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ABSTRACT
As JavaScript has become virtually omnipresent as the lan-
guage for programming large and complex web applica-
tions in the last several years, we have seen an increase
in interest in finding data races in client-side JavaScript.
While JavaScript execution is single-threaded, there is still
enough potential for data races, created largely by the non-
determinism of the scheduler. Recently, several academic
efforts have explored both static and runtime analysis ap-
proaches in an effort to find data races. However, despite
this, we have not seen these analysis techniques deployed in
practice and we have only seen scarce evidence that devel-
opers find and fix bugs related to data races in JavaScript.

In this paper we argue for a different formulation of what
it means to have a data race in a JavaScript application and
distinguish between benign and harmful races, affecting per-
sistent browser or server state. We further argue that while
benign races — the subject of the majority of prior work —
do exist, harmful races are exceedingly rare in practice (19
harmful vs. 621 benign). Our results shed a new light on
the issues of data race prevalence and importance.

To find races, we also propose a novel lightweight runtime
symbolic exploration algorithm for finding races in traces of
runtime execution. Our algorithm eschews schedule explo-
ration in favor of smaller runtime overheads and thus can
be used by beta testers or in crowd-sourced testing. In our
experiments on 26 sites, we demonstrate that benign races
are considerably more common than harmful ones.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—reliability ; D.2.5 [Software Engineering]: Testing
and Debugging—monitors, symbolic execution

General Terms
Reliability

Keywords
JavaScript, asynchrony, race detection, non-determinism

1. INTRODUCTION
JavaScript is used widely in client-side Web programming.

JavaScript execution is single-threaded. Yet the complex
needs of sites such as Facebook, Outlook, and Google Maps
have led to asynchrony becoming a common way to pro-
gram complex Web applications. It is asynchronous process-
ing that has made possible responsive user interfaces (UIs),
different from the web applications of the late 1990s that
required reloads. Despite JavaScript lacking conventional
threads, the presence of asynchrony creates a potential for
races. In particular, the ordering of event execution in
JavaScript as well as the timing of completions of asyn-
chronous requests is non-deterministic, affected by, e.g., net-
work delayes resulting in data races.

In this paper we argue that one should distinguish between
races that have persistent consequences and those that are
ephemeral. We find that the majority of races in JavaScript
have no persistent consequences — we dub these races be-
nign. This is because these races only result in invisible
to the user portions of the program state, or, at worst, UI
glitches that are either unnoticed by the user, or disappear
if the user reloads the page. Given the forgiving nature
of JavaScript execution, where failures of individual event
handlers force the scheduler to terminate the current event
handler and move execution to the next one, these kinds
of failures are not as important as previously believed. We
suggest that a more useful way to think about data races on
the web is by focusing on persistent state, such as client-local
cookies, localStorage and sessionStorage mechanisms, as
well as server-based side efforts. The latter are achieved via
POST calls to the server (GET calls are designed for reads and
are supposed to be idempotent, and thus are not frequently
used for state updates). Our experiments confirm that the
number of such harmful races is quite modest, yet it is these
kinds of races that are more likely to be considered serious
and fixed by developers. Previous research efforts tend to
produce a large number of reports, despite the emphasis on
suppressing false positives [13, 11, 17].

It is not our goal to provide a sound over-approximation of
all possible races in a given application or site, but, instead
to provide a lightweight exploration algorithm that allows for
the exploration of multiple schedules while only requiring a
single run. This approach can be used for testing, including
collaborative testing by a large number of beta- or crowd-
sourced testers.

Contributions: We make the following contributions:

• We propose a new view of benign and harmful data races in
JavaScript web applications, and argue that harmful races



should be the primary focus of analysis tools, due to them
affecting the persistent client- or server-side state of the
applications.

• We propose a lightweight exploration algorithm for finding
data races in runtime traces of JavaScript programs. A key
advantage for the scalability of our approach is that it does
not require multiple program runs and can operate on the
basis of a single execution.

• We find and investigate a total of 19 harmful and 621 be-
nign races in 26 web sites, with only 2 observed false posi-
tives.

2. OVERVIEW
There is increased interest in data races in asynchronous

programs and, in particular, JavaScript. Static and run-
time methods have been explored. A fundamental challenge
with static analysis for JavaScript is that it is quite diffi-
cult to even enumerate all the relevant code, as much of the
JavaScript code is produced with the help of eval calls and
dynamic code loading. As a result, the traditional advantage
of static analysis, namely, full path coverage largely does not
apply to this problem. As such, the ability to make sound
statements about the lack of data races is compromised [17,
3, 15, 6].

Runtime techniques in this space are also vulnerable to
losing precision, which leads tool authors to develop heuris-
tics to eliminate potential false positives [13, 9, 5]. They also
suffer from the lack of coverage and the inability of making
sound guarantees about the lack of races. Additionally, run-
time techniques that involve combinatorial schedule explo-
ration can run into scalability challenges, especially when
the number of possible handlers to schedule is high [13, 9].

Our technique attempts to combine the advantages of
static and runtime analysis. We execute the code only once,
yet we explore multiple execution orders. As such, our tech-
nique scales well, while increasing the coverage of a single-
pass runtime analysis. One way to see our approach is that
it explores neighboring schedules for a particular runtime
execution by analyzing possible re-orderings of the asyn-
chronous event handlers. We foresee this approach as being
especially useful in the context of beta- or crowd-sourced
testing: having a large number of users will naturally in-
crease code coverage. At the same time, the users’ ses-
sions will not be significantly slowed down. It should be
noted that in the browser, slowing down the browser run-
time runs the risk of modifying the behavior of timeout set
with setTimeout and setInterval; additionally, the run-
time may actively attempt to terminate slow-running events.

2.1 What is a Data Race?
Several possibly definitions of data races have been pro-

posed for web applications [10, 11, 13]. They all center
around the idea of writes to shared state that are performed
by callbacks. Some of the races in prior work are caused by
user interactions and browser-induced timing. In this work,
our chief focus is on the XmlHttpRequest (XHR) mechanism,
which allows client-side code to request data from servers:

1 var xhr = new XmlHttpRequest ();
2 xhr. open("GET", "http :// www. data .com/ mydata . json");
3 xhr. onreadystatechange = function (e, d){
4 ...
5 };
6 xhr. send(null );

The code above is for a typical GET request that obtains
JSON data from a server and schedules an asynchronous
onreadystatechange callback to process the data once it
arrives. Multiple such callbacks can be outstanding, creating
the possibility of what we dub an XHR-XHR race, if these
callbacks write to shared state. Moreover, commonly, while
synchronous XHR execution is possible, XHRs are scheduled
to be dispatched asynchronously, to maintain a responsive
client-side UI [10]. In the rest of the paper, we shall focus
on asynchronous XHRs.

Secondly, a single XHR callback can race with the
browser, resulting in the state variable being set to either 1
or 2. This is because the browser may have multiple script
blocks, some of which may be scheduled either before or af-
ter the callback, depending on the callback’s arrival and how
fast the browser is rendering content:

1 <script >
2 var xhr = new XmlHttpRequest ();
3 xhr. open("GET", "http :// www. data .com/ mydata . json");
4 xhr. onreadystatechange = function (e, d){
5 state = 1;
6 };
7 xhr. send(null );
8 </script >
9 ...a lot of text and images here ...

