
DynaMine: Finding Common Error Patterns
by Mining Software Revision Histories

Benjamin Livshits
Computer Science Department

Stanford University
Stanford, USA

livshits@cs.stanford.edu

Thomas Zimmermann
Computer Science Department

Saarland University
Saarbrücken, Germany

zimmerth@cs.uni− sb.de

A great deal of attention has lately been given to addressing soft-
ware bugs such as errors in operating system drivers or security
bugs. However, there are many other lesser known errors specific to
individual applications or APIs and these violations of application-
specific coding rules are responsible for a multitude of errors. In
this paper we propose DynaMine, a tool that analyzes source code
check-ins to find highly correlated method calls as well as common
bug fixes in order to automatically discover application-specific
coding patterns. Potential patterns discovered through mining are
passed to a dynamic analysis tool for validation; finally, the results
of dynamic analysis are presented to the user.

The combination of revision history mining and dynamic anal-
ysis techniques leveraged in DynaMine proves effective for both
discovering new application-specific patterns and for finding er-
rors when applied to very large applications with many man-years
of development and debugging effort behind them. We have an-
alyzed Eclipse and jEdit, two widely-used, mature, highly exten-
sible applications consisting of more than 3,600,000 lines of code
combined. By mining revision histories, we have discovered 56
previously unknown, highly application-specific patterns. Out of
these, 21 were dynamically confirmed as very likely valid patterns
and a total of 263 pattern violations were found.

Categories and Subject Descriptors: D.2.5 [Testing and Debug-
ging] Tracing; D.2.7 [Distribution, Maintenance, and Enhance-
ment] Version control; H.2.8 [Database Applications] Data mining

General Terms: Management, Measurement, Reliability

Keywords: Error patterns, coding patterns, software bugs, data
mining, revision histories, dynamic analysis, one-line check-ins.

1. INTRODUCTION
A great deal of attention has lately been given to addressing

application-specific software bugs such as errors in operating sys-
tem drivers [4, 13], security errors [20, 32], or errors in reliability-
critical embedded software in domains like avionics [7, 8]. These
represent critical errors in widely used software and tend to get
fixed relatively quickly when found. A variety of static and dy-
namic analysis tools have been developed to address these high-
profile bugs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

However, many other errors are specific to individual applica-
tions or platforms. Violations of these application-specific coding
rules, referred to as error patterns, are responsible for a multitude
of errors. Error patterns tend to be re-introduced into the code over
and over by multiple developers working on a project and are a
common source of software defects. While each pattern may be
only responsible for a few bugs in a given project snapshot, when
taken together over the project’s lifetime, the detrimental effect of
these error patterns is quite serious and they can hardly be ignored
in the long term if software quality is to be expected.

However, finding the error patterns to look for with a particular
static or dynamic analysis tool is often difficult, especially when
it comes to legacy code, where error patterns either are recoded as
comments in the code or not documented at all [14]. Moreover,
while well-aware of certain types of behavior that causes the ap-
plication to crash or well-publicized types of bugs such as buffer
overruns, programmers often have difficulty formalizing or even
expressing API invariants.

In this paper we propose an automatic way to extract likely error
patterns by mining software revision histories. Looking at incre-
mental changes between revisions as opposed to complete snap-
shots of the source allows us to better focus our mining strategy
and obtain more precise results. Our approach uses revision history
information to infer likely error patterns. We then experimentally
evaluate the patterns we extracted by checking for them dynami-
cally.

We have performed experiments on Eclipse and jEdit, two large,
widely-used open-source Java applications. Both Eclipse and jEdit
have many man-years of software development behind them and,
as a collaborative effort of hundreds of people across different loca-
tions, are good targets for revision history mining. By mining CVS,
we have identified 56 high-probability patterns in Eclipse and jEdit
APIs, all of which were previously unknown to us. Out of these, 21
were dynamically confirmed as valid patterns and 263 pattern vio-
lations were found.

1.1 Contributions
This paper makes the following contributions:

• We present DynaMine,1 a tool for discovering usage patterns
and detecting their violations in large software systems. All
of the steps involved in mining and running the instrumented
application are accessible to the user from within an Eclipse
plugin: DynaMine automates the task of collecting and pre-
processing revision history entries and mining for common pat-
terns. Likely patterns are then presented to the user for review;
runtime instrumentation is generated for the patterns that the

1The name DynaMine comes from the combination of Dynamic
analysis and Mining revision histories.

File Revision Added method calls

Foo.java 1.12 o1.addListener
o1.removeListener

Bar.java 1.47 o2.addListener
o2.removeListener
System.out.println

Baz.java 1.23 o3.addListener
o3.removeListener
list.iterator
iter.hasNext
iter.next

Qux.java 1.41 o4.addListener

1.42 o4.removeListener

Figure 1: Method calls added across different revisions.

user deems relevant. Results of dynamic analysis are also pre-
sented to the user in an Eclipse view.

• We propose a data mining strategy that detects common usage
patterns in large software systems by analyzing software revi-
sion histories. Our strategy is based on a classic Apriori data
mining algorithm, which we augment in a number of ways to
make it more scalable, reduce the amount of noise, and provide
a new, effective ranking of the resulting patterns.

• We present a categorization of patterns found in large modern
object-oriented systems. Our experience with two large Java
projects leads us to believe that similar pattern categories will
be found in most other systems of similar size and complexity.

• We propose a dynamic analysis approach for validating usage
patterns and finding their violations. DynaMine currently uti-
lizes an off-line approach that allows us to match a wider cate-
gory of patterns. DynaMine supplies default handlers for ana-
lyzing most common categories of patterns.

• We present a detailed experimental study of our techniques as
applied to finding errors in two large, mature open-source Java
applications with many years of development behind them. We
have identified 56 patterns in both and found 263 pattern vio-
lations with our dynamic analysis approach. Furthermore, 21
patterns were experimentally confirmed as valid.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2 provides

an informal description of DynaMine, our pattern mining and er-
ror detection tool. Section 3 describes our revision history mining
approach. Section 4 describes our dynamic analysis approach. Sec-
tion 5 summarizes our experimental results for (a) revision history
mining and (b) dynamic checking of the patterns. Sections 6, 7,
and 8 present related and future work and conclude.

2. OVERVIEW OF DYNAMINE
A great deal of research has been done in the area of checking

and enforcing specific coding rules, the violation of which leads to
well-known types of errors. However, these rules are not very easy
to come by: much time and effort has been spent by researchers
looking for worthwhile rules to check [27] and some of the best ef-
forts in error detection come from people intimately familiar with
the application domain [13, 30]. As a result, lesser known types of
bugs and applications remain virtually unexplored in error detec-
tion research. A better approach is needed if we want to attack
“unfamiliar” applications with error detection tools. This paper
proposes a set of techniques that automate the step of application-
specific pattern discovery through revision history mining.

