in a loop: once dynamic information about pat-
terns is obtained, the user may decide to augment the patterns and re-instrument the
application.

3 Design Decisions

In this section we discuss some of the design choices we made when working on
DynaMine. Our approach for the rest of the section is to outline where our technique
stands with respect to several design dimensions:

e Static vs dynamic analysis
e Amount of user involvement
e Granularity of mined information

Each of these dimensions is discussed in an individual section below.

3.1 Static vs Dynamic Analysis

Our approach is to look for pattern violations at runtime, as opposed to using a static
analysis technique. This is justified by several considerations outlined below.

e Scalability. Our original motivation when starting the DynaMine project was to be
able to analyze Eclipse, which is one of the largest Java applications ever created.
The code base of Eclipse is comprised of more than 2,900,000 lines of code and
31,500 classes. Most of the patterns we are interested in are spread across multiple
methods and need an interprocedural approach to analyze. Given the substantial
size of the application under analysis, precise whole-program flow-sensitive static
analysis is expensive. Moreover, static call graph construction presents a challenge
for applications that use dynamic class loading [27]. In contrast, dynamic analysis
does not require call graph information.

e Validating discovered patterns. A benefit of using dynamic analysis is that we
are able to “validate” the patterns we discover through CVS history mining as real
usage patterns by observing how many times they occur at runtime. Patterns that are
matched a large number of times with only a few violations represent likely patterns
with a few errors. The advantage of validated patterns is that they increase the
degree of assurance in the quality of mined results. With static analysis, validating

patterns would not generally be possible unless flow-sensitive “must” information
is available.

In contrast to a static technique, runtime analysis does not suffer from false positives
because all pattern violations detected with our system actathgcur at the time
of execution.

e Opportunity for automatic repair. Finally, only dynamic analysis provides the
opportunity to fix the problem on the fly without any user intervention. This is
especially appropriate in the case of a matching method pair when the second
method call is missing. While we have not implemented automatic “pattern repair”
in DynaMine, we believe it to be a fruitful future research direction. However, care
must be taken not to perform the repair action more than once, as most such actions
are not idempotent.

While we believe that dynamic analysis is more appropriate than static analysis for the
problem at hand, a serious shortcoming of dynamic analysis is its lack of coverage.

In fact, in our dynamic experiments, we have managed to find runtime use cases for
some, but not all of our mined patterns. Another concern is that a workload selection
may significantly influence how patterns are classifiedgyiaMine. In our experi-
ments with Eclipse and jEdit we were careful to exercise common functions of both
applications that represent hot paths through the code and thus contain errors that may
manifest at runtime often. However, we likely have missed error patterns that occur on
exception paths that were not hit at runtime.

In addition to the inherent lack of coverage, another factor that reduced the num-
ber of patterns available for checking at runtime was that Eclipse contains quite a bit
of platform-specific code. This code is irrelevant unless the pattern is located in the
portion of the code specific to the execution platform.

Another way to gain some insight into which pattern is more likely is by resorting to
static analysis. One approach is to look at flow-sensitive information that is computed
statically. If we can conclude that there is a dominance or a post-dominance relation
between a set of method calls, that will help us in establishing a pattern. However,
doing so interprocedurally is a difficult task.

Another possibility is to use a static checker and examine its results. The intuition
is that a pattern that results in a large number of violations is somewhat unlikely.

Williams et al. propose [47] a different interaction between the the mining and an-
alysis stages. They mine information from CVS histories to determine what functions
have been “fixed” and use this information to propagate those functions to the top in the
static analysis stage. The notion of “being fixed” is pretty rigid, however: they devel-
oped a heuristic for the return value checker that does simple syntactic analysis of the
relevant change. Notice that unless bug database information can be easily correlated
with revision history data, detecting whether a change is a bug fix is a difficult task in
general. While “one-line change” heuristic seems to work pretty well in practice, many
bug fixes are missed.

Cl.java:
class C1 {
void foo(){

+ workspace.getWidget () .addListener();

C2.java:
class C2 {
void bar(){

+ widget.removeListener();

Figure 4: Cross-file check-in containing of two lines spread across two different files

3.2 Amount of User Involvement

Our system currently requires user involvement at the following two stages: first, the
candidate patterns need to be formulated by the user based on the methods mined from
revision history repositories. Most of the patterns considered in this paper are relatively
simple and can be captured with a state machine or, in the more complex cases, a
grammar.

However, the need for human involvement can be reduced if we fix the paradigm,
i.e. “state machines only.” Then, at runtime, we can consider all potential state ma-
chines and rank them based on how many times each machine reaches a success state.

For example, for the pair

{addListener, removeListener}

the two machines that are ordered versions of this pair are possible. Of course, other
machines, such as the one that requikki.istener to be called three times, followed

by removeListener, followed by another call taddListener is possible. While an
infinite number of potential machines exist, based on our experience, we can often just
limit ourselves to permutations of the methods involved.

3.3 Granularity of Mined Information

Our approach to interpreting source code information found in revision repositories is
very shallow. We are oblivious to even the type information found in the program,

replying only on the syntactic notion of what a method call is. We also use the notion
of a common prefix, as described in Section 4.2.2, which is fully oblivious to aliasing

information.

In other words, if we have two methods calls.foo andp,.bar, and we know
thatp; andp, are aliases for the same heap object, as determined by a pointer analysis,
the information we mine will be more complete. However, it will also be more noisy
because of pointer analysis imprecision.

Having access to parsed abstract syntax trees would enable some sort of analy-
sis, however, the amount of analysis that can be done locally is somewhat limited
(pointer analysis is typically global). Having aliasing information as well as parse
trees for all revisions of a particular project would enable us to consider patterns that
span multiple files. For instance, for the patt¢midListener, removelistener},
the check-in shown in Figure 4 will contribute to the pattern, assuming access paths
workspace.getWidget() in classC1 andwidget in classC2 may refer to the same
object.

Finally, another option for the mining strategy is to pay attentiodetetionsas
well as additions. It is likely, however, that the number of deletions observed will be
fewer.

4 Mining Usage Patterns

In this section we describe our mining approach. We start by providing the terms we
use in our discussion of mining. Next we lay out our general algorithmic approach that
is based on the Apriori algorithm [1, 30] that is commonly used in data mining for ap-
plications such as market basket analysis. The algorithm uses asgtsHctionsuch

as store item purchases as its input and produces as its output (a) frequent purchasing
patterns (“itemsX, Y, andZ are purchased together”) and (b) strong association rules
(“a person who bought itenX is likely to buy itemY™).

However, the classical Apriori algorithm has a serious drawback. The algorithm
runtime can be exponential in the number of items. Our “items” are names of individual
methods in the program. For Eclipse, which contain 59,929 different methods, calls to
which are inserted, scalability is a real concern. To improve the scalability of our
approach and to reduce the amount of noise, we employ a number of filtering strategies
described in Section 4.2 to reduce the number of viable patterns Apriori has to consider.
Furthermore, Apriori does not rank the patterns it returns. Since even with filtering, the
number of patterns returned is quite high, we apply several ranking strategies described
in Section 4.3 to the patterns we mine. We start our discussion of the mining approach
by defining some terminology used in our algorithm description.

Definition 4.1 A usage patteri/ = (M, S) is defined as a set of method$ and a
specificationS that defines how the methods should be invokedtaic usage pattern
is present in the source if calls to all methodslih are located in the source and
are invoked in a manner consistent wiih A dynamic usage patteris present in a
program execution if a sequence of calls to methtfs made in accordance with the
specifications.

The term “specification” is intentionally open-ended because we want to allow for
a variety of pattern types to be defined. Revision histories record method calls that

10

have been inserted together and we shall use this data to mine for methad. sete

fact that several methods are correlated does not define the nature of the correlation.
Therefore, even though the exact pattern may be obvious given the method names
involved, it is generally quite difficult tautomaticallydetermine the specificatiafi

by considering revision history data only and human input is required.