10 <script >
11 state = 2;
12 </script >

Thirdly, and even more subtly, if the user opens the same
site in multiple browser tabs, it is possible for these tabs
to lead to concurrent execution. Two instance of the code
below may race with each other when run in different tabs,
resulting in a cookie-based race on line 5:

1 <script >
2 var xhr = new XmlHttpRequest ();
3 xhr. open("GET", "http :// www. data .com/ mydata . json");
4 xhr. onreadystatechange = function (e, d){
5 document . cookie = " value =" + Math . Random ();
6 };
7 xhr. send(null );
8 </script >

The happens-before relation for asynchronous callbacks is
defined by the creation order. The XHR callback is preceded
by the code that creates the XHR (xhr.send). A specific
case of this is what we call nested (or chained) XHRs, when
callbacks are defined one within another. Practically, this is
about the only way for the developer to ensure that there
is ordering of XHR callbacks, so we see this programming
pattern quite a bit.

2.2 Motivating Examples
In an effort to understand the possible impact of data

races on the web, we spent some time analyzing bug reports
for open-source projects located on GitHub. Below we de-
scribe some of the examples of subtle server-side bugs from
GitHub. In the interest of fairness we should mention that
these examples of races reported as GitHub issues were not
particularly common bugs for JavaScript projects, an intu-
ition that is largely confirmed by our results in Section 4.

Example 1 [Old server state.] Issue #79 for the Wheaton-
WHALE project1 describes the following situation:

1. The user reloads the page;

1https://github.com/WheatonWHALE/whaleweb/issues/79



1 <html >
2 <script > // 1
3 var xhr = new Xhr ();
4 xhr. open(’’, false );
5 xhr. onreadystatechange = function (){ // 2
6 document . cookie = ’var1 =1 ’;
7 };
8 xhr. send ();
9 // for(i=0;i <10000000; i++) console . trace (i);

10 </script >
11 ...
12 <!−− <input id=’mydiv ’ /> −−>
13 <script > // 3
14 document . cookie = ’var1 =2 ’;
15 </script >
16 ...
17 <script > // 4
18 var xhr2 = new Xhr ();
19 xhr2 . open(’’, false );
20 xhr2 . onreadystatechange = function (){ // 5
21 document . cookie = ’var1 =3 ’;
22 };
23 xhr2 . send ();
24 </script >
25 </html >
26 Put your code here .

Figure 1: Multiple XHR example.

2. onbeforeunload listener fires, and the data is saved to
server;

3. the page is loaded up again, and asks the server for the
data;

4. the client-side JavaScript code loads up the old (out-
dated) data;

5. client state is saved to the server.

In the last step, the old, outdated data is saved to the server,
essentially ignoring data updates. The culprit is the fact
that steps 1 and 3 can race with each other: the data load
request may arrive before the save is processed. The imple-
mented fix makes data updates synchronous. 2

Example 2 [Racing for a user ID.] A somewhat similar
situation that has to do with the issue of stale data ob-
tained from the server is captured in issue #20 in a project
called LikeLines2. LikeLines provides users with an in-
browser video player with a navigable heat map of inter-
esting regions for the videos they are watching. This case
describes two racing XHR calls that are issued to the back-
end server during initialization by the following functions:
1) createSession and 2) aggregate. The first call is to cre-
ate a new session for recording user interactions. The second
call is needed for drawing a heat map.

The problem arises when a user has not contacted the
backend server before. In this case, both XHR calls will
be issued without a cookie, and in both cases the server
will create a new user ID. This is clearly a problem because
interaction sessions are tied to a user ID in this applications.
If the cookie from the call to aggregate “wins” (i.e., arrives
last), then subsequent calls to the server will contain a user
ID that does not match the interactions session. 2

In addition to the GitHub issues discussed above, below
we list an illustrative example inspired by some of the sam-
ples from prior work [13, 17], although prior work did not
focus on the issue of asynchronous XHRs.

Example 3 [Racing with the browser.] Consider the code
in Figure 1. For convenience, we mark every handler above

2https://github.com/ShinNoNoir/likelines-player/issues/20.

1 READ PROP ID[ 99044816 ] = "open" : JSFunction
2 XHR [ 0000001 ] Open GET
3 READ PROP ID[ 98817648 ] = "send" : JSFunction
4 XHR [ 0000001 ] Send
5 XHR [ 0000001 ] Callback
6 BEGIN XHR_Callback
7 READ ID[ 235205312 ] = document : JSObject
8 WRITE PROP ID[ 242159440 ] = cookie : JSInteger (1)
9 Cookie [ 1020 D800 ] Write "var1 =1"

10 END XHR_Callback
11
12 READ ID[ 235205312 ] = document : JSObject
13 WRITE PROP ID[ 242159440 ] = cookie : JSInteger (2)
14 Cookie [ 1020 D800 ] Write "var1 =2"
15
16 READ PROP ID[ 99044816 ] = "open" : JSFunction
17 XHR [ 0000002 ] Open GET
18 READ PROP ID[ 98817648 ] = "send" : JSFunction
19 XHR [ 0000002 ] Send
20 XHR [ 0000002 ] Callback
21 BEGIN XHR_Callback
22 READ PROP ID[ 108330176 ] = " readyState ": JSInteger (4)
23 READ ID[ 235205312 ] = " document " : JSObject
24 WRITE PROP ID[ 242159440 ] = " cookie " : JSInteger (3)
25 Cookie [ 1020 D800 ] Write "var1 =3"
26 END XHR_Callback

Figure 2: Sample trace illustrating cookie races.

with a number. The happens-before relation induced by
this code example is as follows: 1©← 2©, 1©← 3©, 3©← 4©,
4© ← 5©. As such, our exploration algorithm will consider
the possibility 1©← 2©← 3© and 1©← 3©← 2©. Similarly,
because 2© and 5© are weakly ordered, traces in which 2©
happens before or after 5© will be considered.

While one can explore these traces via a search in the
schedule space, we choose to do so via data flow. We keep
track of the event handlers that may be “concurrent” and
mark the writes that they make to the same locations as
weak writes.

Because 2© and 3© can race, the value of document.cookie
will be either var1 = 1 or var1 = 2. Similarly, for 2 and
5, the value of document.cookie will be either var1 = 1 or
var1 = 5. To preserve precision, our algorithm maintains
existing happens-before relations such as those between 1©
and 2© and 1© and 4©. 2

2.3 Trace Processing
Figure 2 shows a simple trace obtained by running the

code in Figure 1 that illustrates cookie-based races. We
start processing the lines 1–4 where the XHR is opened and
send to the remote server, we mark the XHR callback as an
active callback which can be executed asynchronously any
time in the future. As we process the first XHR callback
on lines 6–10, we will record the write value made to cookie
variable into the memory map where we store values for each
variable id (i.e. 242159440 for cookie).

While recording the written value, we will look for values
of the variable that are written by any callbacks that may
be racing with each other, and complain about a race if
there is any. As we continue processing the trace, we will
record the value written on lines 12-14 by first checking the
earlier values of document.cookie. As this sequential code
segment can race with the earlier XHR callback (there is no
happens-before edge), our processing will record a race on
document.cookie, while adding a new value for the cookie
into the memory map. As we continue to process the trace,
a new XHR is opened and send to the server on lines 16–19
and added to the active callbacks list.