2.1 Motivation for Revision History Mining
Our approach to mining revision histories hinges on the follow-

ing observation:
OBSERVATION 2.1. Given multiple software components that use
the same API, there are usually common errors specific to that API.
In fact, much of research done on bug detection so far can be
thought of as focusing on specific classes of bugs pertaining to par-
ticular APIs: studies of operating-system bugs provide synthesized
lists of API violations specific to operating system drivers resulting
in rules such as “do not call the interrupt disabling function cli()
twice in a row” [13]. In order to locate common errors, we mine
for frequent usage patterns in revision histories, as justified by the
following observation.
OBSERVATION 2.2. Method calls that are frequently added to the
source code simultaneously often represent a pattern.
Looking at incremental changes between revisions as opposed to
full snapshots of the sources allows us to better focus our mining
strategy. However, it is important to notice that not every pattern
mined by considering revision histories is an actual usage pattern.
Figure 1 lists sample method calls that were added to revisions
of files Foo.java, Bar.java, Baz.java, and Qux.java. All these
files contain a usage pattern that says that methods {addListener,
removeListener} must be precisely matched. However, min-
ing these revisions yields additional patterns like {addListener,
println} and {addListener, iterator} that are definitely not
usage patterns.

Furthermore, we have to take into account the fact that in reality
some patterns may be inserted incompletely, e.g., by mistake or to
fix a previous error. In Figure 1 this occurs in file Qux.java, where
addListener and removeListener were inserted independently
in revisions 1.41 and 1.42. The observation that follows gives rise
to an effective ranking strategy used in DynaMine.
OBSERVATION 2.3. Small changes to the repository such as one-
line additions often represent bug fixes.
This observation is supported in part by anecdotal evidence and
also by recent research into the nature of software changes [26]
and is further discussed in Section 3.3.

To make the discussion in the rest of this section concrete, we
present the categories of patterns discovered with our mining ap-
proach.

• Matching method pairs represent two method calls that must
be precisely matched on all paths through the program.

• State machines are patterns that involve calling more than two
methods on the same object and can be captured with a finite
automaton.

• More complex patterns are all other patterns that fall outside
the categories above and involve multiple related objects.

The categories of patterns above are listed in the order of frequency
of high-likelihood pattern in our experiments. The rest of this sec-
tion describes each of these error pattern categories in detail.

2.2 Motivation for Dynamic Analysis
Our technique for mining patterns from software repositories can

be used independently with a variety of bug-finding tools. Our ap-
proach is to look for pattern violations at runtime, as opposed to
using a static analysis technique. This is justified by several con-
siderations outlined below.

• Scalability. Our original motivation was to be able to an-
alyze Eclipse, which is one of the largest Java applications
ever created. The code base of Eclipse is comprised of more
than 2,900,000 lines of code and 31,500 classes. Most of the

Figure 2: Architecture of our tool. The first row represents revision history mining. The second row represents dynamic analysis.

patterns we are interested in are spread across multiple meth-
ods and need an interprocedural approach to analyze. Given
the substantial size of the application under analysis, pre-
cise whole-program flow-sensitive static analysis is expensive.
Moreover, static call graph construction presents a challenge
for applications that use dynamic class loading. In contrast,
dynamic analysis does not require call graph information.

• Validating discovered patterns. A benefit of using dynamic
analysis is that we are able to “validate” the patterns we dis-
cover through CVS history mining as real usage patterns by
observing how many times they occur at runtime. Patterns that
are matched a large number of times with only a few violations
represent likely patterns with a few errors. The advantage of
validated patterns is that they increase the degree of assurance
in the quality of mined results.

• False positives. Runtime analysis does not suffer from false
positives because all pattern violations detected with our sys-
tem actually do happen, which significantly simplifies the
process of error reporting.

While we believe that dynamic analysis is more appropriate than
static analysis for the problem at hand, a serious shortcoming of
dynamic analysis is its lack of coverage. In fact, in our dynamic ex-
periments, we have managed to find runtime use cases for some, but
not all of our mined patterns. Another concern is that a workload
selection may significantly influence how patterns are classified by
DynaMine. In our experiments with Eclipse and jEdit we were
careful to exercise common functions of both applications that rep-
resent hot paths through the code and thus contain errors that may
manifest at runtime often. However, we may have missed error
patterns that occur on exception paths that were not hit at runtime.

2.3 DynaMine System Overview
We conclude this section by summarizing how the various stages

of DynaMine processing work when applied to a new application.
All of the steps involved in mining and dynamic program testing are
accessible to the user from within custom Eclipse views. A diagram
representing the architecture of DynaMine is shown in Figure 2.

1. Pre-process revision history, compute methods calls that have
been inserted, and store this information in a database.

2. Mine the revision database for likely usage and error patterns.
3. Present mining results to the user in an Eclipse plugin for as-

sessment.
4. Generate instrumentation for patterns deemed relevant and se-

lected by the user through DynaMine’s Eclipse plugin.
5. Run the instrumented program and dynamic data is collected

and post-processed by dynamic checkers.
6. Dynamic pattern violation statistics are collected and presented

to the user in Eclipse.

Steps 4–6 above can be performed in a loop: once dynamic infor-
mation about patterns is obtained, the user may decide to augment
the patterns and re-instrument the application.

3. MINING USAGE PATTERNS
In this section we describe our mining approach.We start by pro-

viding the terms we use in our discussion of mining. Next we lay
out our general algorithmic approach that is based on the Apriori
algorithm [1, 22] that is commonly used in data mining for appli-
cations such as market basket analysis. The algorithm uses a set of
transactions such as store item purchases as its input and produces
as its output (a) frequent purchasing patterns (“items X , Y , and Z
are purchased together”) and (b) strong association rules (“a person
who bought item X is likely to buy item Y ”).

However, the classical Apriori algorithm has a serious drawback.
The algorithm runtime can be exponential in the number of items.
Our “items” are names of individual methods in the program. For
Eclipse, which contain 59,929 different methods, calls to which are
inserted, scalability is a real concern. To improve the scalability
of our approach and to reduce the amount of noise, we employ a
number of filtering strategies described in Section 3.2 to reduce the
number of viable patterns Apriori has to consider. Furthermore,
Apriori does not rank the patterns it returns. Since even with filter-
ing, the number of patterns returned is quite high, we apply several
ranking strategies described in Section 3.3 to the patterns we mine.
We start our discussion of the mining approach by defining some
terminology used in our algorithm description.
Definition 3.1 A usage pattern U = 〈M, S〉 is defined as a set
of methods M and a specification S that defines how the methods
should be invoked. A static usage pattern is present in the source if
calls to all methods in M are located in the source and are invoked
in a manner consistent with S. A dynamic usage pattern is present
in a program execution if a sequence of calls to methods M is made
in accordance with the specification S.

The term “specification” is intentionally open-ended because we
want to allow for a variety of pattern types to be defined. Revi-
sion histories record method calls that have been inserted together
and we shall use this data to mine for method sets M . The fact
that several methods are correlated does not define the nature of
the correlation. Therefore, even though the exact pattern may be
obvious given the method names involved, it is generally quite dif-
ficult to automatically determine the specification S by considering
revision history data only and human input is required.
Definition 3.2 For a given source file revision, a transaction is a
set of methods, calls to which have been inserted.

Definition 3.3 The support count of a usage pattern U = 〈M, S〉
is the number of transactions that contains all methods in M .

In the example in Figure 1 the support count for {addListener,
removeListener} is 3. The changes to Qux.java do not con-
tribute to the support count because the pattern is distributed across
two revisions.
Definition 3.4 An association rule A ⇒ B for a pattern U =
〈M, S〉 consists of two non-empty sets A and B such that M =
A ∪B.