Definition 4.2 For a given source file revision,teansactionis a set of methods, calls
to which have been inserted.

Definition 4.3 The support counf a usage patterty = (M, S) is the number of
transactions that contains all methods\ih

In the example in Figure 2 the support count fdraddListener,
removeListener} is 3. The changes tQux.java do not contribute to the sup-
port count because the pattern is distributed across two revisions.

Definition 4.4 An association ruled = B for a patternV = (M, S) consists of two
non-empty setsl and B such thatM = A U B.

For a pattern7 = (M, S) there exist2/™| — 2 possible association rules. An
association rulel = B is interpreted as follows: whenever a programmer inserts calls
to all methods in4, she also insert the calls of all methods3n Obviously, such rules
are not always true. They have a probabilistic meaning.

Definition 4.5 The confidenceof an association rulel = B is defined as the the
conditional probabilityP(B|A) that a programmer inserts the calls iy given the
condition she has already inserted the callgin

The confidence indicates ts&rengthof a rule. However, we are more interested in
the patterns than in association rules. Thus, we rank patterns by the confidence values
of their association rules.

4.1 Basic Mining Algorithm

A classical approach to computing patterns and association rules is the Apriori algo-
rithm [1, 30]. The algorithm takesrainimum support courgnd aminimum confidence

as parameters. We call a pattérequentif its support is above the minimum support
count value. We call an association rglkeongif its confidence is above the minimum
confidence value. Apriori computes (a) the Batf all frequent patterns and (b) the set

R of all strong association rules in two phases:

1. The algorithm iterates over the set of transactions and forms patterns from the
method calls that occur in the same transaction. A pattern can only be frequent
when its subsets are frequent and patterns are expanded in each iteration. Iteration
continues until a fixed point is reached and the final set of frequent patteins
produced.

11

2. The algorithm computes association rules from the patterR's kFrom each pattern
p € P and every method set C p such thatp, ¢ # (), the algorithm creates an
association rule of the form\ ¢ = ¢. All rules for a pattern have the same support
count, but different confidence values. Strong association pul@s=- ¢ are added
to the final set of rule®.?

In Sections 4.2 and 4.3 below we describe how we adapt the classic Apriori approach
to improve its scalability and provide a ranking of the results.

4.2 Pattern Filtering

The running time of Apriori is greatly influenced by the number of patterns is has
to consider. While the algorithm uses thresholds to limit the number of patterns that
it outputs in P, we employ some filtering strategies that are specific to the problem
of revision history mining. Another problem is that these thresholds are not always
adequate for keeping the amount of noise down. The filtering strategies described
below greatly reduce the running time of the mining algoritgomd significantly reduce

the amount of noise it produces.

4.2.1 Considering a Subset of Method Calls Only

Our strategy to deal with the complexity of frequent pattern mining is to ignore
method calls that either lead to no usage patterns or only lead to obvious ones such
as{hasNext, next}.

e Ignoring initial revisions. We do not treat initial revisions of files as additions.
Although they contain many usage patterns, taking initial check-ins into account
introduces more incidental patterns, i.e. noise, than patterns that are actually useful.

e Last call of a sequence Given a call sequenag ().cz() ... ¢, () included as part
of a repository change, we only take the final egl() into consideration. This is
due to the fact that in Java code, a sequence of “accessor” methods is common and
typically only the last call mutates the program environment. Calls like

ResourcesPlugin.getPlugin().getLog().log()

in Eclipse are quite common and taking intermediate portions of the call into ac-

count will contribute to noise in the form of associating the intermediate getter

calls. Such patterns are not relevant for our purposes, however, they are well-
studied and are best mined from a snapshot of a repository rather than from its
history [32, 33, 38].

e Ignoring common calls To further reduce the amount of noise, we ignore some
very common method calls, such as the ones listed in Figure 5; in practice, we
ignore method calls that were added more than 100 times. These methods tend to
get intermingled with real usage patterns, essentially causing noisy, “overgrown”
ones to be formed.

2\ is used in the rest of the paper to denote set difference.

12

Method name Number of additions Method name Number of additions

equals 9,054 toString 4,197
add 6,986 getName 3,576
getString 5,295 append 3,524
size 5,118 iterator 3,340
get 4,709 length 3,339

Figure 5: The most frequently inserted method calls.

4.2.2 Considering Small Patterns Only

Generally, patterns that consist of a large number of methods are created due to noise.
Another way to reduce the complexity and the amount of noise is to reduce the scope
of mining tosmallpatterns only. We employ a combination of the following two strate-
gies.

e Fine-grained transactions As mentioned in Section 4.1, Apriori relies on transac-
tions that group related items together. We generally have a choice between using
coarse-grainedr fine-grainediransactions. Coarse-grained transactions consist of
all method calls added in a single revision. Fine-grained transactions additionally
group calls by the access path. In Figure 2, the coarse-grained transaction corre-
sponding to revision 1.23 ®&az. java is further subdivided into three fine-grained
transactions for objecis3, 1ist, anditer. An advantage of fine-grained trans-
actions is that they are smaller, and thus make mining more efficient. The reason
for this is that the runtime heavily depends on the size and number of frequent
patterns, which are restricted by the size of transactions. Fine-grained transactions
also tend to reduce noise because processing is restricted to a common prefix. How-
ever, we may miss patterns containing calls with different prefixes, such as pattern
{iterator, hasNext, next} in Figure 2.

e Mining method pairs. We can reduce the the complexity even further if we
mine the revision repository only for method pairs instead of patterns of arbitrary
size. This technique has frequently been applied to software evolution analysis and
proved successful for finding evolutionary coupling, etc. [19, 20, 52]. While very
common, method pairs can only express relatively simple usage patterns.

4.3 Pattern Ranking

Even when filtering is applied, the Apriori algorithm yields many frequent patterns.
However, not all of them turn out to be good usage patterns in practice. Therefore, we
use several ranking schemes when presenting the patterns we discovered to the user for
review.

4.3.1 Standard Ranking Approaches

Mining literature provides a number of standard techniques we use for pattern ranking.
Among them are the pattern’s (1) support count, (2) confidence, and (3) strength, where

13

the strength of a pattern is defined as following.

Definition 4.6 Thestrengthof patternp is the number of strong association rulediin
of the formp \ ¢ = ¢ whereq C p, bothp andq are frequent patterns, agd# 0.

For our experiments, we rank patterns lexicographically by their strength and sup-
port count. However, for matching method paiisb) we use the product of confidence
valuesconf (a = b) x conf (b = a) instead of the strength because the continuous na-
ture of the product gives a more fine-grained ranking than the strength; the strength
only takes the values of 0, 1, and 2 for pairs. The advantage of products over sums is
that pairs where both confidence values are high are favored. In the rest of the paper we
refer to the ranking that follows classical data mining techniquesgsgar ranking

4.3.2 Corrective Ranking

While the ranking schemes above can generally be applied to any data mining problem,
we have come up with a measure of a pattern’s importance that is specific to mining
revision histories. Observation 2.3 is the basis of the metric we are about to describe.
A check-in may only adgartsof a usage pattern to the repository. Generally, this is a
problem for the classic Apriori algorithm, which prefers patterns, all parts of which are
“seen together”. However, we can leverage these incomplete patterns when we realize
that they often represent bug fixes.

Arecent study of the dynamic of small repository changes in large software systems
performed by Purushothaman et al. sheds a new light on this subject [36]. Their paper
points out that almost 50% of all repository changes were small, involving less than 10
lines of code. Moreover, among one-line changes, less than 4% were likely to cause
a later error. Furthermore, only less than 2.5% of all one-line changespsdestive
changes that add functionality, rather thamrectivechanges that correct previous er-
rors. These numbers imply a very strong correlation between one-line changes and bug
corrections or fixes.

