
Finding Memory Leaks in Java
with JDeveloper

Benjamin Livshits
Computer Science Department

Stanford University
Stanford, USA

livshits@cs.stanford.edu

Learn how memory profiling and heap debugging can help you get rid
of memory leaks such as those caused by use of the listener pattern.

Contrary to the popular believe, Java’s garbage collector does not solve all me-
mory problems that might occur in practice. In this article we look at how Oracle
JDeveloper’s memory profiler feature can be used to help find leaking memory
in your applications. We also show how memory leaks, once detected, can be
eliminated.

1 Background

A key feature of memory management in Java is its garbage-collected heap. A
typical garbage collector that comes with Java is a tracing collector, which deter-
mines which objects should be preserved in memory by tracing all objects reach-
able from a set of roots. These reachable objects survive collections because they
may conceivably be used in the course of program execution.

While this approach usually works well for reclaiming memory no longer
needed by the program, it is a common error on the part of the programmer to
leave an inadvertent reference to an object that will never be accessed by the pro-
gram. This causes a memory leak: the object is no longer used by the program,
yet is not reclaimed by the JVM.

A common error pattern dubbed the “lapsed listener” bug often arises from
the application of the listener pattern. The listener pattern, a specific class of
the observer pattern, consists of a subject and an observer. Listeners are com-
monly used to specify event handlers for events that occur to the object. Some
commonly used event types are: GUI events: there are typically dedicated lis-
tener classes implementingjava.util.EventListener interface for GUI events
in AWT, Swing, and other GUI libraries. Database connection events; listeners
implementConnectionEventListener interface injavax.sql. While the lis-
tener pattern is widespread, it is error-prone and may cause memory leaks if not
used properly. We will demonstrate the leak that may arise by showing how lis-
teners may be implemented internally.

Consider a situation where we register a listener for events happening to a
widget in Figure 1. Usually, there is a listener table reachable from the root set.
For instance, there could be a global event table pointing to the listener table. In
the figure, the listener table it is implemented as a linked list. Event dispatch works
by walking through the listener table and invoking an event handler on listeners
of the right kind. The listener table has a reference to the listener so that it can
deliver an event when it arrives; this reference is shown as a dashed arrow in the
figure

However, if that reference is preserved, the object will never be collected, be-
cause it is reachable from the root set. In many cases, the object may consume
a lot of system resources. It could be a large GUI object utilizing native system
resources or a limited resource such as database connections. While leaking listen-
ers, which are usually pretty small objects, may not present an immediate problem,
leaking those larger objects reachable from them usually has much more serious
consequences leading to deterioration in performance and eventual crashes.

In practice, registering a listener includes adding a reference from the listener
to the object (shown in bold). Listener registration is achieved through a call like
this: object.addMyListener(newMyListener(...));

It is important to remove this reference with a matching call to
object.removeMyListener(l); thus unregistering the listener and allowing ob-
ject to be garbage-collected.

A typical large-scale application with a GUI and a database back end may use
dozens of different types of listeners, all of which have to be unregistered to avoid
memory leaks.

Figure 1: Design of a typical event-based system.

2 Memory Profiling

While lapsed listeners may not be a problem with short-running programs, in long-
running applications, continuous memory leakage over a long period of time may
lead to memory exhaustion. The Memory profiling feature of Oracle JDeveloper
10g allows the developer to collect memory statistics on long-running programs.

To illustrate the use of memory profiling to look for potential leaks, we cre-
atedListenerTest, a test program that creates object/listener pairs in a loop that
repeats 3,000 times. The structure of the programs matches Figure 1: listeners
are accessible from a global listener table and all listeners have a reference to the
corresponding object. At the end of each iteration, there is a call toSystem.gc()
to initial a round of garbage collection.

JDeveloper’s memory profiler is accessible from Run — Memory profile You
can configure the frequency of snapshots under

Figure 2: Snapshot 5 output of the memory profiler when run onListenerTest.

Tools|Project properties|Profiles|Development|Profiler|Memory

In this case we set the update interval to 0.8 seconds resulting in 9 memory snap-
shots at the end of the run.

The memory profile view shows allocation and garbage collection statistic for
each snapshot. One quick way to look for potential memory leaks is to sort by
“Diff Alloc”, the difference between the number of allocated objects of each type
between this and the previous snapshot. Large numbers in this column as well as
the “Diff sz” column indicate objects that are being constantly allocated without
being deleted, thus pinpointing potential leaks.

To further help in narrowing the problem down, pausing the memory profiling
process and double-clicking on the class of interest will also show allocation sites
for objects of the type in question. When the source code is available, you may
double-click on an allocation site to jump right to the source.

3 Heap Debugging

Knowing that potentially leaking objects were allocated is sometimes not enough,
however. In order to get at the source of the leak, the question that needs to be
asked is why the garbage collector still keeps these objects around.

To answer that question, we can use Oracle JDeveloper 10g’s heap debug-
ging capabilities. Once we have determined which classes are potentially leaking
through memory profiling, it is possible to obtain more detailed information by
using the Heap window of JDeveloper’s debugger. For LapsedListenerTest, the
one of the classes that appears to be leaking from the memory profiler view is the
inner classListenerTest$Component.

Figure 3: Using the Heap window in JDeveloper to isolate memory leaks.

We ran the test program in debug mode, right-clicked in the Heap window,
and selected Add class folder to show all instances of the class we are inter-
ested in available at runtime. In Figure 2, there are 7 instances of that class. We
first looked for reference paths for aListenerTest$Component object located
at 0X4B7B4DE4. Then we right-clicked on the first of two reference paths cor-
responding to a static field and selected Expand reference path, which expands
the tree view to show how to reach the object in question. As expected, the
ListenerTest$Component object in question is reachable from the roots through
the listener table at0X48755AEC and then one of the listeners at0X4875C1B4.

4 Getting Rid of the Leaks

There are several ways to get rid of memory leaks once you find them. One ap-
proach consists of usingWeakReferences, which are not traversed by the garbage
collector when determining which objects are reachable. Thus, if we make the ref-
erence from the listener list to the listener a weak one as shown below, the object
of typeListenerTest$Component will eventually become unreachable and will
be collected:

public static class Component {
...

public void addListener(ComponentListener listener){
synchronized (listeners){

listeners.add(new WeakReference(listener));
}

}
...

}

However, is a large system, keeping track of the listeners will be typically
done behind the scenes and the developer’s only way to get rid of the leak will be
to call the remove method on all program paths that register the listener causing
the object being listened on to eventually be collected. Conclusions While Java’s
garbage collector may not solve all memory problems and may leave leaks caus-
ing memory exhaustion, Oracle JDeveloper comes fully equipped with tools to
address memory problems that might arise. In this article we have shown how to
effectively use JDeveloper’s memory profiler and heap debugger to locate memory
errors.

5 Bio

Benjamin Livshits is a Ph.D. candidate at Stanford University. His interests are
in designing tools for automatic error detection for systems written in C and Java.
He has lately been focusing on static program analysis for finding security errors
in Java applications. Benjamin received a B.S. from Cornell University in 1999
and an MS from Stanford University in 2002.

