Vladimir A. Livshits
livshits@cs.cornell.edu

10/7/99
MCC for Java

The purpose of this document is to describe the steps | took in porting MCC from ML to Java and
outline some ways to make to collector faster up to the level of being competitive with the other
two collectors that come with Marmot. It's assumed that the reader is familiar with the two papers
on MCC and the overview paper on Marmot.

Changes to the collector

File organization.

MCC is integrated with the directory organization of Marmot. The runtime is located under
marmot\scaffold and this is also where all MCC files are located. The core of the collector
consists of the following C files: mccgc.c, collect.c, conservative.c, debug.c,
deque.c, external.c, heap.c, implicitQueue.c, inline.c, machine.c,
object.c, page.c. All these files were present in the original version of MCC except for
mccgce. ¢, which is modeled after copygc. cpp. This files implements some native functions the
system expects, but most of the time it just calls some of the functions in the collector such as
collect (). The following header files are present: dataStructures.h, pageHeader.h,
prototypes.h, machine.h, object.h, header.h, debug.h, marmot.h, mcc.h.
The last two files are new to the Marmot version of MCC: marmot .h declares some Marmot
types needed in the collector. mcc. h includes the most common MCC headers.

To compile a Java program with MCC, one can use the makefile in scaffold like this:
nmake gc=mc HiMom.exe

That builds the runtime system (look for JRT_OBJ in makefile) and links it with MCC files
(McC_OBJ in makefile). Note: when you are switching between collectors, you need to
recompile the Java source code, otherwise, you’ll get a runtime exception when trying to run the
executable the system produces. It's important that you use the same set of compile flags when
compiling MCC and the rest of the system, otherwise, strange things may occur at runtime
(Marmot uses the __ fastcall calling convention). There were several preprocessor flags |
added in addition to the many flags MCC already had:

Flag Value What it does
CONSERVATIVE_HEAP Off | Controls whether the collector supports conservative
objects in the heap, i.e. ones that don’'t have viable
pointers. This is tuned off for Marmot, since all Java
objects have vtable pointers as their first field. Turning
it off also greatly reduces the amount of source code
that has to be lined with the runtime system.
MCC_COMMIT Off This controls how the allocation works. If this flag is
on, when each a block is allocated, it's immediately
committed. If not, it's only reserved and whenever a
page is requested by the system using the functions in
page.c.

MCC_TRIGGER Off | If this flag is on, the collector uses the MCC triggering
condition, that is start collecting when 2/3 of pages is
used. When it's on, MCC uses the same condition
used by the other Marmot collectors, it starts
collecting when the amount of data allocated since the

last collection exceeds a certain boundary.
MCC_ALLOC On If this flag is on, MCC uses its own allocation
algorithm, otherwise malloc is used. In conjunction
with the next flag, this is useful for debugging to figure
out where the problem lies.

MCC_COLLECT On Perform garbage collection, turn it off for debugging.

INITIAL_ALLOC On Allocate several blocks in the beginning of the
program.

SIZE_PROCEDURES On Use procedures in mccge.cpp for computing the size
of objects instead of macros in macros.h. Useful for
debugging.

WASTED_SPACE On Fill wasted space. Useful for debugging.

PAGE_HINT On Supply a hint to reservePage.

Some other MCC flags:

HARD_LIMIT, FAST_CLOCK LOGGING, INLINE_INNER_LOOP, LOOK_FOR_GOOD_STACK,
LOGGING, FAST_CLOCK - these were in MCC from the beginning. grep the code to find out
what they are. Also Marmot’s GC_DEBUG_PRINTS and YADDA_YADDA are useful.

Object headers
Every object in Marmot has the following layout at runtime:

vtable
monitor
fields

The first filed points to a vtable located in the static area. The vtable contains £_baselength
and pointerTrackingCrap among other things. The first is the total size of the object for non-
array objects. There are macros for retrieving objects sizes in object.h. The second field
contains information as to which fields are pointer fields. object.c parses this information.
Most of the parsing code is taken from copygc. cpp.

MCC supported manipulation of both typed objects and conservative objects (that could be
created using routines in header.h). These routines are not used in the Java version and are
guarded by #ifdef/#endif CONSERVATIVE_HEAP. Most macros in object.h also had to be
changed to use the layout used by Marmot.

Stack Layout

Of the two collectors that come with Marmot, copygc uses stack and static area annotation to
figure out what on the stack is a pointer. Since we wanted to experiment with conservative GC,
we didn’t use them. (It’s possible to turn generation of these tables, which are not very big, off in
marmot/utility/StageControl.java). To see how these tables can be used, refer to
copygc.cpp. Therefore, we only need to find out the boundaries of the static area and the
thread stack for each thread to perform conservative scanning. We can do this because pointers
in Marmot are word-aligned. The scanning code is in conservative.c. The registers are not
pushed on the stack before the collection unlike the original version of MCC, because Marmot
doesn’t store live pointers in the registers between calls. The current version doesn’t support
multiple threads, but this should be relatively easy to add. When Marmot compiles a program, it
creates marmotsez.h, which defines SINGLE_THREADED. This is how the runtime system
knows whether to include thread support or not.

What has been tested.

The collector has been heavily tested with micro- and macro-benchmark. One criterion for
correctness is running the TreeHeapWalk benchmark, which stresses GC a Iot.

What hasn’t been tested.

As mentioned above, multi-threaded programs haven’t been tested. | tried to run MCC with some
of the benchmarks in JVM98 SPEC suite, but | couldn’t compile those programs with Marmot.
Generations and page blacklisting hasn’t been tested, either.

Performance results
These are some preliminary results on a couple of programs.

HiMom.exe JLex100.exe

RT, sec GC, sec RT, sec GC, sec
M&S 0.55 0.07 41.3 2.7
MCC 0.66 0.44 39.76 3.5
copygc 0.2 0.47 43.4 1.7

Optimizing the program using MSVC profiler made the collector significantly faster. There’s a
batch file to run the profiles in scaffold called prof.bat. Just run is with the name of the program
and its parameters, it creates an output file by appending the last parameter to the name of the
program, i.e.,
prof himom 15 DFS 5 4

will create himom.4.txt with the profiling result. Most of the time seems to be spent in
processObject, processChild, and igEnqueue. Some of these can probably recoded in assembly
to make them faster. Another source of optimizations is the fast path of the allocation routine,
which is pretty slow now.

The feel is that with some amount of work it's possible to make MCC competitive with BDW, if the
latter is used with Marmot. It’s hard to expect MCC to be consistently better than a much smaller
and probably hand-optimized copygc, for example.

[]

Pin Children
Root Scan
Graph Traversal
Free Pages
Unpin Pages
Flip Spaces
Unaccounted for

B EOBEBO0OORA

83%

Distribution of times among different stages of collection for a sample collection cycle.