For a pattern U = 〈M, S〉 there exist 2|M| − 2 possible associ-
ation rules. An association rule A ⇒ B is interpreted as follows:
whenever a programmer inserts calls to all methods in A, she also

insert the calls of all methods in B. Obviously, such rules are not
always true. They have a probabilistic meaning.
Definition 3.5 The confidence of an association rule A ⇒ B is de-
fined as the the conditional probability P (B|A) that a programmer
inserts the calls in B, given she has already inserted the calls in A.

The confidence indicates the strength of a rule. However, we are
more interested in the patterns than in association rules. Thus, we
rank patterns by the confidence values of their association rules.

3.1 Basic Mining Algorithm
A classical approach to computing patterns and association rules

is the Apriori algorithm [1, 22]. The algorithm takes a minimum
support count and a minimum confidence as parameters. We call a
pattern frequent if its support is above the minimum support count
value. We call an association rule strong if its confidence is above
the minimum confidence value. Apriori computes (a) the set P of
all frequent patterns and (b) the set R of all strong association rules
in two phases:

1. The algorithm iterates over the set of transactions and forms
patterns from the method calls that occur in the same trans-
action. A pattern can only be frequent when its subsets are
frequent and patterns are expanded in each iteration. Iteration
continues until a fixed point is reached and the final set of fre-
quent patterns P is produced.

2. The algorithm computes association rules from the patterns
in P . From each pattern p ∈ P and every method set q ⊆ p
such that p, q 6= ∅, the algorithm creates an association rule of
the form p \ q ⇒ q. All rules for a pattern have the same sup-
port count, but different confidence values. Strong association
rules p \ q ⇒ q are added to the final set of rules R.2

In Sections 3.2 and 3.3 below we describe how we adapt the classic
Apriori approach to improve its scalability and provide a ranking
of the results.

3.2 Pattern Filtering
The running time of Apriori is greatly influenced by the number

of patterns is has to consider. While the algorithm uses thresholds
to limit the number of patterns that it outputs in P , we employ
some filtering strategies that are specific to the problem of revision
history mining. Another problem is that these thresholds are not
always adequate for keeping the amount of noise down. The filter-
ing strategies described below greatly reduce the running time of
the mining algorithm and significantly reduce the amount of noise
it produces.

3.2.1 Considering a Subset of Method Calls Only
Our strategy to deal with the complexity of frequent pattern min-

ing is to ignore method calls that either lead to no usage patterns or
only lead to obvious ones such as {hasNext, next}.
• Ignoring initial revisions. We do not treat initial revisions of

files as additions. Although they contain many usage patterns,
taking initial check-ins into account introduces more incidental
patterns, i.e. noise, than patterns that are actually useful.

• Last call of a sequence. Given a call sequence
c1().c2() . . . cn() included as part of a repository change, we
only take the final call cn() into consideration. This is due to
the fact that in Java code, a sequence of “accessor” methods is
common and typically only the last call mutates the program
environment. Calls like

ResourcesPlugin.getPlugin().getLog().log()

2\ is used in the rest of the paper to denote set difference.

Method Number Method Number
name of additions name of additions

equals 9,054 toString 4,197
add 6,986 getName 3,576
getString 5,295 append 3,524
size 5,118 iterator 3,340
get 4,709 length 3,339

Figure 3: The most frequently inserted method calls.

in Eclipse are quite common and taking intermediate portions
of the call into account will contribute to noise in the form of
associating the intermediate getter calls. Such patterns are not
relevant for our purposes, however, they are well-studied and
are best mined from a snapshot of a repository rather than from
its history [23, 24, 28].

• Ignoring common calls. To further reduce the amount of
noise, we ignore some very common method calls, such as the
ones listed in Figure 3; in practice, we ignore method calls that
were added more than 100 times. These methods tend to get in-
termingled with real usage patterns, essentially causing noisy,
“overgrown” ones to be formed.

3.2.2 Considering Small Patterns Only
Generally, patterns that consist of a large number of methods are

created due to noise. Another way to reduce the complexity and the
amount of noise is to reduce the scope of mining to small patterns
only. We employ a combination of the following two strategies.

• Fine-grained transactions. As mentioned in Section 3.1,
Apriori relies on transactions that group related items together.
We generally have a choice between using coarse-grained or
fine-grained transactions. Coarse-grained transactions consist
of all method calls added in a single revision. Fine-grained
transactions additionally group calls by the access path. In Fig-
ure 1, the coarse-grained transaction corresponding to revision
1.23 of Baz.java is further subdivided into three fine-grained
transactions for objects o3, list, and iter. An advantage of
fine-grained transactions is that they are smaller, and thus make
mining more efficient. The reason for this is that the runtime
heavily depends on the size and number of frequent patterns,
which are restricted by the size of transactions. Fine-grained
transactions also tend to reduce noise because processing is
restricted to a common prefix. However, we may miss pat-
terns containing calls with different prefixes, such as pattern
{iterator, hasNext, next} in Figure 1.

• Mining method pairs. We can reduce the the complexity even
further if we mine the revision repository only for method pairs
instead of patterns of arbitrary size. This technique has fre-
quently been applied to software evolution analysis and proved
successful for finding evolutionary coupling, etc. [17, 18, 40].
While very common, method pairs can only express relatively
simple usage patterns.

3.3 Pattern Ranking
Even when filtering is applied, the Apriori algorithm yields many

frequent patterns. However, not all of them turn out to be good us-
age patterns in practice. Therefore, we use several ranking schemes
when presenting the patterns we discovered to the user for review.

3.3.1 Standard Ranking Approaches
Mining literature provides a number of standard techniques we

use for pattern ranking. Among them are the pattern’s (1) support
count, (2) confidence, and (3) strength, where the strength of a pat-
tern is defined as following.

Definition 3.6 The strength of pattern p is the number of strong
association rules in R of the form p \ q ⇒ q where q ⊂ p, both p
and q are frequent patterns, and q 6= ∅.

For our experiments, we rank patterns lexicographically by their
strength and support count. However, for matching method pairs
〈a, b〉 we use the product of confidence values conf (a ⇒ b) ×
conf (b ⇒ a) instead of the strength because the continuous nature
of the product gives a more fine-grained ranking than the strength;
the strength only takes the values of 0, 1, and 2 for pairs. The ad-
vantage of products over sums is that pairs where both confidence
values are high are favored. In the rest of the paper we refer to
the ranking that follows classical data mining techniques as regular
ranking.

3.3.2 Corrective Ranking
While the ranking schemes above can generally be applied to

any data mining problem, we have come up with a measure of a
pattern’s importance that is specific to mining revision histories.
Observation 2.3 is the basis of the metric we are about to describe.
A check-in may only add parts of a usage pattern to the repository.
Generally, this is a problem for the classic Apriori algorithm, which
prefers patterns, all parts of which are “seen together”. However,
we can leverage these incomplete patterns when we realize that
they often represent bug fixes.

A recent study of the dynamic of small repository changes in
large software systems performed by Purushothaman et al. sheds
a new light on this subject [26]. Their paper points out that al-
most 50% of all repository changes were small, involving less than
10 lines of code. Moreover, among one-line changes, less than 4%
were likely to cause a later error. Furthermore, only less than 2.5%
of all one-line changes were perfective changes that add function-
ality, rather than corrective changes that correct previous errors.
These numbers imply a very strong correlation between one-line
changes and bug corrections or fixes.