We use this observation to developarective rankinghat extends the ranking that
is used in classical data mining. For this, we identify one-line fixes and mark method
calls that were added at least once in such a fifo@sl In addition to the measures
used by regular ranking, we then additionally rank by the number of fixed methods calls
which is used as the first lexicographic category. As discussed in Section 6, patterns
with a high corrective rank result in more dynamic violations than patterns with a high
regular rank.

4.4 Locating Added Method Calls

In order to speed-up the mining process, we pre-process the revision history extracted
from CVS and store this information in a general-purpose database; our techniques
are further described in Zimmermann et al. [51]. The database stores method calls
that have been inserted for each revision. To determine the calls inserted between
two revisionsr; andrsy, we build abstract syntax trees (ASTs) for bethandr, and
compute the set of all call§; andC5, respectively, by traversing the ASTS; \ C}

is the set of inserted calls betweenandr.

14

Lines Source Java CVs Method calls Methods called Developers CVS history

Application of code files classes revisions inserted in inserts checking in since
Eclipse 2,924,124 19,115 19,439 2,837,854 465,915 59,929 122 2Rfhy2001
JEdit 714,715 3,163 6,602 144,495 56,794 10,760 92 13, 2000

Figure 6: Summary of information about our benchmark applications.

Unlike Williams and Hollingsworth [46, 47] our approach does not build snapshots
of a system. As they point out such interactions with the build environment (com-
pilers, makefiles) are extremely difficult to handle and result in high computational
costs. Instead we analyze only the differences between single revisions. As a result our
preprocessing is cheap and platform- and compiler-independent; the drawback is that
types cannot be resolved because only one file is investigated. In order to avoid noise
that is caused by this, we additionally identify methods by the count of arguments.

5 Checking Patterns at Runtime

In this section we describe our dynamic approach for checking the patterns discovered
through revision history mining.

5.1 Pattern Selection & Instrumentation

To aid with the task of choosing the relevant patterns, the user is presented with a
list of mined patterns in an Eclipse view such as the one shown in Figure 9. The list
of patterns may be sorted and filtered based on various ranking criteria described in
Section 4.3 to better target user efforts. Human involvement at this stage, however, is
optional, because the user may decide to dynamically chkthke patterns discovered
through revision history mining.

After the user selects the patterns of interest, the list of relevant methods for each
of the patterns is generated and passed to the instrumenter. We use JBoss AOP [9], an
aspect-oriented framework to insert additional “bookkeeping” code at the method calls
relevant for the patterns. However, the task of pointcut selection is simplified for the
user by using a graphical interface. In addition to the method being called and the place
in the code where the call occurs, values of all actual parameters are also recorded.

Our instrumenter inserts Java bytecode at call sites to each relevant method that
outputs adynamic event descriptofT, £/, L) each time a relevant call site is hit at
runtime, where:

1. T is a unique timestamp for the method call.

2. Eis the environment that contains values of each object passed into or returned by
the method call.

3. L is the source code locations of the relevant call site.

15

‘auWIUNI Ye PAAIBSUO Ua(q Jou aaey ey suianed
wasaidal s|j199 Aidw3 “Ajpanodadsal ‘3, pue N, Se parelnaiqge ase sulaned Jolle pue afesn ‘uwnjod ise| ayr uj " fuoo x ” fuoo = fudfg pasoplo ase sired ayy 7 fuoo siy {v} < {q}
104 *? fuoo s1 {q} < {v}oy aouspyuod ayisizumod yoddns syl Buiuiw Aloisiy SAD YybBnoiyy palanodsip sired poyisw Buiyorely “Buijuel aAN031I09 JO SSBUBAIDRYT . ainbi4

38'NE [22¢ vz |1S0'C 9v¥S'S ||:dWwayds Bupjuel aAI81100 BY) 10} S[eloigns (sired y2)
1€ 20 or'o 600 aaes 3Tut
013 | g [(574 e 9 0€0 090 8T'0 IegT00LoAOWSI Iegroolppe
o413 | €T 0T 86 €8 €€ 250 6€°0 0c'0 doas jIels
[290 [eal0) 820 92IN0gI0IIFI9)S TS0 IUN 95IN0gI0IxFI93S TS0
Aaun | z 0 (4% 0 14 050 080 ov'o 3Iels KeTaqrRTaTUIIES
lou3 [¢] L T LT [+ T.0 T.0 T80 Pe3I8SUTIUSJUOD PoAOWEOYIUSIUOD
Amun | g S ST G et 980 190 190 punox8e1043es punoigyoegies (sured g)
Adun [0 ¢ |0 € LT L0 LL0 09°0 £3130N0n0UWRT £3110nPPR upal
vz 950 29°0 €0 Ious3sTTpeSueynlogoulgosowsr IousisSTTpoSuey)Iogouisppe
abesn |z YT 2 8c 62 950 ¥9°0 90 I9US]STTIUSUNDOJOAOWS T I9US3STTIUSUMOOJPPER
o3 | 6 0¢ 8T 69 (4% S9°0 650 6€°0 doas Jxe3s
ou3 | T S | 60E 98'T ovT €0 50 or'o TousystTeSueyphiredoigesrouwsr IsusistTeSuey)Lizadoadppe
abesn | T 12 T 12 9z 9’0 060 o Ious3sTToSURYDEOINOSSYSAOWSI I9USISTToSURY)SDINOSOYPPER
o103 | T 1 T 9 8 150 €0 o IoUL3STTPOSURY)IUSWS THOAOWSI I9USISTTpoSuey)Iuswe TIppe
8¢ 890 890 Lv'0 o913 SoTTeu
10113 | 06 LT |19 ¥58'C ov 8.0 690 S0 1915T8010D 19351801
1013 | 62 ge | ovT ISan 06 €80 890 /G0 I2US3STTOAOUWST IoUL3STIPPe
134 0.0 280 LS0 Iadesodstq IadmeN
[1.0 €80 090 sumsax puadsns
abesn | 0 14 0 L (4% .0 080 090 aTnypus aTnyutSeq
Aun | 8¢ v | 6SL cee €67 180 .0 090 osuop yselutdeq
Aun | T 14 T ¥ [ord 2.0 G8°0 190 IouL3STTIUSATSNGOJOAOWD T IouslsTIIULATSNGIPPR
S €80 €80 690 93BAT30BS(T0IFUOYIUSATH @jeATIOyToIIUODIULATY | (Sired OT)
61 280 260 9.0 uByesodstq uSymey | asdiogy
ONIMNVYH IAILDIHHOD
2 a 2 a 2UN 09 "l fuoo 1 fuoo _ Juoo q poyla D poyIsN
IdALl J11VIS JINVNAQ 140ddnNs 3ON3AIINOD Ae ?Bv dIvd AOH13I W