Later, the callback for the second XHR will be pro-



cessed, when a write to the cookie is performed on lines 21–
26. While processing the write operation, the values for
document.cookie will be checked and a race will be recorded,
as two XHR callbacks are marked as racing, resulting in dif-
ferent cookie values.

2.4 Algorithm Summary
Here we provide the underlying intuition for our approach,

with a more formal treatment relegated to Section 3. The
key idea behind our approach is to consider alternative sce-
narios within a given trace. We do not attempt to force
exploration of UI interactions, for example, however, we do
explore the possibilities of different schedules that may oc-
cur because of the order of arrival of asynchronous event
handlers that are part of the trace.

XHR1

x =  
y =  
z = v1

XHR2

z = v2

z={v1,v2}

Figure 3: Merging two states
after an XHR.

Our approach effec-
tively performs static
analysis on a trace that
is collected at runtime,
as a way to consider
different schedules. When
considering multiple exe-
cution of XHR callbacks
as shown in Figure 3,
the key observation is
that instead of separately
considering each of the
possible schedules, we can
encode the effect of the
possible race by merging
the state and keeping
track of multiple, merged
values. This is analogous to doing meets in static dataflow
or abstract interpretation-style analysis, as an alternative to
a costly meet-over-all-paths (MOP) solution. Conceptually,
given a merge point for variable z with multiple values
coming in for two racing XHRs, z = v1 and z = v2, we keep
track of both values {v1, v2}; not of course that if v1 = v2,
no need to keep two copies of the same values exists.

We formulate our race detection algorithm as a dataflow
analysis on the values within a given execution trace. We
flag a possible race if multiple values may flow to a sen-
sitive location, indicating a presence of scheduling depen-
dencies; these sensitive locations are persistent storage such
as document.cookie, localStorage, sessionStorage, and,
lastly, the DOM, etc. These latter locations serve as the
sinks of our data flow analysis. Returning to the ex-
ample in Figure 1, we can represent the race between
handlers 2© and 5© as an assignment document.cookie =
{’var1 = 2’, ’var1 = 3’} as a merge node after handler 5©.
This of course represents a direct flow of multiple values to a
sensitive persistent storage location document.cookie. More
interesting cases involve multiple steps of propagation.

2.5 Implementation
To collect execution traces, we have instrumented the

most recent version of the Firefox web browser. Our changes
span both the SpiderMonkey JavaScript engine to track data
propagation through the memory of the browser as well as
operations on document.cookie, localStorage, and the like,
which are recorded by instrumenting the DOM. Our instru-
mentation spans over three main components of Firefox:

• XPCOM (Cross Platform Component Object

Model): In order to record the triggered XHR call-
backs, we instrumented the event queue in Firefox in
nsThread.cpp. When events are taken from the queue
for execution, we mark XHR readystatechanged

events as well as button clicks initiated by the user.

• Gecko (Layout engine): We also need to instrument
DOM API implementation of Firefox for recording up-
dates made to DOM elements of interest. We achieved
this by modifying various DOM class implementations
like nsGlobalWindow.cpp, DOMStorage.cpp, etc.

• SpiderMonkey (JavaScript engine): Lastly, we
instrumented the JavaScript interpreter for recording
value manipulation on variables and objects and also
to mark the start and end points of XHR callback ex-
ecution. The former is achieved by instrumenting the
JavaScript bytecode interpreter on Interpreter.cpp
and jsapi.cpp.

Overall, our instrumentation is quite sparse and we believe
can be easily migrated to another open-source browser such
as Chromium. We have added a total of about 430 lines
of instrumentation code to Firefox to collect our traces. A
total of 12 files were modified.

Deployment strategies: The process of race detection
is something that can be performed both online3, as the
application is running, as well as offline, as an auditing step.
We envision that as part of beta-testing, traces from multiple
users can be analyzed. Note that as we will highlight in
Section 4, even relatively simple-looking sites can create long
traces with a large number of events. At the same time,
the number of events relevant to asynchrony and scheduling
is relatively small. Our analysis for finding potential races
is implemented as a linear pass over the trace. However, if
desired, this is something that can be parallelized as well, by
splitting longer traces to be analyzed on different machines.

3. FORMALIZATION
We find it convenient to represent the executions of event

handlers, XHR callbacks, and portions of script code exe-
cuted without pre-emption (“sequential blocks”) as execu-
tion blocks with unique IDs. Other entries in an execution
trace will also be assigned unique IDs as detailed later4.

There is no universally accepted definition of the happens-
before relation for web-based JavaScript code. We define the
happens-before relation (denoted←) not at the level of low-
level memory accesses, but at the level of higher-level lan-
guage constructs, based on causality information we abstract
from JavaScript operational semantics as was illustrated in
Figure 1. Within each uninterrupted execution block, trace
entries are ordered by the program, and, therefore, happens-
before order. We define and record a happens-before order
between blocks such that if id ← id ′ then all trace entries

3According to the data in Figure 6, our analysis is fast
enough to be run online, so the beta testers only need to
use a differently compiled version of the browser or perhaps
a browser with a flag that they turn on. The results of such
exploration can be centrally collected and communicated to
the site developers.
4Note that these IDs are not to be confused with the
statically-assigned numbers in Figure 1 as, for instance, the
point in an execution where an XHR callback is registered
and the point where it is executed are different.



in id happen before those in id ′. We order id ← id ′ if id ′

appears later in the trace and one of the following hold:

1. Both blocks are sequential blocks. Sequential blocks
are ordered by← in the order they appear in the trace
because of the browser-imposed ordering.

2. Both blocks are event-handling blocks. In order to
reflect the order of user interactions, event handling
blocks are ordered by← in the order they occur in the
trace to reflect the order of user interactions.

3. id ′ is an XHR callback, and the XHR send for id oc-
curs within the block with ID id ; this is because the
XHR callback can only happen after the send opera-
tion.

3.1 Modeling and Analysis of Traces
In the rest of this section, we formally explain our race

detection approach. The set of memory locations (“loca-
tions”) manipulated by a JavaScript program is denoted by
Locs, and the set of values they can take by Val . The value
of an uninitialized locations is ⊥Val . We treat each field of
each object as a unique, separate ordinary location for race-
detection purposes. document.cookie, sessionStorage and
localStorage are variables manipulated on a web browser
by JavaScript programs. The type of each of these vari-
ables is a key-value store and they are persisted, i.e., stored
on disk. KV denotes the set of these locations. To treat
read and write accesses in the trace uniformly, we treat each
(kv , ky) pair as a memory location with name (kv , ky) ∈
Locs. We use ⊥Val to represent the value for keys not in the
store. Accesses to distinct keys in a given kv ∈ KV , simi-
larly to accesses to different memory locations, do not race
with each other. The set of locations that represent DOM el-
ements and are written to using the setter for the innerHtml
property of a DOM element is denoted by DOMElts ⊆ Locs.

The value of each location v at each point in the execution
is represented by a memory map named V. V(v) consists of
set of pairs of the form (vl, id) where vl ∈ Val and id ∈ IDs.
Intuitively, (vl, id) ∈ V(v) means that in this trace or a
re-ordering of this trace that has the happens-before rela-
tion, v may have the value vl written to it by the block id .
When processing a trace entry with ID id is a write access
to v, we make critical use of the happens-before relationship
computed up to that point. All entries in the memory map
V(v) by trace entries with ID id ′ that happen before id are
removed, representing the fact that they have been overwrit-
ten by a later access that happens after them. Other entries
in V(v) are there due to “concurrent” execution blocks and
are therefore not removed.