We use this observation to develop a corrective ranking that ex-
tends the ranking that is used in classical data mining. For this, we
identify one-line fixes and mark method calls that were added at
least once in such a fix as fixed. In addition to the measures used by
regular ranking, we then additionally rank by the number of fixed
methods calls which is used as the first lexicographic category. As
discussed in Section 5, patterns with a high corrective rank result
in more dynamic violations than patterns with a high regular rank.

3.4 Locating Added Method Calls
In order to speed-up the mining process, we pre-process the re-

vision history extracted from CVS and store this information in a
general-purpose database; our techniques are further described in
Zimmermann et al. [39]. The database stores method calls that
have been inserted for each revision. To determine the calls in-
serted between two revisions r1 and r2, we build abstract syntax
trees (ASTs) for both r1 and r2 and compute the set of all calls C1

and C2, respectively, by traversing the ASTs. C2 \ C1 is the set of
inserted calls between r1 and r2.

Unlike Williams and Hollingsworth [35, 36] our approach does
not build snapshots of a system. As they point out such inter-
actions with the build environment (compilers, makefiles) are ex-
tremely difficult to handle and result in high computational costs.
Instead we analyze only the differences between single revisions.
As a result our preprocessing is cheap and platform- and compiler-
independent; the drawback is that types cannot be resolved because
only one file is investigated. In order to avoid noise that is caused by
this, we additionally identify methods by the count of arguments.

4. CHECKING PATTERNS AT RUNTIME
In this section we describe our dynamic approach for checking

the patterns discovered through revision history mining.

4.1 Pattern Selection & Instrumentation
To aid with the task of choosing the relevant patterns, the user

is presented with a list of mined patterns in an Eclipse view. The
list of patterns may be sorted and filtered based on various ranking
criteria described in Section 3.3 to better target user efforts. Hu-
man involvement at this stage, however, is optional, because the
user may decide to dynamically check all the patterns discovered
through revision history mining.

After the user selects the patterns of interest, the list of relevant
methods for each of the patterns is generated and passed to the in-
strumenter. We use JBoss AOP [9], an aspect-oriented framework
to insert additional “bookkeeping” code at the method calls rele-
vant for the patterns. However, the task of pointcut selection is
simplified for the user by using a graphical interface. In addition
to the method being called and the place in the code where the call
occurs, values of all actual parameters are also recorded.

4.2 Post-processing Dynamic Traces
The trace produced in the course of a dynamic run are post-

processed to produce the final statistics about the number of times
each pattern is followed and the number of times it is violated. We
decided in favor of off-line post-processing because some patterns
are rather difficult and sometimes impossible to match with a fully
online approach. In order to facilitate the task of post-processing in
practice, DynaMine is equipped with checkers to look for match-
ing method pairs and state machines. Users who wish to create
checkers for more complex patterns can do so through a Java API
exposed by DynaMine that allows easy access to runtime events.

Dynamically obtained results for matching pairs and state ma-
chines are exported back into Eclipse for review. The user can
browse through the results and ascertain which of the patterns she
thought must hold do actually hold at runtime. Often, examining
the dynamic output of DynaMine allows the user to correct the ini-
tial pattern and re-instrument.

4.2.1 Dynamic Interpretation of Patterns
While it may be intuitively obvious what a given coding pattern

means, what kind of dynamic behavior is valid may be open to in-
terpretation, as illustrated by the following example. Consider a
matching method pair 〈beginOp, endOp〉 and a dynamic call se-
quence

seq = o.beginOp() . . . o.beginOp() . . . o.endOp().

Obviously, a dynamic execution consisting of a sequence of calls
o.beginOp() . . . o.endOp() follows the pattern. However, execu-
tion sequence seq probably represents a pattern violation.

While declaring seq a violation may appear quite reasonable on
the surface, consider now an implementation of method beginOp

that starts by calling super.beginOp(). Now seq is the dynamic
call sequence that results from a static call to o.beginOp followed
by o.endOp; the first call to beginOp comes from the static call to
beginOp and the second comes from the call to super. However,
in this case seq may be a completely reasonable interpretation of
this coding pattern.

As this example shows, there is generally no obvious mapping
from a coding pattern to a dynamic sequence of events. As a re-
sult, the number of dynamic pattern matches and mismatches is
interpretation-dependent. Errors found by DynaMine at runtime
can only be considered such with respect to a particular dynamic in-

Lines Source Java CVS Method calls Methods called Developers CVS history
Application of code files classes revisions inserted in inserts checking in since
Eclipse 2,924,124 19,115 19,439 2,837,854 465,915 59,929 122 May 2nd, 2001
jEdit 714,715 3,163 6,602 144,495 56,794 10,760 92 Jan 15th, 2000

Figure 4: Summary of information about our benchmark applications.

terpretation of patterns. Moreover, while violations of application-
specific patterns found with our approach represent likely bugs,
they cannot be claimed as definite bugs without carefully studying
the effect of each violation on the system.

In the implementation of DynaMine, to calculate the number of
times each pattern is validated and violated we match the unqual-
ified names of methods applied to a given dynamic object. Fortu-
nately, complete information about the object involved is available
at runtime, thus making this sort of matching possible. For patterns
that involve only one object, we do not consider method arguments
when performing a match: our goal is to have a dynamic matcher
that is as automatic as possible for a given type of pattern, and it
is not always possible to automatically determine which arguments
have to match for a given method pair. For complex patterns that
involve more than one object and require user-defined checkers, the
trace data saved by DynaMine contains information allows the rel-
evant call arguments to be matched.

4.2.2 Dynamic vs Static Counts
A single pattern violation at runtime involves one or more ob-

jects. We obtain a dynamic count by counting how many object
combinations participated in a particular pattern violation during
program execution. Dynamic counts are highly dependent on how
we use the program at runtime and can be easily influenced by, for
example, recompiling a project in Eclipse multiple times.

Moreover, dynamic error counts are not representative of the
work a developer has to do to fix an error, as many dynamic viola-
tions can be caused by the same error in the code. To provide a bet-
ter metric on the number of errors found in the application code, we
also compute a static count. This is done by mapping each method
participating in a pattern to a static call site and counting the num-
ber of unique call site combinations that are seen at runtime. Static
counts are computed for validated and violated patterns.

4.2.3 Pattern Classification
We use runtime information on how many times each pattern is

validated and how many times it is violated to classify the patterns.
Let v be the number of validated instances of a pattern and e be
the number of its violations. The constants used in the classifica-
tion strategy below were obtained empirically to match our intu-
ition about how patterns should be categorized. However, clearly,
ours is but one of many potential classification approaches.

We define an error threshold α = min(v/10, 100). Based on
the value of α, patterns can be classified into the following cate-
gories:

• Likely usage patterns: patterns with a sufficiently high sup-
port that are mostly validated with relatively few errors
(e < α ∧ v > 5).

• Likely error patterns: patterns that have a significant number
of validated cases as well as a large number of violations
(α ≤ e ≤ 2v ∧ v > 5).