16

‘Bupjuel rejnbal Jo ssauaniday3 :g ainbi4

38'N0T [vSz Gve [862'C 10691 || ‘Sl eian0 [iredeg) |
N, |2e ¥OT |Zve SSE'TT || :dwayds Bupjuel reinfbal ayy 1of sjelolans (sured g2)
AMiun | 6 T yx4 et 14 050 1S°0 620 U0T309TogIes UoT309T®50LPPR
Amun | £ L LT L 1T €L0 050 LEO we)IpeldeTes1esd we3IpPe3dsTagles
Aun | T 0 14 0 S €80 €80 690 opax opun
14 00T 080 080 BaIy3XdL3TUTUN ®aIYIXSLITUT
4 00T 080 080 j19s3FQuUOTS0IqNgOLX 10s330F0uot801qng3es
o] €80 00T €80 UOT]09UUODSSLITOT UOT308UUOHO0TTEe
abesn | 0 8 0 8¢ T G8°0 00T G8'0 ¥ooTune3TIN ¥o0TelTIM
14 00T 00T 00T I8FIngyooTun I833ngyo0T
abesn | 0 4 0 56 14 00T 00T 00T £xowspTRI0 £zomepeay
4 00T 00T 00T puRWWO)SS EEERLE % o E3)
o] 00T 00T 00T WOXJOAOWSI olppe
abesn | 0 8 0 zt 9 00T 00'T 00T asxed IoTpueH1es | (Sired £T)
abesn | 0 T |0 8/5'8 9T 00T 00T 00T ¥ooTunpest yooTpest npal
0 T 0 € / 00T 00'T 00T uadpeity quaaguadq
14 0 0T 0 L 00T 00T 00T paAoWSYUOTIRIOUUR peppyuoTjeloUUR
L 00T 00'T 00T @39T8(qpPpe 3I9SuUIppeR
L 00T 00T 00T 9381§DSI01S9YIXS3UODHD 93e315HOARSIXDUODY)
8 00T 00'T 00T pugsseafoxd jxejgssaxSoxd
€ 0 TIT 0 8 00T 00'T 00T JueAzPTTUOPPYIsod JueAgpTTUpeAomeyaxd
6 00T 00'T 00T TeusgstIpeSueypindurensower IsusistIpeSuey)induIppe
6 00T 00'T 00T Ao0TunH YOOTH
€T 00T 00T 00T TeuSTSHOOTqUN TeuSTSHo0Tq
ST 00T 00'T 00T S1USWS INSES]{ TUWOD Sutansesydoas
abesn | 9 9¢ |97 10S'C Ge 00T 00T 00T 1e8pTHerOmEIT 198pTMPPR
abesn | ¢ TT 2z €9 [e1% 00T 00T 00T a8ueypentepasod a8ueypentepsxd
415 00T 00T 00T aturdzeTasod 1turhzeTead
abesn | 0 9 |0 ov €eT 00T 00T 00T pTTUpeoetdeyssod p1Typeoerdeyead | (sned GT)
vI.T 00T 00'T 00T ast7h310doxgdesx 1st7h3309d0agesesan asdijpg
ONIMNYY dVINO3IY
2 a 2 a 2UN0D "1 fuoo 17 fuoo _ Juoo q poylsN D POYIBN
IdAL DILVIS JINVNAQ 140ddns 3ON3IAIINOD (q ‘D) divd AOH1aN

17

5.2 Post-processing Dynamic Traces

The trace produced in the course of a dynamic run are post-processed to produce the
final statistics about the number of times each pattern is followed and the number of
times it is violated. We decided in favor of off-line post-processing because some
patterns are rather difficult and sometimes impossible to match with a fully online
approach. In order to facilitate the task of post-processing in pradipesMine is
equipped with checkers to look for matching method pairs and state machines. Users
who wish to create checkers for more complex patterns can do so through a Java API
exposed byDynaMine that allows easy access to runtime events.

Dynamically obtained results for matching pairs and state machines are exported
back into Eclipse for review. The user can browse through the results and ascertain
which of the patterns she thought must hold do actually hold at runtime. Often, exam-
ining the dynamic output ddynaMine allows the user to correct the initial pattern and
re-instrument.

5.2.1 Dynamic Interpretation of Patterns

While it may be intuitively obvious what a given coding pattern means, what kind of
dynamic behaviois valid may be open to interpretation, as illustrated by the following
example.

Example 2. Consider a matching method paireginOp, end0Op) and a dynamic call
sequence
seq = o.begin0p()...o.beginOp()...o.end0p().

Obviously, a dynamic execution consisting of a sequence of calls
o.beginOp()...0.end0Op() follows the pattern. However, execution sequence
seq probably represents a pattern violation.

While declaring seq a violation may appear quite reasonable on the sur-
face, consider now an implementation of methesginOp that starts by calling
super.beginOp(). Now seq is the dynamic call sequence that results from a static
call to 0.beginOp followed by o.end0p; the first call tobeginOp comes from the sta-
tic call tobeginOp and the second comes from the calktigper. However, in this case
seq may be a completely reasonable interpretation of this coding pattern.

As this example shows, there is generally ho obvious mapping from a coding pat-
tern to a dynamic sequence of events. As a result, the number of dynamic pattern
matches and mismatches is interpretation-dependent. Errors foubBgrnayline at
runtime can only be considered such with respect to a particular dynamic interpreta-
tion of patterns. Moreover, while violations of application-specific patterns found with
our approach represelikely bugs, they cannot be claimed as definite bugs without
carefully studying the effect of each violation on the system.

In the implementation oDynaMine, to calculate the number of times each pattern
is validated and violated we match the unqualified names of methods applied to a given
dynamic object. Fortunately, complete information about the object involved is avail-
able at runtime, thus making this sort of matching possible. For patterns that involve
only one object, we do not consider method arguments when performing a match: our

18

= Pattern viewer i1 Cryniamic wigwer o = 8

First method | second method | seore | LR corfidence | RL confidence | &
D reqgiskerErrarSource unreqisterErrorSource s 0.4545 0.6250

Dmntantlnsertad insert 3 0,4286 0.6000
e - I
addToalBar remaveToolBar .
ddToolB ToolB.) 0.3000

O expandrald nartow 5 04167 0.3571
D elementAt size 95 0.77a7 0.1766
D append taskring 148 0.4790 0.2686
D\sRunning stop 11 0.7333 0.1719
O charat length 124 0.5905 0.1928
Olength substring 135 0.2100 0.5315
[oTextField addHelnFar 3 0. 1860 0.5714 4
<€ . ISP

Wit able Smart Insert 1:1

Figure 9: DynaMine pattern selection view.

goal is to have a dynamic matcher that is as automatic as possible for a given type of
pattern, and it is not always possible to automatically determine which arguments have
to match for a given method pair. For complex patterns that involve more than one
object and require user-defined checkers, the trace data saueghbiine contains
information allows the relevant call arguments to be matched.

5.2.2 Dynamic vs Static Counts

A single pattern violation at runtime involves one or more objects. We obtimamic
countby counting how many object combinations participated in a particular pattern
violation during program execution. Dynamic counts are highly dependent on how we
use the program at runtime and can be easily influenced by, for example, recompiling
a project in Eclipse multiple times.

Moreover, dynamic error counts are not representative of the work a developer has
to do to fix an error, as many dynamic violations can be caused by the same error in the
code. To provide a better metric on the number of errors found in the application code,
we also compute static count This is done by mapping each method participating in
a pattern to a static call site and counting the number of unique call site combinations
that are seen at runtime. Static counts are computed for validated and violated patterns.

5.2.3 Pattern Classification

We use runtime information on how many times each pattern is validated and how
many times it is violated to classify the patterns. kebe the number of validated
instances of a pattern ardbe the number of its violations. The constants used in the
classification strategy below were obtained empirically to match our intuition about
how patterns should be categorized. However, clearly, ours is but one of many potential
classification approaches.

We define an error threshold = min(v/10,100). Based on the value af,
patterns can be classified into the following categories:

1. Likely usage patterns patterns with a sufficiently high support that are mostly
validated with relatively few errors
(e <aAv>5h).

19

Method Pairs Dynamic Events Static Events

%2 DynaMine: Dynamic viewer 2\, DynaMine: Pattern viewer 2 < =08
First method Second method] Validated 7 Violated | Yalidated 7 Violated A
beginTask done 33 642 42 21
addwidget removeWidget 1264 16 5 2
prevalueChange postyalueChange 63 2 11 2
addPropertyChangelistener removePropertyChangeListener 1789 478 55 25
preReplaceChild postReplaceChild 40 1] 26 1]
addElementChangedListener removeElementChangedListener S 2 1 1
addResourceChangelListener removeResourceChangelistener 25 4 19 4 -
v
<« £ 3>
‘Writable Smart Insert 1:1

Figure 10: DynaMine dynamic results view. Error patterns are shown in red. Usage patterns are shown in blue. Unlikely
patterns are grayed out.

2. Likely error patterns : patterns that have a significant number of validated cases
as well as a large number of violations
(a<e<20Av>05).

3. Unlikely patterns: patterns that do not have many validated cases or cause too
many errors to be usage patterns
(e >2vVu<h).