3.2 Defining Traces
Formally, a trace is a finite sequence of trace entries
〈λ0, λ1, λ2, . . . λn〉 of the following types:

• XHR, event handling, and sequential blocks:
Trace entries λ = CBBegin(id) and λ = CBEnd(id)
denote the beginning and end of the execution of
the callback for the XHR with ID id . λ =
HandlerBegin(id) and λ = HandlerEnd(id) do the
same for event handler blocks, and λ = SeqBegin(id)
and λ = SeqEnd(id) for sequential blocks.

• Key, location, innerHTML accesses λ =
keyWr(kv , ky , vl, varsRd , id) denotes the writing

of the value vl for the key ky in the key-value store
kv within the block with ID id . The value vl has
been computed immediately prior to the write trace
entry as the result of an expression over the memory
locations varsRd . λ = keyRm(kv , ky , id) denotes the
removal of the value the key ky from kv within block
id . λ = varWrite(v, vl, id) denotes the writing of the
value vl to the location v within block id . Finally,
λ = setHTML(hElt , hVal , id) denotes the setting of
the innerHtml property of a DOM element hElt to
value hVal within block id .

• POST, XHR send: λ = post(url , id , id in, vl, varsRd)
is a POST request XHR call or Window with ID id
and the call occurs within an execution block with ID
id in. The data posted vl is the computed result of
an expression over the memory locations varsRd . λ =
xhrSend(id , id in) denotes an XHR send operation for
the XHR object with ID id that takes place within
an execution block with ID id in. This send is a GET

request.

3.3 Interpreting Traces
Given a trace Trace = 〈λ0, λ1, λ2, . . . , λn〉, our race de-

tection algorithm analyzes it by processing it sequentially,
one log entry at a time. The algorithm maintains analysis
state represented by the tuple Σ = (V,HB ,P, idSeq , idEvt).
Here, V is the memory map. HB is the happens-before re-
lation, which is a partial order over IDs. Whenever new
elements are added to HB by a trace processing rule, the
transitive closure of the relation is taken to obtain the resul-
tant HB . HB is initially the empty relation. P is a list of
pairs of the form (v, id) where the location v has been read
while computing the value submitted by a XHR POST re-
quest with ID id . Finally, idSeq , and idEvt are the IDs of the
last sequential block processed or the last event handling
block processed by our algorithm, respectively, or ⊥ if no
such callback or block exists. Rules for updating the anal-
ysis state Σ = (V,HB ,P, idSeq , idEvt) are given in Figure 4
and explained below.

Callbacks: CB-Begin and CB-End (not shown) keep
track of the ID of the ongoing XHR callback block. Seq-
Blk-Begin processes the log entry indicating the beginning
of a sequential block with ID id and adds the pair (idSeq , id
to the happens-before relation. Seq-Blk-End resets idSeq

to id . The rules ensure that the occurrence order of sequen-
tial blocks in the trace and their happens-before order coin-
cide. Evt-Handler-Begin and Evt-Handler-End oper-
ate similarly to the corresponding Seq-Blk rules. The order
of occurrence in the trace of the event handlers is the same as
their happens-before order. Event handlers and sequential
blocks are not ordered with respect to each other.

Location updates: Key-Write handles the case where
key ky in the key-value map kv is updated. We declare
a potentially-harmful race if |Val(v)| > 1 for any location
v read while the new value for the key is being computed
(v ∈ varsRd) indicating the potential for non-determinism.
The rule computes V ′(kv , ky) from V(kv , ky) by adding the
pair (vl, id) and removing all pairs (vl′, id ′) such that id ′ ←
id . Key-Remove (not shown) writes the value ⊥Val to the
key ky . Write and Set-DOM are similar to Key-Write
above, updating V for a location v or a DOM element hElt
by removing value-id pairs overwritten as dictated by the



Evt-Handler-Begin
λ = HandlerBegin(id) HB

′
= TransClose(HB ∪ {(idEvt , id)})

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P, idSeq , idEvt )

Evt-Handler-End
λ = HandlerEnd(id) id

′
Evt = id

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB,P, idSeq , id

′
Evt )

Seq-Blk-Begin
λ = SeqBegin(id) HB

′
= TransClose(HB ∪ {(idSeq , id)})

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P, idSeq , idEvt )

Seq-Blk-End
λ = SeqEnd(id) id

′
Seq = id

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB,P, id′

Seq , idEvt )

XHR-Post
λ = post(url, id, idin, vl, varsRd)

P′
= P ∪ {(v, id)|v ∈ varsRd} HB

′
= HB ∪ {(idin, id)}

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P′

, idSeq , idEvt )

XHR-Send
λ = xhrSend(id, idin) HB

′
= TransClose(HB ∪ {(idin, id)})

(V,HB,P, idSeq , idEvt )
λ−→ (V,HB

′
,P, idSeq , idEvt )

CB-Begin
λ = CBBegin(id) id

′
CB = id

(V,HB,P, idCB , idSeq , idEvt )
λ−→ (V,HB,P, id′

CB , idSeq , idEvt )

Key-Write
λ = keyWr(kv , ky, vl, varsRd, id)

V′
= V[(kv , ky) := V(kv , ky) ∪ {(vl, id)}

\{(vl′, id′
)|id′ ← id or id

′
= id}]

(V,HB,P, idSeq , idEvt )
λ−→ (V′

,HB,P, idSeq , idEvt )

Key-Remove
λ = keyRm(kv , ky, id)

V′
= V[(kv , ky) := V(kv , ky) ∪ {(⊥V , id)}

\{(vl′, id′
)|id′ ← id or id

′
= id}]

(V,HB,P, idCB , idSeq , idEvt )
λ−→ (V′

,HB,P, idCB , idSeq , idEvt )

Write
λ = varWrite(v, vl, id)

V′
= V[(v) := V(v) ∪ {(vl, id)} \ {(vl′, id′

)|id′ ← id or id
′
= id}]

(V,HB,P, idSeq , idEvt )
λ−→ (V′

,HB,P, idSeq , idEvt )

Set-DOM
λ = setHTML(hElt, hVal), id)

V′
= V[(hElt) := V(hElt) ∪ {(vl, id)}

\{(vl′, id′
)|id′ ← id or id

′
= id}]

(V,HB,P, idSeq , , idEvt )
λ−→ (V′

,HB,P, idSeq , idEvt )

Figure 4: Trace analysis rules.

happens-before relation and adding the new value-id pair
written by the current trace entry.

POST, send: The rule XHR-Post declares a potentially
harmful race if |V(v)| > 1 for any location v ∈ varsRd , since
at least one location used in the computation of vl, the data
posted, has the potential for non-determinism. XHR-SEND
updates the happens-before relation. xhrSend(id , id in) in-
dicates that the send for the XHR with ID id has taken
place in block id in. id in ← id . This rule and the fact that
CB-Begin and CB-End do not modify the happens-before
relation encode the fact that only chained XHR calls are
ordered by ← with respect to each other5.