• Unlikely patterns: patterns that do not have many validated
cases or cause too many errors to be usage patterns
(e > 2v ∨ v ≤ 5).

5. EXPERIMENTAL RESULTS
In this section we discuss our practical experience of applying

DynaMine to real software systems. Section 5.1 describes our ex-
perimental setup; Section 5.2 evaluates the results of both our pat-
terns mining and dynamic analysis approaches.

5.1 Experimental Setup
We have chosen to perform our experiments on Eclipse [10] and

jEdit [25], two very large open-source Java applications; in fact,
Eclipse is one of the largest Java projects ever created. A summary
of information about the benchmarks is given in Figure 4. For each
application, the number of lines of code, source files, and classes is
shown in column 2–4. In addition to these standard metrics that
reflect the size of the benchmarks, we show the number of revisions
in each CVS repository in column 5, the number of inserted calls
in column 6, and the number of distinct methods that were called
in column 7. Both projects have a significant number of individ-
ual developers working on them, as evidenced by the numbers in
column 8. The date of the first revision is presented in column 9.

5.1.1 Mining Setup
When we performed the pre-processing on Eclipse and jEdit, it

took about four days to fetch all revisions over the Internet because
the complete revision data is about 6GB in size and the CVS pro-
tocol is not well-suited for retrieving large volumes of history data.
Computing inserted methods by analyzing the ASTs and storing
this information in a database takes about a day on a Powermac G5
2.3 Ghz dual-processor machine with 1 GB of memory.

Once the pre-processing step was complete, we performed the
actual data mining. Without any of the optimizations described in
Sections 3.2 and 3.3, the mining step does not complete even in the
case jEdit, not to mention Eclipse. Among the optimizations we ap-
ply, the biggest time improvement and noise reduction is achieved
by disregarding common method calls, such as equals, length,
etc. With all the optimizations applied, mining becomes orders of
magnitude faster, usually only taking several minutes.

5.1.2 Dynamic Setup
Because the incremental cost of checking for additional patterns

at runtime is generally low, when reviewing the patterns in Eclipse
for inclusion in our dynamic experiments, we were fairly liberal
in our selection. We would usually either just look at the method
names involved in the pattern or briefly examine a few usage cases.
We believe that this strategy is realistic, as we cannot expect the
user to spend hours pouring over the patterns. To obtain dynamic
results, we ran each application for several minutes on a Pentium
4 machine running Linux, which typically resulted in several thou-
sand dynamic events being generated.

5.2 Discussion of the Results
Overall, 32 out of 56 (or 57%) patterns were hit at runtime. Fur-

thermore, 21 out of 32 (or 66%) of these patterns turned out to be
either usage or error patterns. The fact that two thirds of all dy-
namically encountered patterns were likely patterns demonstrates
the power of our mining approach.

In this section we discuss the categories of patterns briefly de-
scribed in Section 2 in more detail.

METHOD PAIR 〈a, b〉 CONFIDENCE SUPPORT DYNAMIC STATIC TYPE
Method a Method b conf conf ab conf ba count v e v e

CORRECTIVE RANKING
Eclipse NewRgn DisposeRgn 0.76 0.92 0.82 49
(16 pairs) kEventControlActivate kEventControlDeactivate 0.69 0.83 0.83 5

addDebugEventListener removeDebugEventListener 0.61 0.85 0.72 23 4 1 4 1 Unlikely
beginTask done 0.60 0.74 0.81 493 332 759 41 28 Unlikely
beginRule endRule 0.60 0.80 0.74 32 7 0 4 0 Usage
suspend resume 0.60 0.83 0.71 5
NewPtr DisposePtr 0.57 0.82 0.70 23
addListener removeListener 0.57 0.68 0.83 90 143 140 35 29 Error
register deregister 0.54 0.69 0.78 40 2,854 461 17 90 Error
malloc free 0.47 0.68 0.68 28
addElementChangedListener removeElementChangedListener 0.42 0.73 0.57 8 6 1 1 1 Error
addResourceChangeListener removeResourceChangeListener 0.41 0.90 0.46 26 27 1 21 1 Usage
addPropertyChangeListener removePropertyChangeListener 0.40 0.54 0.73 140 1,864 309 54 31 Error
start stop 0.39 0.59 0.65 32 69 18 20 9 Error
addDocumentListener removeDocumentListener 0.36 0.64 0.56 29 38 2 14 2 Usage
addSyncSetChangedListener removeSyncSetChangedListener 0.34 0.62 0.56 24

jEdit addNotify removeNotify 0.60 0.77 0.77 17 3 0 3 0 Unlikely
(8 pairs) setBackground setForeground 0.57 0.67 0.86 12 75 175 5 5 Unlikely

contentRemoved contentInserted 0.51 0.71 0.71 5 17 11 7 5 Error
setInitialDelay start 0.40 0.80 0.50 4 0 32 0 2 Unlikely
registerErrorSource unregisterErrorSource 0.28 0.45 0.62 5
start stop 0.20 0.39 0.52 33 83 98 10 13 Error
addToolBar removeToolBar 0.18 0.60 0.30 6 24 43 5 5 Error
init save 0.09 0.40 0.24 31

(24 pairs) Subtotals for the corrective ranking scheme: 5,546 2,051 241 222 3 U, 8 E

REGULAR RANKING
Eclipse createPropertyList reapPropertyList 1.00 1.00 1.00 174
(15 pairs) preReplaceChild postReplaceChild 1.00 1.00 1.00 133 40 0 26 0 Usage

preLazyInit postLazyInit 1.00 1.00 1.00 112
preValueChange postValueChange 1.00 1.00 1.00 46 63 2 11 2 Usage
addWidget removeWidget 1.00 1.00 1.00 35 2,507 16 26 6 Usage
stopMeasuring commitMeasurements 1.00 1.00 1.00 15
blockSignal unblockSignal 1.00 1.00 1.00 13
Hlock HUnLock 1.00 1.00 1.00 9
addInputChangedListener removeInputChangedListener 1.00 1.00 1.00 9
preRemoveChildEvent postAddChildEvent 1.00 1.00 1.00 8 0 171 0 3 Unlikely
progressStart progressEnd 1.00 1.00 1.00 8
CGContextSaveGState CGContextRestoreGState 1.00 1.00 1.00 7
addInsert addDelete 1.00 1.00 1.00 7
annotationAdded annotationRemoved 1.00 1.00 1.00 7 0 10 0 4 Unlikely
OpenEvent fireOpen 1.00 1.00 1.00 7 3 0 1 0 Unlikely

jEdit readLock readUnlock 1.00 1.00 1.00 16 8,578 0 14 0 Usage
(13 pairs) setHandler parse 1.00 1.00 1.00 6 12 0 8 0 Usage

addTo removeFrom 1.00 1.00 1.00 5
execProcess ssCommand 1.00 1.00 1.00 4
freeMemory totalMemory 1.00 1.00 1.00 4 95 0 2 0 Usage
lockBuffer unlockBuffer 1.00 1.00 1.00 4
writeLock writeUnlock 0.85 1.00 0.85 11 38 0 8 0 Usage
allocConnection releaseConnection 0.83 1.00 0.83 5
getSubregionOfOffset xToSubregionOffset 0.80 0.80 1.00 4
initTextArea uninitTextArea 0.80 0.80 1.00 4
undo redo 0.69 0.83 0.83 5 0 4 0 1 Unlikely
setSelectedItem getSelectedItem 0.37 0.50 0.73 11 7 17 7 7 Unlikely
addToSelection setSelection 0.29 0.57 0.50 4 12 27 1 9 Unlikely

(28 pairs) Subtotals for the regular ranking scheme: 11,355 247 104 32 7 U

(52 pairs) Overall totals: 16,901 2,298 245 254 10 U, 8 E

Figure 5: Matching method pairs discovered through CVS history mining. The support count is count , the confidence for {a} ⇒ {b} is conf ab , for {b} ⇒ {a} it is conf ba .
The pairs are ordered by conf = conf ab × conf ba . In the last column, usage and error patterns are abbreviated as “U” and “E”, respectively. Empty cells represent patterns that
have not been observed at runtime.