In DynaMine, a categorization of patterns is presented to the user in an Eclipse view,
as shown in Figure 10. The patterns are color-coded in the Eclipse view to represent
their type, which blue being a likely usage pattern, red being a likely error pattern, and
gray being an unlikely pattern.

6 Experimental Results
In this section we discuss our practical experience of applingaMine to real soft-

ware systems. Section 6.1 describes our experimental setup; Section 6.2 evaluates the
results of both our patterns mining and dynamic analysis approaches.

6.1 Experimental Setup

We have chosen to perform our experiments on Eclipse [11] and jEdit [35], two very
large open-source Java applications; in fact, Eclipse is one of the largest Java projects

Usage patterns Error patterns Unlikely patterns

Figure 11: Pattern evaluation scale.

20

ever created. A summary of information about the benchmarks is given in Figure 6.
For each application, the number of lines of code, source files, and classes is shown
in column 2—4. Both applications are known for being highly extensible and having a
large number of plugins available; in fact, much of Eclipse itself is implemented as a set
of plugins. In addition to these standard metrics that reflect the size of the benchmarks,
we show the number of revisions in each CVS repository in column 5, the number
of inserted calls in column 6, and the number of distinct methods that were called in
column 7. Both projects have a significant number of individual developers working
on them, as evidenced by the numbers in column 8. The date of the first revision is
presented in column 9.

6.1.1 Mining Setup

When we performed the pre-processing on Eclipse and jEdit, it took about four days
to fetch all revisions over the Internet because the complete revision data is about 6GB
in size and the CVS protocol is not well-suited for retrieving large volumes of history
data. Computing inserted methods by analyzing the ASTs and storing this information
in a database takes about a day on a Powermac G5 2.3 Ghz dual-processor machine
with 1 GB of memory.

Once the pre-processing step was complete, we performed the actual data mining.
Without any of the optimizations described in Sections 4.2 and 4.3, the mining step
does not complete even in the case jEdit, not to mention Eclipse. Among the opti-
mizations we apply, the biggest time improvement and noise reduction is achieved by
disregarding common method calls, sucheggsals, length, etc. Withall the op-
timizations applied, mining becomes orders of magnitude faster, usually only taking
several minutes.

6.1.2 Dynamic Setup

Because the incremental cost of checking for additional patterns at runtime is generally
low, when reviewing the patterns in Eclipse for inclusion in our dynamic experiments,
we were fairly liberal in our selection. We would usually either just look at the method
names involved in the pattern or briefly examine a few usage cases. We believe that
this strategy is realistic, as we cannot expect the user to spend hours pouring over
the patterns. To obtain dynamic results, we ran each application for several minutes
on a Pentium 4 machine running Linux, which typically resulted in several thousand
dynamic events being generated.

6.2 Discussion of the Results

Overall, 32 out of 56 (or 57%) patterns were hit at runtime. Furthermore, 21 out of 32
(or 66%) of these patterns turned out to be either usage or error patterns. The fact that
two thirds of all dynamically encountered patterns were likely patterns demonstrates
the power of our mining approach.

In this section we discuss the categories of patterns briefly described in Section 2
in more detail.

21

6.2.1 Matching Method Pairs

The simplest and most common kind of a pattern detected with our mining approach
is one where two different methods of the same class are supposed to match precisely
in execution. Many of known error patterns in the literature suctfagen, fclose)

or (lock, unlock) fall into the category of function calls that require exact matching:
failing to call the second function in the pair or calling one of the functions twice in a
row is an error.

Figure 8 lists matching pairs of methods discovered with our mining technique. The
methods of a paita, b) are listed in the order they are supposed to be executed, e.g.,
a should be executed befobe For brevity, we only list the names of the method; full
method names that include package names should be easy to obtain. A quick glance at
the table reveals that many pairs follow a specific naming strategy syateagost,
add-remove, begin—end, andenter—exit. These pairs could have been discovered
by simply pattern matching on the method names. Moreover, looking at method pairs
that use the same prefixes or suffixes is an obvious extension of our technique.

However, a significant number of pairs have less than obvious names to look for,
including (HLock, HUnlock), (progressStart, progressEnd), and(blockSignal,
unblockSignal). Finally, some pairs are very difficult to recognize as match-
ing method pairs and require a detailed study of the API to confirm, such as
(stopMeasuring, commitMeasurements), (suspend, resume), etc.

Figure 8 summarizes dynamic results for matching pairs. The table provides dy-
namic and static counts of validated and violated patterns as well as a classification into
usage, error, and unlikely patterns. Below we summarize some observations about the
data. About a half of all method pair patterns that we selected from the filtered mined
results were confirmed as likely patterns, out of those 5 were usage patterns and 9
were error patterns. Many more potentially interesting matching pairs become avail-
able if we consider lower support counts; for the experiments we have only considered
patterns with a support of four or more.

Several characteristic pairs are described below. Both locking pairs in jEdit
(writeLock, writeUnlock) and(readLock, readUnlock) are excellent usage pat-
terns with no violations.{contentInserted, contentRemoved) is not a good pat-
tern despite the method names: the first method is triggered when text is added in
an editor window; the second when text is removed. Clearly, there is no reason why
these two methods have to match. Method faidNotify, removeNotify) is per-
fectly matched, however, its support is not sufficient to declare it a usage pattern. A
somewhat unusual kind of matching methods that at first we thought was caused by
noise in the data consists of a constructor call followed by a method call, such as the
pair (OpenEvent, fireOpen). This sort of pattern indicates that all objects of type
OpenEvent should be “consumed” by passing them into metiadeOpen. Viola-
tions of this pattern may lead to resource and memory leaks, a serious problem in long-
running Java programs such as Eclipse, which may be open at a developer’s desktop
for days.

Overall, corrective ranking was significantly more effective than regular ranking
schemes that are based on the product of confidence values. The top half of the table
that addresses patterns obtained with corrective ranking contains 24 matching method

22

pairs; the second half that deals with the patterns obtained with regular ranking contains
28 pairs. Looking at the subtotals for each ranking scheme reveals 241 static validating
instances vs only 104 for regular ranking; 222 static error instances are found vs only 32
for regular ranking. Finally, 11 pairs found with corrective ranking were dynamically
confirmed as either error or usage patterns vs 7 for regular ranking. This confirms our
belief that corrective ranking is more effective.

6.2.2 State Machines

In many of cases, the order in which methods are supposed to be oalledjiven
objectcan easily be captured with a finite state machine. Typically, such state machines
must be followed precisely: omitting or repeating a method call is a sign of error. The
fact that state machines are encountered often is not surprising: state machines are the
simplest formalism for describing the object life-cycle [40]. Matching method pairs
are a specific case of state machines, but there are other prominent cases that involve
more that two methodsvhich are the focus of this section.

An example of state machine usage comes from class
org.eclipse.jdt.internal.formatter.Scribe in Eclipse responsible for pretty-
printing Java source code. MetheditAlignment iS supposed to match an earlier
enterAlignment call to preserve consistency. Typically, methosioAlignment
that tries to resolve an exception caused by the cuwetérAlignment would be
placed in acatch block and executed optionally, only if an exception is raised. The
regular expression

o.enterAlignment o.redoAlignment? o.exitAlignment

summarizes how methods of this class are supposed to be called on ancobfect
typeScribe. In our dynamic experiments, the pattern matched 885 times with only 17
dynamic violations that correspond to 9 static violations, which makes this an excellent
usage pattern.

Another interesting state machine below is found based on mining jEdit. Methods
beginCompoundEdit andendCompoundEdit are used to group editing operations on
a text buffer together so that undo or redo actions can be later applied to them at once.

o.beginCompoundEdit()
(o.insert(...) | o.remove(...))
o.endCompoundEdit()

A dynamic study of this pattern reveals that (1) methagginCompoundEdit

and endCompoundEdit are perfectly matched in all cases; (2) 86% of calls to
insert/remove are within a compound edit; (3) there are three cases of several
(begin—, endCompoundEdit) pairs that have nansert or remove operations be-
tween them. Since a compound edit is established for a reason, this shows that our
regular expression most likely does not fully describe the life-cycle Biffer ob-

ject. Indeed, a detailed study of the code reveals some other methods that may be
used within a compound edit. Subsequently adding these methods to the pattern and
re-instrumenting the jEdit led to a new pattern that fully describestli€er object’s
life-cycle.