5Note that it is possible to define the happens-before rela-
tionship differently, for instance, declaring xhr i to happen
before xhr j if the send entry for xhr j appears later in the
trace than the end of the callback for xhr i. While such a defi-
nition may capture the happens-before relationship observed

3.4 Detecting Races
We say V(v) has non-determinism potential on a location v

when the memory map contains at least two different values
for v, i.e., when there are pairs (vl, id) and (vl′, id ′) in V ′(v),
such that vl 6= vl′ and id 6= id ′. Our algorithm declares a
race on a location v while evaluating the Write, Set-DOM,
and Key-Write rules if the memory map V ′(v) computed
by the rule has non-determinism potential on v. We also
declare a race when evaluating the XHR-Post and Key-
Write rules, if a variable read when computing the value
posted or written, v ∈ varsRd , V(v) has non-determinism
potential for v. Of these races, only the ones associated
with Key-Write and XHR-Post rules are deemed to be
harmful races.

Consider a prefix of the trace in a “quiet” state such that,
at the end of the prefix, no XHR callback or execution block
is in progress. Suppose that our algorithm has signaled
non-determinism potential on a location v while process-
ing a trace entry λ within the last block or callback with
ID id in this prefix. Then a different re-ordering of the the
execution blocks and/or XHR callbacks while leaving the
happens-before relation in the prefix intact may result in a
different final value for v, as explained next.

Let (vl, id) and (vl′, id ′) be in Val(v) such that id ′ 6= id
and vl 6= vl′. It must be the case that while both id ′ and
id wrote to v, these two execution blocks are not ordered by
the happens-before relationship. Otherwise, either (vl, id)
or (vl′, id ′) would have been removed from Val(v), accord-
ing to the update rules of our algorithm and how they use
the happens-before relation in variable updates. Therefore,
it is possible to modify the execution by delaying the exe-
cution of the block with ID id ′ until after the execution of
the block with ID id . In this case, the final value of the
location v or (kv , ky) would be different at the final state of
the newly-obtained execution. This points to a potentially
different result produced purely as a result of XHR callback
scheduling non-determinism.

There are two sources of false positives in our race detec-
tion approach. The first is the assumption made in the pre-
vious paragraph while obtaining a new execution by delaying
the execution of the block with ID id ′ past other blocks. The
assumption is that control decisions made in the original ex-
ecution based on data values written by the block id are
not modified in a way that makes the reordered execution
infeasible. In our empirical experience, such cases are rare
and can be ruled out by inspection or replaying and validat-
ing the reordered execution. The second source is the check
performed when a value is written to a persisted location or
sent on the network. In these cases, if, while computing the
written or sent value, a location with non-determinism is
read, our algorithm signals a potentially harmful race. This
approach is conservative, i.e., non-determinism in the value
of one of the locations in an expression may not result in
non-determinism in the value of the result. Even in cases
where this is the cause of a false alarm, we believe that the
potentially different data values flowing to a persisted out-
put location may be of concern to programmers.

in a particular schedule more precisely, our definition nar-
rows in on ordering relationships enforced by the JavaScript
semantics and excludes those that may have taken place dif-
ferently in different executions of the same program driven
by the same user interaction.
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edition.cnn.com 3 3 13 0 35 0 0 71 1 3 0 12,065 3 31 0
mlb.mlb.com 25 25 92 0 68 2 0 28 2 30 2 93 46 39 0
news.qq.com 8 8 28 0 17 0 0 8 0 0 0 153 10 64 2
wireless.att.com 22 22 72 3 79 4 0 46 32 11 2 902 847 60 5
aljazeera.net 12 12 32 2 24 0 0 6 0 0 0 1,095 29 46 7
bild.de 32 32 86 1 75 11 0 515 1 14 2 589 17 164 0
eltiempo.com 10 10 20 0 81 0 0 521 0 1 0 160 2 72 0
fedex.com.us 10 10 18 0 88 1 0 2 0 2 0 251 25 172 0
fujitv.co.jp 41 41 122 2 38 0 0 27 0 16 0 172 22 34 0
gazetta.it 22 22 67 4 115 15 0 68 0 19 0 119 24 52 0
girlsgogames.com 18 18 44 0 92 4 0 30 6 11 2 21 8 43 0
imdb.com 4 4 12 1 14 0 0 4 0 0 0 66 3 42 0
milliyet.com.tr 7 7 19 0 46 0 0 0 0 4 0 51 19 210 143
myvideo.de 20 20 87 0 99 0 0 115 0 8 0 86 0 23 0
nasa.gov 35 35 113 18 148 0 0 11 0 8 0 703 82 62 8
ntv.com.tr 10 10 14 0 58 1 0 55 0 293 0 112 3 66 0
nytimes.com 8 8 0 0 10 0 0 6 0 2 0 35 0 46 0
optimum.net 29 29 78 8 174 3 0 6 0 6 0 426 258 182 21
politico.com 27 27 65 9 231 47 0 36 18 1 0 110 19 248 10
premierleague.com 21 21 101 0 31 0 0 0 0 0 0 223 11 47 0
radikal.com.tr 13 11 20 0 111 0 0 33 0 2 0 85 5 59 0
sports.ru 28 28 90 1 48 0 0 84 0 0 0 128 58 52 1
sporx.com 5 5 0 0 33 0 0 31 0 0 0 49 0 38 0
tvguide.com 15 15 26 2 90 6 0 15 0 23 0 728 586 57 0
welt.de 23 23 44 1 112 0 0 366 0 4 0 546 19 68 0
zaobao.com 37 37 121 0 83 0 0 0 0 0 0 127 36 125 78

Figure 5: Characteristics of our benchmarks web sites.

4. EVALUATION
This section describes the experimental evaluation we

have performed on a set of 26 complex pages.

Research Questions: Our goal has been to address the
research questions listed below.

RQ1: How common are races on persistent state such as
document.cookie, localStorage, and side-effects such
as POST requests? We consider these to be the most
harmful races there are in web applications.

RQ2: How common are races on sessionState? Session
state is cleared on browser restarts. However, given
that the browser is often not restarted for days if not
weeks, data in sessionState can persist for long peri-
ods of time, if not permanently.

RQ3: How common are races on transient state such as
memory locations and DOM elements? These are gen-
erally not the kind of errors that we deem to be highly
problematic and, moreover, often these are not even
observable by the user [10].

4.1 Experimental Setup
In our previous work [10], we used an instrumented

browser to crawl all sites from Alexa’s top 5,000 list. For
our experiments here, we used 26 site of these sites that
made heavy use of XHRs.
Site statistics: Figure 5 summarizes various aspects of the
sites we picked. We specifically separate the number of op-
erations within XHR callbacks, as these can lead to races.
Columns 2–5 show the number of observed XHR open and
send operations, executed XHR onreadystatechange call-
backs, and the number of callbacks within other callbacks
(so-called nested XHRs). Columns 6–11 focus on the use

of persistent storage. Columns 6–7 show the number of
writes to document.cookie as well as writes nested in an
XHR callback. Column 8 shows the number of XHR POST

operations in an XHR callback. Columns 9–10 give the num-
ber of writes to localStorage both in general and within
XHR callbacks. Columns 11–12 give the same information
for sessionStorage. Lastly, columns 13–16 give informa-
tion about various forms of DOM manipulation such as set-
ting innerHtml and changing the contents of INPUT elements;
both totals and nested variants of these counts are provided.