5.2.1 Matching Method Pairs
The simplest and most common kind of a pattern detected with

our mining approach is one where two different methods of the
same class are supposed to match precisely in execution. Many of
known error patterns in the literature such as 〈fopen, fclose〉 or
〈lock, unlock〉 fall into the category of function calls that require
exact matching: failing to call the second function in the pair or
calling one of the functions twice in a row is an error.

Figure 5 lists matching pairs of methods discovered with our
mining technique. The methods of a pair 〈a, b〉 are listed in the
order they are supposed to be executed, e.g., a should be executed
before b. For brevity, we only list the names of the method; full
method names that include package names should be easy to ob-
tain. A quick glance at the table reveals that many pairs follow a
specific naming strategy such as pre–post, add–remove, begin–
end, and enter–exit. These pairs could have been discovered by

simply pattern matching on the method names. Moreover, looking
at method pairs that use the same prefixes or suffixes is an obvious
extension of our technique.

However, a significant number of pairs have less than
obvious names to look for, including 〈HLock, HUnlock〉,
〈progressStart, progressEnd〉, and 〈blockSignal,
unblockSignal〉. Finally, some pairs are very difficult
to recognize as matching method pairs and require a de-
tailed study of the API to confirm, such as 〈stopMeasuring,
commitMeasurements〉, 〈suspend, resume〉, etc.

Figure 5 summarizes dynamic results for matching pairs. The
table provides dynamic and static counts of validated and violated
patterns as well as a classification into usage, error, and unlikely
patterns. Below we summarize some observations about the data.
About a half of all method pair patterns that we selected from
the filtered mined results were confirmed as likely patterns, out
of those 5 were usage patterns and 9 were error patterns. Many

more potentially interesting matching pairs become available if we
consider lower support counts; for the experiments we have only
considered patterns with a support of four or more.

Several characteristic pairs are described below. Both lock-
ing pairs in jEdit 〈writeLock, writeUnlock〉 and 〈readLock,
readUnlock〉 are excellent usage patterns with no violations.
〈contentInserted, contentRemoved〉 is not a good pattern de-
spite the method names: the first method is triggered when text
is added in an editor window; the second when text is removed.
Clearly, there is no reason why these two methods have to match.
Method pair 〈addNotify, removeNotify〉 is perfectly matched,
however, its support is not sufficient to declare it a usage pattern.
A somewhat unusual kind of matching methods that at first we
thought was caused by noise in the data consists of a construc-
tor call followed by a method call, such as the pair 〈OpenEvent,
fireOpen〉. This sort of pattern indicates that all objects of type
OpenEvent should be “consumed” by passing them into method
fireOpen. Violations of this pattern may lead to resource and me-
mory leaks, a serious problem in long-running Java programs.

Overall, corrective ranking was significantly more effective than
regular ranking schemes that are based on the product of confi-
dence values. The top half of the table that addresses patterns ob-
tained with corrective ranking contains 24 matching method pairs;
the second half that deals with the patterns obtained with regular
ranking contains 28 pairs. Looking at the subtotals for each rank-
ing scheme reveals 241 static validating instances vs only 104 for
regular ranking; 222 static error instances are found vs only 32 for
regular ranking. Finally, 11 pairs found with corrective ranking
were dynamically confirmed as either error or usage patterns vs 7
for regular ranking. This confirms our belief that corrective ranking
is more effective.

5.2.2 State Machines
In many of cases, the order in which methods are supposed to

be called on a given object can easily be captured with a finite
state machine. Typically, such state machines must be followed
precisely: omitting or repeating a method call is a sign of error.
The fact that state machines are encountered often is not surpris-
ing: state machines are the simplest formalism for describing the
object life-cycle [29]. Matching method pairs are a specific case
of state machines, but there are other prominent cases that involve
more that two methods, which are the focus of this section.

An example of state machine usage comes from class
org.eclipse.jdt.internal.formatter.Scribe in Eclipse re-
sponsible for pretty-printing Java source code. Method
exitAlignment is supposed to match an earlier enterAlignment
call to preserve consistency. Typically, method redoAlignment

that tries to resolve an exception caused by the current
enterAlignment would be placed in a catch block and executed
optionally, only if an exception is raised. The regular expression

o.enterAlignment o.redoAlignment? o.exitAlignment

summarizes how methods of this class are supposed to be called
on an object o of type Scribe. In our dynamic experiments, the
pattern matched 885 times with only 17 dynamic violations that
correspond to 9 static violations, which makes this an excellent us-
age pattern.

Another interesting state machine below is found based on min-
ing jEdit. Methods beginCompoundEdit and endCompoundEdit

are used to group editing operations on a text buffer together so that

try {
monitor.beginTask(null, Policy.totalWork);
int depth = -1;
try {

workspace.prepareOperation(null, monitor);
workspace.beginOperation(true);
depth = workspace.getWorkManager().beginUnprotected();
return runInWorkspace(Policy.subMonitorFor(monitor,

Policy.opWork,
SubProgressMonitor.PREPEND_MAIN_LABEL_TO_SUBTASK));

} catch (OperationCanceledException e) {
workspace.getWorkManager().operationCanceled();
return Status.CANCEL_STATUS;

} finally {
if (depth >= 0)

workspace.getWorkManager().endUnprotected(depth);
workspace.endOperation(null, false,
Policy.subMonitorFor(monitor, Policy.endOpWork));

}
} catch (CoreException e) {

return e.getStatus();
} finally {

monitor.done();
}
Figure 6: Example of workspace operations and locking discipline usage in class
InternalWorkspaceJob in Eclipse.

undo or redo actions can be later applied to them at once.

o.beginCompoundEdit()
(o.insert(...) | o.remove(...))+

o.endCompoundEdit()

A dynamic study of this pattern reveals that (1) meth-
ods beginCompoundEdit and endCompoundEdit are perfectly
matched in all cases; (2) 86% of calls to insert/remove are within
a compound edit; (3) there are three cases of several 〈begin−,
endCompoundEdit〉 pairs that have no insert or remove oper-
ations between them. Since a compound edit is established for a
reason, this shows that our regular expression most likely does not
fully describe the life-cycle of a Buffer object. Indeed, a detailed
study of the code reveals some other methods that may be used
within a compound edit. Subsequently adding these methods to the
pattern and re-instrumenting the jEdit led to a new pattern that fully
describes the Buffer object’s life-cycle.