+

23

Precisely following the order in which methods must be invoked is common for C
interfaces [14], as represented by functions that manipulate files and sockets. While
such dependency on call order is less common in Java, it still occurs in programs that
have low-level access to OS data structures. For instance, methnelsCreateMC,
PmMemFlush, andPmMemStop, PmMemReleaseMC declared ilbrg.eclipse.swt.0S in
Eclipse expose low-level memory context management routines in Java through the use
of JNI wrappers. These methods are supposed to be called in order described by the
regular expression below:

0S.PmMemCreateMC
(0S.PmMemStart 0S.PmMemFlush 0S.PmMemStop)?
0S.PmMemReleaseMC

The first and last lines are mandatory when using this pattern, while the middle line is
optional. Unfortunately, this pattern only exhibits itself at runtime on certain platforms,
so we were unable to confirm it dynamically.

Another similar INI wrapper found in Eclipse that can be expressed as a state ma-
chine is responsible for region-based memory allocation and can be described with the
following regular expression:

(0S.NewPtr | 0S.NewPtrClear) 0S.DisposePtr

Either one of function¥ewPtr andNewPtrClear can be used to create a new pointer;
the latter function zeroes-out the memory region before returning.

Another commonly used pattern that can be captured with a state machine has to do
with hierarchical allocation of resources. Objects request and release system resources
in a way that is perfectly nested. For instance, one of the patterns we found in Eclipse
suggests the following resource management scheme on objects of type component:

o.createHandle()
o.register()
o.deregister()
o.releaseHandle()

The call tocreateHandle requests an operating system resource for a GUI widget,
such as a window or a buttongleaseHandle frees this OS resource for subsequent
use.register associates the current GUI object withissplay data structure, which

is responsible for forwarding GUI events to components as they afémsgister
breaks this link.

6.2.3 More Complex Patterns

More complicated patterns, that are concerned with the behavior of more than one
object or patterns for which a finite state machine is not expressive enough, are quite
widespread in the code base we have considered as well. Notice that approaches that
use a restrictive model of a pattern such as matching function calls [15], would not be
able to find these complex patterns.

Due to space restrictions, we only describe one complex pattern in detail here,
which is motivated by the the code snippet in Figure 12. The lines relevant to the pattern

24

try {
monitor.beginTask(null, Policy.totalWork);
int depth = -1;
try {
workspace.prepareOperation(null, monitor);
workspace.beginOperation(true);
depth = workspace.getWorkManager().beginUnprotected();
return runInWorkspace(Policy.subMonitorFor (monitor,
Policy.opWork,
SubProgressMonitor.PREPEND_MAIN_LABEL_TO_SUBTASK)) ;
} catch (OperationCanceledException e) {
workspace.getWorkManager().operationCanceled();
return Status.CANCEL_STATUS;
} finally {
if (depth >= 0)
workspace.getWorkManager().endUnprotected(depth);
workspace.endOperation(null, false,
Policy.subMonitorFor(monitor, Policy.endOpWork));

}

} catch (CoreException e) {
return e.getStatus();
} finally {

monitor.done();

Figure 12: Example of workspace operations and locking discipline usage in ti&ssnalWorkspaceJob in Eclipse.

are highlighted in bold. Objeatorkspace is a runtime representation of an Eclipse
workspace, a large complex object that has a specialized transaction scheme for when it
needs to be modified. In particular, one is supposed to start the transaction that requires
workspace access with a callteginOperation and finish it withendOperation.

Calls tobeginUnprotected() and endUnprotected() on aWorkManager oOb-
ject obtained from the@orkspace indicate “unlocked” operations on the workspace:
the first one releases the workspace lock that is held by default and the sec-
ond one re-acquires it; thorkManager is obtained for aworkspace by calling
workspace.getWorkManager. Unlocking operations should be precisely matched if
No error occurs; in case an exception is raised, metipedationCanceled is called
on theWorkManager of the current workspace. As can be seen from the code in Fig-
ure 12, this pattern involves error handling and may be quite tricky to get right. We have
come across this pattern by observing that p@ieginOperation, endOperation)
and (beginUnprotected, endUnprotected) are both highly correlated in the code.
This pattern is easily described as a context-free language that allows nested matching

25

brackets, whose grammar is shown befow.

S — O

O — w.prepareOperation()
w.beginOperation()
U*
w.endOperation()

U — w.getWorkManager().beginUnprotected()
S
w.getWorkManager().operationCanceled() ?
w.getWorkManager().beginUnprotected()

This is a very strong usage patterns in Eclipse, with 100% of the cases we have seen
obeying the grammar above. The nestingefkspace andWorkManager operations
was usually 3—4 levels deep in practice.

As this example shows, characterizing the pattern with a grammar or some other
specification is not an easy task.MynaMine, this task is delegated to the user. How-
ever, restricting the formalism used for describing the pattern such as state machines in
Whaley et al. [45] may make it possible to determine the pattern automatically.

7 Extensions

While the pattern®ynaMine discovers can be fed into bug detection tools to detect
coding effects in code after it has been written, it would be even better to prevent
problems from happening before the coding phase is finished. In this section we outline
one such extension where mined patterns are translated into coding templates supported
by the developer’s editor. As a result, common coding mistakes are avoided from the
start.

As we observed earlier, matching method pairs represent one of the most com-
monly used temporal patterns in software. While pairs suc{f@gen, fclose) are
widespread in C, as this paper has shown, similar method pairs are present in large
Java code bases as well. Eclipse APIs have a number of such methods pairs scattered
throughout the code, includingregister, unregister), (beginCompoundEdit,
endCompoundEdit), etc.

A common coding idiom pertaining to using method pairs consists of making sure
that the second method is placed withifiimally block so that the “closing bracket”
method is always executed. l.e., given a pair of meth@ds), the coding pattern
shown in Figure 13 is quite common. To ensure that meHisdalled orall execution
paths, the call ta is placed within the inally block. Placing it outside théinally
block may lead t® not being called when an exception is thrown. This coding idiom
in Java is explored in more detail in [44].

We take this concept further by creating a setading templatesommon to plugin
development. According to the Eclipse documentation, “templates are a structured
description of coding patterns that reoccur in source code”, and thus represent a perfect

385 is the grammar start symbol arids used to represent 0 or more copies of the preceding non-terminal;
7 indicates that the preceding non-terminal is optional.

26

try {

AC..D);

} finally {
B(...);

}

Figure 13: A typical try — finally block involving a matching method pair

mechanism for our purposes: whenever the user introduces a call to mettoel
machinery built into Eclipse is responsible for expanding the template to build the
structure shown in Figure 13.

8 Related Work

A vast amount of work has been done in bug detection. C and C++ code in particular
is prone to buffer overrun and memory management errors; tools such as PREfix [10]
and Clouseau [23] are representative examples of systems designed to find specific
classes of bugs (pointer errors and object ownership violations respectively). Dynamic
systems include Purify [22], which traps heap errors, and Eraser [39], which detects
race conditions. Both of these analyses have been implemented as standard uses of the
Valgrind system [34]. Much attention has been given to detecting high-profile software
defects in important domains such as operating system bugs [21, 23], security bugs [41,
43], bugs in firmware [25] and errors in reliability-critical embedded systems [7, 8].
Space limitations prohibit us from reviewing a vast body of literature of bug-finding

-

-
806 = Edit Template 0
Marne: |:ock_aquire Context: |java - @ Automatically insert
Description: |
Estieig) $iname} .enterRead() ; 4

try {
§{cursor}
} finally ¢

${name} .exitRead(];
¥ v

- Y|4

'frInsert Yariable., .\

'." [o]4 \'." Cancel b

Figure 14: Template creation fofacquireRead, exitRead) pattern.