Trace statistics: The workload used to collect these counts
was simply loading the page and applying basic user interac-
tions like button-link clicks. The counts for DOM manipu-
lation are generally higher than those for document.cookie,
localStorage, or sessionStorage. It is natural to expect
more races on DOM elements as well, compared to more
uncommonly used persistent elements. Figure 6 summa-
rizes information about the traces we used for our analysis.
The compression ratios range between 9.97 and 33.83. The
percentage of time it takes to analyze a trace compared to
the time to record a trace ranges between 3% and 32%.

Detection Time: Figure 6 shows the trace collection6 and
analysis time as a function of trace size. Analysis time grows
approximately linearly with the size of the trace and is a
fraction of the trace recording time shown in the second
column.

4.2 Detection Results
In this section we describe and analyze several represen-

tative races found with our approach.

6Sample traces can be found at pastebin.com/MxF7ENPx,
pastebin.com/JeSY4Fy8 and pastebin.com/1pUsGUgb.
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imdb.com 14.28 1.21 58 2
zaobao.com 30.75 1.40 38 6
news.qq.com 30.77 1.01 78 4
sporx.com 37.49 1.92 49 6
nytimes.com 40.58 1.26 47 8
fujitv.co.jp 45.79 1.39 72 8
girlsgogames.com 51.98 1.92 78 10
gazetta.it 93.02 3.07 182 17
radikal.com.tr 94.20 3.41 102 17
fedex.com.us 95.44 3.30 58 19
milliyet.com.tr 95.78 3.93 133 16
myvideo.de 104.82 4.38 121 18
welt.de 125.11 5.39 233 26
bild.de 138.47 5.74 119 22
mlb.mlb.com 142.81 4.61 81 21
wireless.att.com 151.22 4.47 87 24
tvguide.com 152.90 6.39 250 27
ntv.com.tr 162.09 6.50 158 27
aljazeera.net 169.87 6.72 93 28
sports.ru 209.68 8.33 257 29
edition.cnn.com 216.09 8.13 115 35
eltiempo.com 222.65 11.43 169 43
optimum.net 224.22 9.06 244 41
premierleague.com 264.08 8.16 244 47
politico.com 271.29 11.22 261 48
nasa.gov 407.76 40.91 425 56

Figure 6: Trace statistics and processing times.

Example 4 [sessionStorage in milliyet.com.tr.] In the
case of www.milliyet.com.tr, the race on sessionStorage

was caused by a shared variable namespace that is used for
generating the key name. The variable is written at two dif-
ferent locations, one being an XHR callback that is executed
using jQuery.ajax method. The execution steps are listed
below and the relevant code is shown in Figure 8:

1. As a page loads, an XHR is created using the
jQuery.ajax method (included in www.milliyet.com.
tr/D/j/base.js?v=20) and sent to the server (lines 3–
5);

2. once the response is received a user-defined callback is
executed using jQuery.ajax.done (lines 19–22);

3. namespace variable is set to empty string at the end of
jQuery.ajax.done method (line 21);

4. an external library is initialized by setting the
namespace variable to ’ uv ’(line 46);

5. namespace variable is subsequently used for generating
a sessionStorage key (lines 43–45).

In the last step, the value of namespace is used for setting
an item on the sessionStorage for recording user interac-
tions with the web page. In this particular trace, we observe
that multiple items are added to the sessionStorage using
the namespace as a prefix (i.e. uv autoprompt disabled,
uv r). Any future read operations on the sessionStorage

keys will depend on this prefix namespace. As the XHR
callback can race with the namespace writes which sets the
value for namespace to the empty string, it may result in a
failed read operation. 2

Example 5 [document.cookie in gazetta.it.] In this ex-
ample of a document.cookie race from www.gazetta.it, the
web site uses an application monitoring library (DynaTrace

Web site d
o
c
u
m
e
n
t
.c
o
o
k
i
e

l
o
c
a
l
S
t
o
r
a
g
e

s
e
s
s
i
o
n
S
t
o
r
a
g
e

i
n
n
e
r
H
t
m
l

I
N
P
U
T
e
le
m
e
n
t

M
e
m
o
ry

p
o
s
t
M
e
s
s
a
g
e

edition.cnn.com 0 0 0 0 0 12 0
mlb.mlb.com 1 0 0 0 0 28 0
news.qq.com 0 0 0 1 0 6 0
wireless.att.com 1 0 0 9 0 43 0
aljazeera.net 0 0 0 2 1 4 0
bild.de 0 0 0 0 0 58 0
eltiempo.com 0 0 0 0 0 9 0
fedex.com.us 1 0 0 1 0 10 0
fujitv.co.jp 0 0 0 1 0 13 0
gazetta.it 2 0 0 0 0 19 0
girlsgogames.com 2 1 0 0 0 0 0
imdb.com 0 0 0 0 0 8 0
milliyet.com.tr 0 0 3 0 0 5 0
nasa.gov 0 0 0 9 0 14 0
ntv.com.tr 0 0 0 0 0 13 0
optimum.net 2 0 0 10 3 22 0
politico.com 6 0 0 0 2 224 11
radikal.com.tr 0 0 0 1 0 11 0
sports.ru 0 0 0 0 0 17 0
tvguide.com 0 0 0 0 0 15 0
welt.de 0 0 0 0 0 19 2
zaobao.com 0 0 0 0 7 11 0
Totals 15 1 3 34 13 561 13

Σ =19 Σ =47 Σ =574

Figure 7: Races found by our analysis.

Real User Monitoring found at dynatrace.com) for record-
ing and POSTing user actions and browsing experience to
a remote server. Each POST request initiated by this li-
brary updates the key dtCookie of the document.cookie
with the response value from the server. A race occurs when
multiple XHR calls try to write the new response value to
document.cookie. The execution steps are listed below, with
line references from the code shown in Figure 9:

1. At the page load time, an XHR call is created for ini-
tializing the monitoring process (line 9);

2. the data is sent to a URL constructed from dtCookie

value (lines 6–8);

3. dtCookie key is updated with the server’s response
(lines 35–37);

4. a new XHR is created at onLoad DOM event for post-
ing loading time of the page (lines 11-13);

5. callbacks of each XHR try to write to the same
document.cookie key dtCookie (lines 35–37).

The value of dtCookie key depends on the order of the XHR
callbacks, causing possible issues with future POST opera-
tions, as the value is used for URL generation. 2

4.3 False Positives
In looking for possible false positives, we have decided to

focus our attention on both persistent races (19) and those
on the DOM state (47). Out of the 66 races we investigated,
we identified only two cases as false positives. These are
document.cookie races in fedex.com and optimum.net.

Figure 10 shows the trace from optimum.net, with writes
to the cookie key fsr.s at multiple locations (lines 6, 10,
and 22), one of which is within an XHR callback. In this
case, fsr.s is used for collecting site statistics where the key
value is updated by concatenating new values(lines 11–22).
Although the XHR callback may happen in between two



1 <script >
2 function MilGraphWithStatsV2 (...){
3 jQuery . ajax( method , url ,
4 // 1: www. milliyet .com.tr/D/j/base .js?v=20
5 function (data) { // Process data });
6 ...
7 }
8 </script >
9 ...a lot of text and images here ...