Precisely following the order in which methods must be in-
voked is common for C interfaces [13], as represented by func-
tions that manipulate files and sockets. While such dependency
on call order is less common in Java, it still occurs in pro-
grams that have low-level access to OS data structures. For in-
stance, methods PmMemCreateMC, PmMemFlush, and PmMemStop,
PmMemReleaseMC declared in org.eclipse.swt.OS in Eclipse
expose low-level memory context management routines in Java
through the use of JNI wrappers. These methods are supposed to
be called in order described by the regular expression below:

OS.PmMemCreateMC
(OS.PmMemStart OS.PmMemFlush OS.PmMemStop)?

OS.PmMemReleaseMC

The first and last lines are mandatory when using this pattern, while
the middle line is optional. Unfortunately, this pattern only exhibits
itself at runtime on certain platforms, so we were unable to confirm
it dynamically.

5.2.3 More Complex Patterns
More complicated patterns, that are concerned with the behavior

of more than one object or patterns for which a finite state machine
is not expressive enough, are quite widespread in the code base we
have considered as well. Notice that approaches that use a restric-
tive model of a pattern such as matching function calls [14], would
not be able to find these complex patterns.

Due to space restrictions, we only describe one complex pat-
tern in detail here, which is motivated by the the code snippet
in Figure 6. The lines relevant to the pattern are highlighted in
bold. Object workspace is a runtime representation of an Eclipse
workspace, a large complex object that has a specialized transac-
tion scheme for when it needs to be modified. In particular, one
is supposed to start the transaction that requires workspace access
with a call to beginOperation and finish it with endOperation.

Calls to beginUnprotected() and endUnprotected() on a
WorkManager object obtained from the workspace indicate “un-
locked” operations on the workspace: the first one releases
the workspace lock that is held by default and the second one
re-acquires it; the WorkManager is obtained for a workspace

by calling workspace.getWorkManager. Unlocking operations
should be precisely matched if no error occurs; in case an ex-
ception is raised, method operationCanceled is called on the
WorkManager of the current workspace. As can be seen from
the code in Figure 6, this pattern involves error handling and may
be quite tricky to get right. We have come across this pattern
by observing that pairs 〈beginOperation, endOperation〉 and
〈beginUnprotected, endUnprotected〉 are both highly corre-
lated in the code. This pattern is easily described as a context-free
language that allows nested matching brackets, whose grammar is
shown below.3

S → O?

O → w.prepareOperation()
w.beginOperation()
U?

w.endOperation()

U → w.getWorkManager().beginUnprotected()
S
w.getWorkManager().operationCanceled() ?
w.getWorkManager().beginUnprotected()

This is a very strong usage patterns in Eclipse, with 100% of the
cases we have seen obeying the grammar above. The nesting of
Workspace and WorkManager operations was usually 3–4 levels
deep in practice.

6. RELATED WORK
Space limitations prohibit us from reviewing a vast body of lit-

erature of bug-finding techniques. Engler et al. are among the first
to point out the need for extracting rules to be used in bug-finding
tools [14]. They employ a static analysis approach and statistical
techniques to find likely instantiations of pattern templates such as
matching function calls. Our mining technique is not a-priori lim-
ited to a particular set of pattern templates, however, it is powerless
when it comes to patterns that are never added to the repository af-
ter the first revision. Several projects focus on application-specific
error patterns, including SABER [27] that deals with J2EE patterns
and Metal [19], which addresses bugs in OS code. Certain cat-
egories of patterns can be gleaned from AntiPattern literature [12,
31], although many AntiPatterns tend to deal with high-level archi-
tectural concerns than with low-level coding issues. In the rest of
this section, we review literature pertinent to revision history min-
ing and software model extraction.

6.1 Revision History Mining
One of the most frequently used techniques for revision history

mining is co-change. The basic idea is that two items that are
3S is the grammar start symbol and ? is used to represent 0 or more
copies of the preceding non-terminal; ? indicates that the preceding
non-terminal is optional.

changed together, are related to one another. These items can be of
any granularity; in the past co-change has been applied to changes
in modules [17], files [5], classes [6, 18], and functions [38]. Re-
cent research improves on co-change by applying data mining tech-
niques to revision histories [37, 40]. Michail used data mining on
the source code of programming libraries to detect reuse patterns,
but not for revision histories only for single snapshots [23, 24].
Our work is the first to apply co-change and data mining based
on method calls. While Fischer et al. were the first to combine
bug databases with dynamic analysis [16], our work is the first that
combines the mining of revision histories with dynamic analysis.

The work most closely related to ours is that by Williams and
Hollingsworth [35]. They were the first to combine program anal-
ysis and revision history mining. Their paper proposes error rank-
ing improvements for a static return value checker with informa-
tion about fixes obtained from revision histories. Our work differs
from theirs in several important ways: they focus on prioritizing or
improving existing error patterns and checkers, whereas we con-
centrate on discovering new ones. Furthermore, we use dynamic
analysis and thus do not face high false positive rates their tool
suffers from. Recently, Williams and Hollingsworth also turned to-
wards mining function usage patterns from revision histories [36].
In contrast to our work, they focus only on pairs and do not use
their patterns to detect violations.

6.2 Model Extraction
Most work on automatically inferring state models on compo-

nents of software systems has been done using dynamic analysis
techniques. The Strauss system [3] uses machine learning tech-
niques to infer a state machine representing the proper sequence of
function calls in an interface. Dallmeier et al. trace call sequences
and correlate sequence patterns with test failures [11]. Whaley et al.
[34] hardcode a restricted model paradigm so that probable models
of object-oriented interfaces can be easily automatically extracted.
Alur et al. [2] generalize this to automatically produce small, ex-
pressive finite state machines with respect to certain predicates over
an object. Lam et al. use a type system-based approach to stati-
cally extract interfaces [21]. Their work is more concerned with
high-level system structure rather than low-level life-cycle con-
straints [29]. Daikon is able to validate correlations between values
at runtime and is therefore able to validate patterns [15]. Weimer et
al. use exception control flow paths to guide the discovery of tem-
poral error patterns with considerable success [33]; they also pro-
vide a comparison with other existing specification mining work.

7. FUTURE WORK
DynaMine is one of the first cross-over projects between the ar-

eas of revision history mining and bug detection. We see many
potential extensions for our work, some of which are listed below:
• Patterns discovered by DynaMine can be used in a variety of

bug-finding tools. While whole-program static analysis is ex-
pensive, applying a lightweight intraprocedural static approach
to the patterns confirmed using dynamic analysis will likely
discover interesting errors on rarely executed exceptional paths.

• Extends the set of patterns discovered with DynaMine by
simple textual matching. For example, if 〈blockSignal,
unblockSignal〉 is known to be a strong pattern, then per-
haps, all pairs of the form 〈X , unX 〉 are good patterns to check.

• As with other approaches to pattern discovery, there are ample
opportunities for programmer assistant tools. For example, if a
developer types blockSignal in a Java code editor, then a call
to unblockSignal can be suggested or automatically inserted
by the editor.

8. CONCLUSIONS
In this paper we present DynaMine, a tool for learning common

usage patterns from the revision histories of large software systems.
Our method can learn both simple and complicated patterns, scales
to millions of lines of code, and has been used to find more than
250 pattern violations. Our mining approach is effective at finding
coding patterns: two thirds of all dynamically encountered patterns
turned out to be likely patterns.

