
Turning Eclipse Against Itself:
Finding Bugs in Eclipse Code Using

Lightweight Static Analysis

V. Benjamin Livshits

Computer Systems Laboratory

Stanford University

Stanford, CA 94305

livshits@cs.stanford.edu

While some commonly occurring error patterns in Java are
addressed by static tools such as FindBugs[5], complex software
systems are full of rules that developers must follow. These
application-specific rules are often not expressed in any way
other than code comments and often are not enforced, leading
to hard-to-detect bugs later in the program execution.

Eclipse represents one of the biggest Java projects ever cre-
ated. While surprisingly robust, Eclipse still suffers from seri-
ous bugs that lead to crashes and resource exhaustion. Eclipse
is a collaborative development projects, with its core develop-
ers located across multiple continents; furthermore, hundreds
of available plugins are developed by programmers with varying
levels of familiarity with intricacies of Eclipse APIs, thus caus-
ing the introduction of complex application-specific bugs. Bugs
addressed in this paper do not immediately exhibit themselves
and are often discovered after deployment.

In this paper we describe some common error patterns in
Eclipse code and propose, Checklipse, a lightweight analysis
tool for finding these errors; Checklipse is implemented as
an Eclipse plugin and leverages Eclipse’s JDT APIs to analyze
Java code. In our experiments, we find a total of 68 likely errors
in Eclipse sources that follow the error patterns described in
this paper.

1 Error Patterns in Eclipse

In this section we describe three common error patterns in
Eclipse APIs addressed by Checklipse. The first pattern is
an implementation strategy that requires subclass methods to
always call the same method in the superclass. The other two
patterns fall into the category of complex resource management
errors: lapsed listener errors and object disposal rules both lead
to leaks of memory and other operating system resources.

Applying a sound static analysis to find violations of these
patterns presents a considerable technical challenge. First, a
flow-sensitivity analysis is necessary because the patterns we
discuss are highly dependent on the order in which events oc-
cur. Second, a powerful alias analysis is necessary because
Eclipse APIs refer to the same heap object through multiple
access paths or by calling different methods. Finally, since the
Eclipse code base is so big, scalability presents a major concern.
Instead, we propose a lightweight analysis approach that may
suffer from both false positives and false negatives, but gives
developers almost immediate indication where to spend their
bug-finding efforts.

1.1 Extend Super Misuse
The template method design pattern defines the skeleton of an
algorithm in an operation, deferring some algorithm steps to
subclasses. Subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure. A particular vari-
ation of this pattern called the extend super pattern ensures
that a subclass implements the functionality of the superclass
by calling methods of the superclass. The coding idiom used
to achieve this in Java is to call super.m(...) in method m.

However, when deep class hierarchies are used, developers
implementing the subclasses sometimes forget to properly call
the superclass implementation, thus breaking API invariants[3]
and leading to potential errors later in program execution.

1.2 Object Disposal Rules

While not as widespread as in C or C++, memory leaks still ex-
ist in Java[6]. A Java program can maintain a link to an object
that is never used again, causing the garbage collector to never
reclaim that object. Finding such kinds of memory leaks is dif-
ficult, but important because they can gradually cause resource
exhaustion in a long-running applications such as Eclipse, lead-
ing to instability and crashes.

Languages with explicit resource management such as C++
often uses specific resource allocation disciplines, such as object
ownership[4] to specify who is responsible for object deletion.
Although this is less common, similar disciplines are necessary
in large-scale Java projects that use a lot of operating system
resources, such as native GUI elements, fonts, colors, etc.

Eclipse APIs suggest a certain resource management disci-
pline that is often misused[1, 2, 7]. Various Eclipse types de-
fine method dispose that is called to dispose of dependent re-
sources. Proving that all resources are properly deallocated
is a very difficult task in general. However, some rules of
thumb commonly used by developers are relatively easy to
check: Eclipse classes often store references to objects in lo-
cally allocated collections such as Vectors or HashMaps. Unless
these collections are cleared in method dispose, it is possible
for superfluous links to objects stored in the collections to ex-
ist after the base object has been disposed of, thus leading to
memory leaks.

1.3 Lapsed Listeners

Event listeners in Java GUI programs is another common source
of memory leaks. Event listeners are a common way to specify
actions that should occur when a user interface event such as a
mouse click occurs on a given GUI component. This is achieved
by registering a listener with a GUI component; when the com-
ponent is destroyed, the listener should be unregistered. If a
listener is is not unregistered, it will preserve a link to the GUI
component. The listener is reached from a global listener table,
thus making the potentially large GUI component also reach-
able and therefore considered live by the garbage collector. This
error pattern is referred to in the literature as the lapsed lis-
tener problem[6]. Lapsed listener errors are quite prominent in
Eclipse: our searches at bugs.eclipse.org revealed at least 92
bugs in this category.