10 <script >
11 jQuery . extend ({
12 ajax : function (url , options ){
13 ...
14 var xhr = new XmlHttpRequest ();
15 xhr. open( method , url)
16 xhr. onreadystatechange = done;
17 xhr. send(null );
18 ...
19 function done(...){
20 // 2: www. milliyet .com.tr/D/j/base .js?v=20
21 namespace = ""; // write to sessionState
22 }
23 }});
24 </script >
25 ...
26 <script >
27 // 3: widget . uservoice .com/ uE6Mda0sQpbMbkAEhFaUig .js
28 r. prototype .get = function (t) {
29 if (this . storage ) {
30 var e = this . storage . getItem (this . makeKey (t));
31 return e;
32 }
33 };
34 r. prototype .set = function (t, e) {
35 this . storage &&
36 this . storage . setItem (this . makeKey (t),
37 JSON . stringify (e))
38 };
39 r. prototype . remove = function (t) {
40 this . storage &&
41 this . storage . removeItem (this . makeKey (t))
42 };
43 r. prototype . makeKey = function (t) {
44 return r. namespace + t
45 };
46 r. namespace = " __uv_ "; // write to sessionState
47 </script >

Figure 8: sessionStorage manipulation in milliyet.com.tr. To
save space, we remove unrelated lines of code.

cookie writes on lines 5 and 6, causing a different value for
the key, at the end of the execution the cookie key fsr.s will
contain all the written values but in different orders. In this
case, the program treats this value as a set and not a list,
so, while we catch the non-determinism correctly, this is not
really a bug in the program. The false positive in fedex.com
is very similar, with a race is on cookie key s sess, updated
within an XHR callback.

Benign memory races: We would also like to highlight
an example of a memory race that does not have persistent
consequences. On radikal.com.tr, there is a global vari-
able “duration” that is used to measuring time elapsed at
different points throughout the execution on which there is
a race between its update in sequential code and in an XHR
callback. The value of this memory location does not prop-
agate to any persisted state and cause non-determinism.

4.4 Discussion
Returning to the research questions in Section 4, we

clearly see that according to Figure 7, races on persistent
state (RQ 1) are quite uncommon, with only 19 for 26 sites.
Races on session state (RQ 2) are also uncommon (only 3
races observed), in part because session state is used not

1 <script >
2 // 1: rum−dytrc. gazzetta .it
3 // /ajax/ dtagent60_bjnprs3t_7082 .js
4 function sb(a, b) {
5 var d;
6 d = d + "?" + " dtCookie \x3d"
7 + encodeURIComponent (v(Ua )) + ";"
8 + encodeURIComponent ( document . location . href );
9 fb(cb , d, c, e)

10 }
11 E(q, "load", function (){
12 fb(m, b. path , n, b. data );
13 }
14 function fb(a, b, c, d) {
15 var h;
16 h. onreadystatechange = function () {
17 4 == a. readyState && (200 == a. status ?
18 e(a. responseText ) : db && B.sf &&
19 eb. push({ path : b,data : c}), a = m)
20 }
21 h. open("POST", b, c);
22 h. send(d);
23 }
24 function e(a) {
25 a = a && a. split ("|");
26 for (var b = 1; b < a. length ; b++) {
27 var c = a[b]. indexOf (" dtCookie \x3d");
28 if (−1 < c) {
29 y(" dtCookie ",
30 decodeURIComponent (a[b]. substr (c + 9)));
31 break
32 }
33 }
34 }
35 function y(a, b) {
36 document . cookie = a+"\x3d"+b
37 +";path\x3d/" + w. domain ;
38 }
39 <\script >

Figure 9: Race on document.cookie manipulation in gazetta.it.
To save space, we remove unrelated lines of code.

as frequently as cookies (Figure 6). Lastly, races on tran-
sient state are considerably more frequent. While changes
to HTML content may technically be races, one could ar-
gue that most of these are ephemeral. Indeed, the execution
model of JavaScript-based web pages induces a great deal
of non-determinism. This is because many if not most web
pages are not the same across multiple reloads: the ads on
the sides of the page change; content of pages often changes
(consider a rapidly changing news site), sometimes the expe-
rience of the first visit to a page and subsequent ones is dif-
ferent because of cookies. The browser user has been trained
not to expect much consistency and, when everything else
fails, to reload the page. Additionally, the JavaScript execu-
tion model is extremely permissive: errors are “swallowed”
by the runtime (the current event handler is terminated)
and in many cases pages can survive exceptions and keep on
running.

Our observations mesh well with the anecdotal experience
of the user encountering any problem on the web: one only
needs to reload the page for the problem to go away. In a
sense, web programming is very forgiving. This is different
from thread-related races in desktop applications and also
data races in mobile apps [9, 5], where researchers are able
to replicate races with obvious visual consequences (mangled
or upside down images on the screen, for instance).

Lastly, ours is a neighborhood exploration technique.
Given an execution trace, we explore the possible interleav-
ings of callbacks. We record enough information to be sound
for a given trace, but we choose to primarily focus our at-



1 XHR [126 F0800 ] Send
2 ...
3 READ ID[ 235205312 ] = document : JSObject
4 WRITE PROP ID[ 242159440 ] = cookie : JSString
5 Cookie [ 1020 D800 ] Write "fsr.s=%7B%22 v2 %22%7 D" (1)
6 ...
7 READ ID[ 235205312 ] = document : JSObject
8 WRITE PROP ID[ 242159440 ] = cookie : JSString
9 Cookie [ 1020 D800 ] Write "fsr.s=%7B%22 v2 %22%2 C%7D"(2)

10 ...
11 XHR [126 F0800 ] Callback
12 BEGIN XHR_Callback
13 ...
14 READ ID[ 235205312 ] = document : JSObject
15 READ PROP ID[ 242159440 ] = cookie : JSInteger − (3)
16 "fsr.s=%7B%22 v2 %22%2 C%7D"
17 ...
18 READ ID[ 235205312 ] = document : JSObject
19 WRITE PROP ID[ 242159440 ] = cookie : JSString
20 Cookie [ 1020 D800 ] Write
21 "fsr.s=%7B%22 v2 %22%2 C %22%3 A1 %7D" (4)
22 END XHR_Callback

Figure 10: Trace from optimum.net illustrating a false positive.

tention on write-write races on persistent state.

5. RELATED WORK
This section covers some of the recent work on finding

races in JavaScript programs and asynchronous code.

Races in Asynchronous Programs: Hsiao et al. propose
an approach to finding a subset of asynchronous races in
Android apps, focusing on races that lead to use-after-free
violations (i.e. uses of a freed pointer) [5]. While this tool
also does offline analysis of a single execution trace, their
focus is on computing an explicit happens-before relation,
which they apply to the trace in order to find accesses that
may lead to user-after-free possibilities. They employ some
heuristics to minimize the possibility of false positives. We
focus on data flow from multiple values to sensitive locations
(like document.cookie), which naturally eliminates the need
to explicitly reason about commutativity.

Maiya et al. [9] et al. focus on a systematic exploration of
possible schedules using a UI explorer and reasoning about
the obtained traces using a race detector. A precise model
of the Android execution life cycle is key to avoiding false
positives, although a large number of these remain.

Races in JavaScript: Zheng et al. [17] propose a static
technique to detect potential races in JavaScript applica-
tions. More recently, Petrov et al. [11] and Raychev et
al. [13] have observed the potential for asynchrony creat-
ing out-of-order execution and developed a notion of race
conditions for Web applications written in JavaScript. In
principle, race conditions can arise because of accesses to
data shared among components of a Web page which are
not ordered by proper synchronization, or, more formally,
a happens-before relation. Of course, on a Web page, the
entire DOM is (a giant blob of) global state, creating the
potential for races.