DynaMine is the first tool that combines revision history infor-
mation with dynamic analysis for the purpose of finding software
errors. Our tool largely automates the mining and dynamic execu-
tion steps and makes the results of both steps more accessible by
presenting the discovered patterns as well as the results of dynamic
checking to the user in custom Eclipse views.

Optimization and filtering strategies that we developed allowed
us to reduce the mining time by orders of magnitude and to
find high-quality patterns in millions lines of code in a matter of
minutes. Our ranking strategy that favored patterns with previous
bug fixes proved to be very effective at finding error patterns. In
contrast, classical ranking schemes from data mining could only
locate usage patterns. Dynamic analysis proved invaluable in es-
tablishing trust in patterns and finding their violations.

9. ACKNOWLEDGEMENTS
We would like to thank Wes Weimer, Ted Kremenek, Chris Un-

kel, Christian Lindig, and the anonymous reviewers for provid-
ing useful feedback on how to improve this paper. We are espe-
cially grateful to Michael Martin for his assistance with dynamic
instrumentation and last-minute proofreading. The first author
was supported by the National Science Foundation under Grant
No. 0326227. The second author was supported in part by the
Graduiertenkolleg “Leistungsgarantien für Rechnersysteme” and
the Deutsche Forschungsgemeinschaft, grant Ze 509/1-1.

10. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proceedings of the 20th Very Large Data Bases Conference, pages 487–499.
Morgan Kaufmann, 1994.

[2] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface
specifications for Java classes. In Proceedings of the 32nd ACM Sysposium on
Principles of Programming Languages, pages 98–109, 2005.

[3] G. Ammons, R. Bodik, and J. Larus. Mining specifications. In Proceedings of
the 29th ACM Symposium on Principles of Programming Languages, pages
4–16, 2002.

[4] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and static driver verifier:
Technology transfer of formal methods inside Microsoft. Technical Report
MSR-TR-2004-08, Microsoft, 2004.

[5] J. Bevan and J. Whitehead. Identification of software instabilities. In
Proceedings of the Working Conference on Reverse Engineering, pages
134–143, Nov. 2003.

[6] J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding change-proneness
in OO software through visualization. In Proceedings of the 11th International
Workshop on Program Comprehension, pages 44–53, May 2003.

[7] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical software.
In Proceedings of the ACM Conference on Programming Language Design and
Implementation, pages 196–207, June 2003.

[8] G. Brat and A. Venet. Precise and scalable static program analysis of NASA
flight software. In Proceedings of the 2005 IEEE Aerospace Conference, 2005.

[9] B. Burke and A. Brock. Aspect-oriented programming and JBoss. http://
www.onjava.com/pub/a/onjava/2003/05/28/aop jboss.html,
2003.

[10] D. Carlson. Eclipse Distilled. Addison-Wesley Professional, 2005.
[11] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization for java.

In Proceedings of the 19th European Conference on Object-Oriented
Programming, July 2005.

[12] B. Dudney, S. Asbury, J. Krozak, and K. Wittkopf. J2EE AntiPatterns. Wiley,
2003.

[13] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Proceedings of

the Fourth Symposium on Operating Systems Design and Implentation, pages
1–16, 2000.

[14] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In Symposium on Operating
Systems Principles, pages 57–72, 2001.

[15] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):99–123, 2001.

[16] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report data for
feature tracking. In Proceedings of the Working Conference on Reverse
Engineering, pages 90–101, Nov. 2003.

[17] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on
product release history. In Proceedings of the International Conference on
Software Maintenance, pages 190–198, Nov. 1998.

[18] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for detecting
logical couplings. In Proceedings International Workshop on Principles of
Software Evolution, pages 13–23, Sept. 2003.

[19] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for building
system-specific, static analyses. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 69–82, 2002.

[20] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing
web application code by static analysis and runtime protection. In Proceedings
of the 13th conference on World Wide Web, pages 40–52, May 2004.

[21] P. Lam and M. Rinard. A type system and analysis for the automatic extraction
and enforcement of design information. In Proceedings of the 17th European
Conference on Object-Oriented Programming, pages 275–302, July 2003.

[22] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for
discovering association rules. In Proceedings of the AAAI Workshop on
Knowledge Discovery in Databases, pages 181–192, July 1994.

[23] A. Michail. Data mining library reuse patterns in user-selected applications. In
Proceedings of the 14th International Conference on Automated Software
Engineering, pages 24–33, Oct. 1999.

[24] A. Michail. Data mining library reuse patterns using generalized association
rules. In Proceedings of the International Conference on Software Engineering,
pages 167–176, June 2000.

[25] S. Pestov. jEdit user guide. http://www.jedit.org/.
[26] R. Purushothaman and D. E. Perry. Towards understanding the rhetoric of small

changes. In Proceedings of the International Workshop on Mining Software
Repositories, pages 90–94, May 2004.

[27] D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan, B. Alpern, R. D. Johnson,
A. Kershenbaum, and L. Koved. SABER: Smart Analysis Based Error
Reduction. In Proceedings of the International Symposium on Software Testing
and Analysis, pages 243–251, July 2004.

[28] F. V. Rysselberghe and S. Demeyer. Mining version control systems for FACs
(frequently applied changes). In Proceedings of the International Workshop on
Mining Software Repositories, pages 48–52, May 2004.

[29] S. R. Schach. Object-Oriented and Classical Software Engineering.
McGraw-Hill Science/Engineering/Math, 2004.

[30] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string
vulnerabilities with type qualifiers. In Proceedings of the 2001 Usenix Security
Conference, pages 201–220, 2001.

[31] B. Tate, M. Clark, B. Lee, and P. Linskey. Bitter EJB. Manning Publications,
2003.

[32] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated
detection of buffer overrun vulnerabilities. In Proceedings of Network and
Distributed Systems Security Symposium, pages 3–17, Feb. 2000.

[33] W. Weimer and G. Necula. Mining temporal specifications for error detection.
In Proceedings of the 11th International Conference on Tools and Algorithms
For The Construction And Analysis Of Systems, pages 461–476, Apr. 2005.

[34] J. Whaley, M. Martin, and M. Lam. Automatic extraction of object-oriented
component interfaces. In Proceedings of the International Symposium of
Software Testing and Analysis, pages 218–228, July 2002.

[35] C. C. Williams and J. K. Hollingsworth. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on Software
Engineering, 31(6), June 2005.

[36] C. C. Williams and J. K. Hollingsworth. Recovering system specific rules from
software repositories. In Proceedings of the International Workshop on Mining
Software Repositories, pages 7–11, May 2005.

[37] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source
code changes by mining change history. IEEE Transactions on Software
Engineering, 30(9):574–586, Sept. 2004.

[38] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system
architecture (or not). In Proceedings International Workshop on Principles of
Software Evolution, pages 73–83, Sept. 2003.

[39] T. Zimmermann and P. Weißgerber. Preprocessing CVS data for fine-grained
analysis. In Proceedings of the International Workshop on Mining Software
Repositories, pages 2–6, May 2004.

[40] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version
histories to guide software changes. In Proceedings of the 26th International
Conference on Software Engineering, pages 563–572, May 2004.