27

techniques. Engler et al. are among the first to point out the need for extracting rules
to be used in bug-finding tools [15]. They employ a static analysis approach and sta-
tistical techniques to find likely instantiations of pattern templates such as matching
function calls. Our mining technique is not a-priori limited to a particular set of pattern
templates, however, it is powerless when it comes to patterns that are never added to
the repository after the first revision.

Several projects focus on application-specific error patterns, including SABER [37]
that deals with J2EE patterns. Their work was motivated by the desire to analyze really
large Java systems such as WebSphere. Based on the experience of IBM’s developers,
they have identified a range of usage patterns in Java AWT, Swing, and EJB code and
analyses created to find violations of these patterns. The Metal system [21] addresses
the types of bugs in OS code.

PQL is a language that allows one to express and enforce APl usage patterns [31].
PQL supports both runtime and static checking as well as a hybrid mode when static
analysis removes superfluous runtime checks to reduce the overhead. The need to come
up with useful patterns for PQL severed as the original inspiration for our work.

Certain categories of patterns can be gleaned from AntiPattern literature [13, 42],
although many AntiPatterns tend to deal with high-level architectural concerns than
with low-level coding issues. In the rest of this section, we review literature pertinent
to revision history mining and software model extraction.

8.1 Reuvision History Mining

One of the most frequently used techniques for revision history mining is co-change.
The basic idea is that two items that are changed together, are related to one another.
These items can be of any granularity; in the past co-change has been applied to
changes in modules [19], files [5], classes [6, 20], and functions [50]. Recent re-
search improves on co-change by applying data mining techniques to revision histo-
ries [49, 52]. Michail used data mining on the source code of programming libraries to
detect reuse patterns, but not for revision histories only for single snapshots [32, 33].
Our work is the first to apply co-change and data mining based on method calls. While
Fischer et al. were the first to combine bug databases with dynamic analysis [18], our
work is the first that combines the mining of revision histories with dynamic analysis.

The work most closely related to ours is that by Williams and Hollingsworth [46].
They were the first to combine program analysis and revision history mining. Their
paper proposes error ranking improvements for a static return value checker with in-
formation about fixes obtained from revision histories. Our work differs from theirs in
several important ways: they focus on prioritizing or improving existing error patterns
and checkers, whereas we concentrate on discovering new ones. Furthermore, we use
dynamic analysis and thus do not face high false positive rates their tool suffers from.

Recently, Williams and Hollingsworth also turned towards mining function usage
patterns from revision histories [47]. In contrast to our work, they focus only on pairs
and do not use their patterns to detect violations.

28

8.2 Model Extraction

Most work on automatically inferring state models on components of software systems
has been done using dynamic analysis techniques. The Strauss system [3] uses ma-
chine learning techniques to infer a state machine representing the proper sequence of
function calls in an interface.

Dallmeier et al. trace call sequences and correlate sequence patterns with test fail-
ures [12]. Whaley et al. [45] hardcode a restricted model paradigm so that probable
models of object-oriented interfaces can be easily automatically extracted. Alur et
al. [2] generalize this to automatically produce small, expressive finite state machines
with respect to certain predicates over an object. Lam et al. use a type system-based
approach to statically extract interfaces [26]. Their work is more concerned with high-
level system structure rather than low-level life-cycle constraints [40].

Daikon is able to validate correlations between values at runtime and is therefore
able to validate patterns [16]. Weimer et al. use exception control flow paths to guide
the discovery of temporal error patterns with considerable success [44]; they also pro-
vide a comparison with other ing specification mining work.

Perracota uses a runtime analysis to propose a set of temporal properties [48] in
a manner similar to Daikon [17]. The resulting properties can then be verified using
a theorem prover. In cotrast to Perracota, our approach is designed to be much more
lightweight, sidestepping costly static analysis or theorem proving and only requiring
dynamic analysis for validation of the candidate properties.

PR-Miner relies on parsing code snapshots and frequent itemset mining to detect
common patterns that may include functions, variables, and files citepr-miner. Rules
with a low threshold are removed and additional pruning techniques are used to reduce
the number of rules used for error checking further. A combination of intra- and inter-
procedural analysis is then used to find bugs. However, generating a lot of “candidate”
rules does not help in a real-life setting unless the noise is very low. Moreoever, PR-
Miner reports a total of 23 bugs and 75 false positives, suggesting that runtime analysis
lacking false positives is a good way to proceed.

9 Future Work

DynaMine is one of the first cross-over projects between the areas of revision history
mining and bug detection. We see many potential extensions for our work, some of
which are listed below:

e Patterns discovered byynaMine can be used in a variety of bug-finding tools.
While whole-program static analysis is expensive, applying a lightweight intrapro-
cedural static approach to the patterns confirmed using dynamic analysis will likely
discover interesting errors on rarely executed exceptional paths.

e Extends the set of patterns discovered vilifmaMine by simple textual matching.
For example, ifblockSignal, unblockSignal) is known to be a strong pattern,
then perhaps, all pairs of the for’, un X') are good patterns to check.

29

e As with other approaches to pattern discovery, there are ample opportunities for
programmer assistant tools. For example, if a developer typeskSignal in a
Java code editor, then a calldablockSignal can be suggested or automatically
inserted by the editor.

10 Conclusions

In this paper we preseilynaMine, a tool for learning common usage patterns from
the revision histories of large software systems. Our method can learn both simple
and complicated patterns, scales to millions of lines of code, and has been used to find
more than 250 pattern violations. Our mining approach is effective at finding coding
patterns: two thirds of all dynamically encountered patterns turned out to be likely
patterns.

DynaMine is the first tool that combines revision history information with dynamic
analysis for the purpose of finding software errors. Our tool largely automates the min-
ing and dynamic execution steps and makes the results of both steps more accessible
by presenting the discovered patterns as well as the results of dynamic checking to the
user in custom Eclipse views.

Optimization and filtering strategies that we developed allowed us to reduce the
mining time by orders of magnitude and to find high-quality patterns in millions lines
of code in a matter of minutes. Our ranking strategy that favored patterns with previous
bug fixes proved to be very effective at finding error patterns. In contrast, classical
ranking schemes from data mining could only locate usage patterns. Dynamic analysis
proved invaluable in establishing trust in patterns and finding their violations.

11 Acknowledgements

We would like to thank Wes Weimer, Ted Kremenek, Chris Unkel, Christian Lindig,
and the anonymous reviewers for providing useful feedback on how to improve this
paper. We are especially grateful to Michael Martin for his assistance with dynamic
instrumentation and last-minute proofreading. The first author was supported by the
National Science Foundation under Grant No. 0326227. The second author was sup-
ported in part by the Graduiertenkolleg “LeistungsgarantigrRiechnersysteme” and

the Deutsche Forschungsgemeinschaft, grant Ze 509/1-1.

30

References

(1]

(2]

3]

[4]

5]

(6]

[7]

(8]

9]

(10]

(11]
(12]

(13]

R. Agrawal and R. Srikant. Fast algorithms for mining association ruleBrdn
ceedings of the 20th Very Large Data Bases Conferquanges 487—499. Morgan
Kaufmann, 1994.

R. Alur, P. éerry, P. Madhusudan, and W. Nam. Synthesis of interface specifica-
tions for Java classes. Proceedings of the 32nd ACM Sysposium on Principles
of Programming Languagepages 98-109, Long Beach, California, USA, 2005.

G. Ammons, R. Bodik, and J. Larus. Mining specifications.Phoceedings of
the 29th ACM Symposium on Principles of Programming Languageges 4-16,
2002.

T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and static driver verifier:
Technology transfer of formal methods inside Microsoft. Technical Report MSR-
TR-2004-08, Microsoft, 2004.