Petrov et al. [11] define a happens-before relation for Web
pages and generalize the notion of race conditions to take
into account cases where, logically, there are unordered ac-
cesses to the same resource. The authors present a dynamic
method for detecting races in a given execution of a Web
page, explore similar executions that could potentially be
racy, and, in later work [13] identify and filter out large sets
of benign races. Hong et al. [4] propose a testing frame-
work along with an execution model for asynchronous event

handlers in JavaScript. Using defined execution model, the
framework will execute a JavaScript application for col-
lecting the executed asynchronous event handlers and then
generates test cases for testing different orderings of these
events. Later, the resulting DOM structure of each testcase
is checked to the reference constructed by the initial exe-
cution. As discussed earlier, our work is distinguished from
these studies by the fact that we only pursue race conditions
that lead to non-determinism in persisted state or data sent
to the server. Our choice of the happens-before relationship
follows from this design decision and only records high-level
causality relationships.

Mutlu et al. [10] advocate the notion of observable races,
i.e. those that can be seen and visually distinguished by
the end user. Our notion of persistent side effects is even
stronger than that captured in this paper.

Program Analysis in JavaScript: A number of analy-
ses have been propose for JavaScript in recent years; here we
highlight only a handful. Additionally, several aspects of the
language such as the use of eval [15, 6] and trying to under-
stand JavaScript performance [12, 14]. Rozzle [7] proposes
the idea of lightweight multi-execution in the context of a
JavaScript engine, similar to our work. The goal of Rozzle
is to expand the impact of malware detectors by increasing
code coverage and thereby observing more, potentially ma-
licious, code. In terms of techniques, Rozzle is probably the
closest runtime exploration approach to the work described
in this paper. A project by Chugh et al. focuses on staged
analysis of JavaScript and finding information flow viola-
tions in client-side code [1]. The Gatekeeper project [2, 3]
proposes a points-to analysis together with a range of queries
for security and reliability as well as support for incremental
code loading. Gulfstream [3] is a successor of the Gatekeeper
project whose focus is on incremental analysis and dynamic
code loading. Sridharan et al. [16] presents a technique for
tracking correlations between dynamically computed prop-
erty names in JavaScript programs. Their technique allows
them to reason precisely about properties that are copied
from one object to another as is often the case in libraries
such as jQuery. Madsen et al. [8] proposes the idea of a
use analysis for the purposes of call graph construction in
JavaScript applications that use large frameworks and li-
braries. Their use analysis is combined with a points-to
analysis for the rest of the application.

6. CONCLUSIONS
This paper proposes an alternative way of looking at what

constitutes a race in web applications written in JavaScript.
We advocate a focus on races that are caused by asyn-
chronous callbacks and their order of arrival, primarily in-
vestigating races produced by the XmlHttpRequest (XHR)
mechanism. Unlike prior work which concluded that there is
ample potential for races in JavaScript, our findings suggest
that given the forgiving nature of JavaScript applications,
damaging, persistent races are considerably more rare.

Nevertheless, we propose a lightweight algorithm that ex-
plores different schedules in the “neighborhood” of a partic-
ular runtime trace. Our approach avoids the imprecision of
static analysis and the combinatorial explosion and scala-
bility issues of runtime schedule exploration. We find and
investigate a total of 19 harmful races and 621 benign races
in 26 web sites.



7. REPLICATION PACKAGE
This paper comes with an replication package designed to

help other researchers working in this area. As part of our
replication package, we submit

1. an instrumented version of the Firefox web browser,
using which executions traces can be collected, and

2. our race detection tool which processes these traces for
evaluation.

The Replication Packages Evaluation Committee found this
submission to be satisfactory, and confirmed that our re-
sults can be reproduced. Our submission includes a virtual
machine with the following contents7:

Race detector executable: Our race detection tool con-
sists of a parser and a race detection module. A given
trace file will be parsed and the state map and the
happens-before relation at each point in the execution
will be constructed. The executable accepts a trace
path or directory of multiple traces and will output
both the statistics of the corresponding trace(s) and
detected race conditions at each state.

Instrumented Firefox executable: We instrumented
the Firefox web browser in order to collect relevant
information during execution of a web site. Our
instrumentation spans over 12 source files with
about 430 lines of instrumentation code. Most of
the instrumentation is in the code for the JavaScript
engine (SpiderMonkey) for recording memory manip-
ulation operations. The event loop implementation of
the web browser for marking asynchronous callbacks
was also instrumented.

Collected traces of our benchmark web sites: We
collected 26 individual traces for our benchmark web
sites presented in the Section 4 using our instrumented
Firefox browser.

We selected web sites from Alexa’s top 5,000 list that
made heavy use of XMLHttpRequests (XHR). For
each web site, we conducted basic browsing actions
(e.g., button clicks, navigating to new links) and col-
lected the traces generated. The size of these traces
varied from 14 MB to 400 MB, depending on the
browsing time and content of the web sites.

Scripts for evaluation: We provide two batch scripts,
RunFSEAnalysis.bat and RunLastAnalysis.bat, for
automating the evaluation. These script will run our
race detection over our benchmark traces and over
the last collected trace with our instrumented web
browser, respectively. The results containing the trace
statistics, characteristics and detected races are per-
sisted as *.csv files.

7.1 Evaluating Benchmark Web Sites
The replication package includes traces for collected

each web site on our benchmark and a batch script
(RunFSEAnalysis.bat) for running the race detection anal-
ysis on these traces for replicating the results presented in

7The tools and instructions needed to replicate our results
can be downloaded from http://bit.ly/1O5GglJ.

tables (Figure 5, Figure 6, and Figure 7). The script pro-
vided first runs our race detection mechanism on each web
site trace and then presents the analysis results in separate
*.csv files under the FSE_Reports directory:

• LogCharacteristics.csv contains characteristics (i.e.
number of writes, number of XHRs etc.) for each an-
alyzed trace(Figure 5).

• LogStatistics.csv contains statistics (i.e. trace
size, analysis timing etc.) about each analyzed
trace(Figure 6).

• LogRaces.csv contains a report summarizing the num-
ber of detected races on each analyzed trace (Figure 7).

Our race detection mechanism records both the statistics
(see in Table 5) and detected race conditions (see in Table 7))
of the provided trace. After applying automatic race condi-
tion detection, we manually explored the reported races on
persistent state. The analysis on the trace size, compressed
trace size, and detection times is conducted by the batch
script.

7.2 Collecting and Evaluating New Traces
Our replication package also includes an instrumented

Firefox web browser for collecting new traces that can be
analyzed with our race detection mechanism. Users can
access the instrumented browser by executing the short-
cut FSE_Firefox and use it in Safe-Mode for collecting new
traces on web sites. Once the browser is terminated, the
collected trace will be written to a file on disk. Users may
experience some slowdown in the web browser due to the
instrumentation and the use of a virtual machine.

The batch script provided, RunLastAnalysis.bat,
first copies the last written trace file (named
%date%_%time%_log.txt) to the Last_Run_Reports di-
rectory and then run the analysis on this trace. The results
of the race detection analysis are then persistent as separate
*.csv files described in the previous section along with the
trace itself.
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