2 Implementation and Experiments

Eclipse JDT APIs expose abstract syntax trees of Java pro-
grams and make tasks such as examining the statements in a
method or looking for specific method calls easy to perform.
Our checkers perform local intraprocedural analysis to find
likely violations. Our implementation of Checklipse consists
of three special-purpose checkers addressing each of the error
patterns described in the previous section:

Extend super. This checker finds implementations of meth-
ods such as hookControl and others that do not include a call
to the super’s method on all paths through the method. This
has allowed us to expose error cases where super is either called
conditionally or not called at all. The results are presented to
the user for verification, as shown in Figure 1.

Disposal rules. To find potential memory leaks caused by col-
lections that are not deallocated, we find all methods dispose
that have collections defined in the same class. Classes that
fail to use all those collections in the code of dispose are re-
ported as potential sources of leaks. While false positives are

1



Figure 1: Output of the extend super rule checker. Confirmed potential violations are shows in bold.

Figure 2: Output of the dispose rule checker showing dispose meth-
ods and collections leading to potential leaks.

possible, the answer computed by our checker provides a pretty
strong indication that there may be a memory leak. The user
is presented with a listing of offending dispose methods and
collections that need to be cleared for each, as shown in Fig-
ure 2. The output is color-coded to simplify the code auditing
process: collections shown in green are mentioned in dispose
at least once, the ones in red are not.
Lapsed listener. The lapsed listener checker looks for mis-
matches in the way createPartControl and dispose method
make listener registration and unregistration calls by pat-
tern matching add{T}Listener and remove{T}Listener calls,
where T is the listener type. An example of checker output
is given in Figure ??. Methods shown in green represented
matching listener registration and unregistration calls.

We summarize the results of running Checklipse on 20 large
plugins from the Eclipse code base in Figure 4. A total of 68
“likely” errors is reported. Unlike many other types of bugs,
these errors are very difficult to verify statically by examining
the code and are best validated either through the use of dy-
namic analysis or by original code developers. We used our best
judgement about the code to arrive at the final bug count.

Figure 3: Output of the lapsed listener checker. For each method,
calls in green are matched; others are potential mismatches.

Extend Super

methods that require super to be called 38
calls to these methods 390
filtered calls 19
potential errors (methods not calling super) 13

Disposal Rules

dispose methods checked 794
filtered methods 51
potential errors (leaking dispose methods) 42

Lapsed Listeners

subclasses of ViewPart checked 81
subclasses with matched listeners 6
subclasses not using listeners 53
subclasses with mismatched listeners 22
potential errors (classes with lapsed listeners) 13

total errors 68

Figure 4: Summary of experimental results.

3 Conclusions

In this paper we have described Checklipse, a lightweight
static analysis tool that has allowed us to find a total of 68
likely bugs in 20 plugins from the Eclipse code base. Misuse
of application-specific coding patterns are a common source of
errors in large software systems developed by multiple program-
mers. The sheer complexity and scale of the problem makes a
sound, whole-program analysis prohibitively expensive and jus-
tifies the use of lightweight tools that may suffer from both false
positives and negatives. We have successfully explored three
important error patterns in Eclipse APIs that lead to broken
logical constraints and resource leaks. Our preliminary experi-
ence with Checklipse makes us believe that our approach is
a fruitful one and will yield more errors when applied to other
complex error patterns.

References
[1] SWT: The standard widget toolkit. part 2: Managing operating

system resources. http://www.eclipse.org/articles/swt-design-2/
swt-design-2.html.

[2] User interface resources. http://dev.eclipse.org/viewcvs/index.cgi/
~checkout~/org.eclipse.platfor%m.doc.isv/guide/jface_resources.
htm?rev=1.14&content-type=text/html.

[3] Cedric. Don’t call super. http://www.beust.com/weblog/archives/
000077.html, 2004.

[4] D. Heine and M. Lam. A practical flow-sensitive and context-sensitive
C and C++ memory leak detector. In Conference on Programming
Language Design and Implementation (PLDI), pages 168–181, 2003.

[5] D. Hovemeyer and W. Pugh. Finding bugs is easy. In Proceedings
of the Onward! Track of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2004.

[6] B. A. Tate. Bitter Java. Manning Publications Co., 2002.
[7] tazzzzz. SWT and memory management. http://www.blueskyonmars.

com/archives/2003/10/20/swt_and_memory_managem%ent.html, 2003.

2