J. Bevan and J. Whitehead. Identification of software instabilitiePréceedings
of the Working Conference on Reverse Engineerpages 134-143, Victoria,
British Columbia, Canada, Nov. 2003.

J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding change-proneness
in OO software through visualization. FProceedings of the 11th International
Workshop on Program Comprehensigrages 44-53, Portland, Oregon, May
2003.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, AéMih Monni-

aux, and X. Rival. A static analyzer for large safety-critical softward2roceed-

ings of the ACM Conference on Programming Language Design and Implemen-
tation, pages 196—207, San Diego, California, USA, June 2003.

G. Bratand A. Venet. Precise and scalable static program analysis of NASA flight
software. InProceedings of the 2005 IEEE Aerospace ConfereBigpSky, MT,
2005.

B. Burke and A. Brock. Aspect-oriented programming and JBdst$p://
www.onjava.com/pub/a/onjava/2003/05/28/aop _jboss.html
2003.

W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic
programming errorsSoftware Practice Experience (SRBP(7):775-802, 2000.

D. Carlson.Eclipse Distilled Addison-Wesley Professional, 2005.

V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization for java. In
Proceedings of the 19th European Conference on Object-Oriented Programming
Glasgow, Scotland, July 2005.

B. Dudney, S. Asbury, J. Krozak, and K. Wittkopd2EE AntiPatterns Wiley,
2003.

31

(14]

(19]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extension®rticeedings of the
Fourth Symposium on Operating Systems Design and Implentgiéges 1-16,
2000.

D. R. Engler, D. Y. Chen, and A. Chou. Bugs as deviant behavior: a general
approach to inferring errors in systems codeSymposium on Operating Systems
Principles pages 57-72, 2001.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discov-
ering likely program invariants to support program evolutitfEE Transactions
on Software Engineerin@7(2):99-123, 2001.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariaBts-
ence of Computer Programming006.

M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report data for
feature tracking. IfProceedings of the Working Conference on Reverse Engineer-
ing, pages 90-101, Victoria, British Columbia, Canada, Nov. 2003.

H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on prod-
uct release history. IRroceedings of the International Conference on Software
Maintenancepages 190-198, Washington D.C., USA, Nov. 1998.

H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for detecting log-
ical couplings. InProceedings International Workshop on Principles of Software
Evolution pages 13-23, Helsinki, Finland, Sept. 2003.

S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for build-
ing system-specific, static analyses. Rroceedings of the Conference on Pro-
gramming Language Design and Implementatjmges 69-82, Berlin, Germany,
2002.

R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. InProceedings of the Winter USENIX Conferengages 125-138, San
Francisco, California, December 1992.

D. Heine and M. Lam. A practical flow-sensitive and context-sensitive C and
C++ memory leak detector. l8onference on Programming Language Design
and Implementation (PLDJpages 168-181, San Diego, California, June 2003.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing
web application code by static analysis and runtime protectiorRPréceedings

of the 13th conference on World Wide \Wphges 40-52, New York, NY, USA,
May 2004.

S. Kumar and K. Li. Using model checking to debug device firmw&&OPS
Operating Systems Revig86(Sl):61-74, 2002.

32

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]

[37]

P. Lam and M. Rinard. A type system and analysis for the automatic extraction
and enforcement of design information. Mmoceedings of the 17th European
Conference on Object-Oriented Programmjipgges 275-302, Darmstadt, Ger-
many, July 2003.

B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for JavaLNES
378Q pages 139-160),, Nov. 2005.

B. Livshits and T. Zimmermann. DynaMine: Finding common error patterns by
mining software revision histories. IAroceedings of the 13th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE-13)
pages 296—-305, Sept. 2005.

B. Livshits and T. Zimmermann. Locating matching method calls by mining revi-
sion history data. liProceedings of the Workshop on the Evaluation of Software
Defect Detection TooJslune 2005.

H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering
association rules. IRroceedings of the AAAI Workshop on Knowledge Discovery
in Databasespages 181-192, Washington D.C., July 1994.

M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security
flaws using PQL: a program query languageOI@PSLA '05: Proceedings of the
20th annual ACM SIGPLAN conference on Object oriented programming systems
languages and applicationpages 365—-383, 2005.

A. Michail. Data mining library reuse patterns in user-selected applications. In
Proceedings of the 14th International Conference on Automated Software Engi-
neering pages 24-33, Cocoa Beach, Florida, USA, Oct. 1999. IEEE.

A. Michail. Data mining library reuse patterns using generalized association
rules. InProceedings of the International Conference on Software Engingering
pages 167-176, Limerick, Ireland, June 2000.

N. Nethercote and J. Seward. Valgrind: A program supervision framekbek-
tronic Notes in Theoretical Computer Scieng8:1-23, 2003.

S. Pestov. jEdit user guidéttp://www.jedit.org/ , 2005.

R. Purushothaman and D. E. Perry. Towards understanding the rhetoric of small
changes. InProceedings of the International Workshop on Mining Software
Repositoriespages 90-94, Edinburgh, Scotland, UK, May 2004.

D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan, B. Alpern, R. D. Johnson,
A. Kershenbaum, and L. Koved. SABER: Smart Analysis Based Error Reduction.
In Proceedings of the International Symposium on Software Testing and Apalysis
pages 243-251, Boston, MA, July 2004.

33

[38] F. V. Rysselberghe and S. Demeyer. Mining version control systems for FACs
(frequently applied changes). IRroceedings of the International Workshop
on Mining Software Repositoriepages 48-52, Edinburgh, Scotland, UK, May
2004.

[39] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a
dynamic data race detector for multithreaded programGM Transactions on
Computer System&5(4):391-411, 1997.

[40] S. R. Schach.Object-Oriented and Classical Software EngineerindcGraw-
Hill Science/Engineering/Math, 2004.

[41] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string
vulnerabilities with type qualifiers. IRroceedings of the 2001 Usenix Security
Conferencepages 201-220, Washington, D.C., 2001.

[42] B. Tate, M. Clark, B. Lee, and P. Linskeitter EJB Manning Publications,
2003.

[43] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated
detection of buffer overrun vulnerabilities. Proceedings of Network and Dis-
tributed Systems Security Symposiyrages 3—17, San Diego, California, Feb.
2000.

[44] W. Weimer and G. Necula. Mining temporal specifications for error detection. In
Proceedings of the 11th International Conference on Tools and Algorithms For
The Construction And Analysis Of Systepeges 461-476, Apr. 2005.

[45] J. Whaley, M. Martin, and M. Lam. Automatic extraction of object-oriented com-
ponent interfaces. lProceedings of the International Symposium of Software
Testing and Analysjpages 218-228, Rome, Italy, July 2002.

[46] C. C. Williams and J. K. Hollingsworth. Automatic mining of source code repos-
itories to improve bug finding techniquedEEE Transactions on Software Engi-
neering 31(6):466—480, June 2005.

[47] C. C. Williams and J. K. Hollingsworth. Recovering system specific rules from
software repositories. IRroceedings of the International Workshop on Mining
Software Repositoriepages 7-11, May 2005.

[48] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: mining tempo-
ral API rules from imperfect traces. Froceedings of the International Confer-
ence on Software Engineeringlay 2006.

[49] A.T.Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source code
changes by mining change histoEEE Transactions on Software Engineerjing
30(9):574-586, Sept. 2004.

[50] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system architec-
ture (or not). InProceedings International Workshop on Principles of Software
Evolution pages 73-83, Helsinki, Finland, Sept. 2003.

34

[51] T. Zimmermann and P. Weil3gerber. Preprocessing CVS data for fine-grained an-
alysis. InProceedings of the International Workshop on Mining Software Repos-
itories, pages 2—6, Edinburgh, Scotland, UK, May 2004.

[52] T. Zimmermann, P. Wei3gerber, S. Diehl, and A. Zeller. Mining version histories
to guide software changes. Rroceedings of the 26th International Conference
on Software Engineeringages 563-572, Edinburgh, Scotland, May 2004.

35

