Mining Additions of Method Calls in ArgoUML

Thomas Zimmermann! Silvia Breu!

! Department of Computer Science
Saarland University
Saarbricken, Germany

{zimmerth, breu, lindig}@st.cs.uni-sb.de

ABSTRACT

In this paper we refine the classical co-change to the addition of
method calls. We use this concept to find usage patterns and to
identify cross-cutting concerns for ArgoUML.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—version control; D.2.9 [Management]: Software
configuration management

General Terms
Management, Measurement

1. INTRODUCTION

One of the most frequently used techniques for mining version
archives is co-change. We specialize this concept to the addition
of method calls:

Two method calls that are added together in the
same transaction, arerelated to each other.

We use the concept of co-additions for the following two tasks:

e Find usage patterns, such as*“the methods cont ai nsNode
and cont ai nsEdge are frequently called together.”

e |dentify cross-cutting concerns, such as “the first statement
of every method calls the i nf o method to log the method
name.”

In Section[2 we will describe our input data and the tools we used;
we present our results for usage patterns in Section[3and for cross-
cutting concerns in Sectionf4l

2. INPUT DATA AND TOOLS

We applied our mining techniques to the ArgoUML repository that
was supplied for the MSR challenge [4]. Werestricted our analysis
to the sr c_new directory that contains the actual source code of
ArgouML. All data was collected with an extended version of the
eROSE plug-in [2] for the ECLIPSE environment. For mining, we
used SQL queries and the Xelopes data mining library [5].

To reconstruct transactions we use the sliding window approach
with awindow size of 200 seconds. For each transaction we com-
pute the set of newly added method calls. For this we compare the

Copyright is held by the author/owner.
MSR' 06, May 22-23, 2006, Shanghai, China
ACM 1-59593-085-X/06/0005.

Christian Lindig* Benjamin Livshits?

2 Department of Computer Science
Stanford University
Stanford, USA

livshits@cs.stanford.edu

Pattern Count
localize(2) addField(2) 57
localize(1) lookuplcon(1) 45
addCaption(4) addField(4) 43
addButton(1) lookuplcon(1) 41
localize(1) addField(2) 28
findFigsForMember(1) findType(1) 23

addM odel EventL istener (2) removeM odelEventL istener (2) 19
addM odel EventL istener (3) removeM odel EventL istener (3) 13

addFocusListener (1) addKeyL istener (1) 12
hasM oreElements(0) nextElement(0) 12
error(2) debug(l) 11
addSeperator(0) addField(2) 10
info(1) isl nfoEnabled(0) 10
max(2) isDisplayed(0) 9
containsNode(1) containsEdge(1) 8

Table 1: Usage patternsfor ArgouML.

total set of method calls from the actual and the previous transac-
tion. The total set of method calls is computed for each transaction
by traversing the abstract syntax trees of al affected files.

For a call expression ci().c2()....cn() we only take the final
method call ¢, () into account. Since we only analyze onefileat a
time, the full signature for method ¢,, isn't available. Instead, we
augment it with the number of parameters, asshown in Tablelll An-
alyzing single files rather than complete snapshots makes our pre-
processing cheap, as well as platform- and compiler-independent.

3. MINING USAGE PATTERNS

Our approach is based on an observation: Method calls that are
added to source code simultaneously often represent a pattern. To
identify such patterns, we performed frequent pattern mining on
the set of added method calls.

We focused our analysis on intra-procedural patterns: patterns
that occur within a single method. In terms of mining this means
that we do not use complete transactions asinput but group transac-
tions by the method in which acall was added. Furthermore, weig-
nored calls to frequently used JAVA methods, such asi t er at or,
hasNext, and t oSt ri ng, since patterns involving these meth-
ods are well-known.

Table[d shows the patterns we mined, sorted by decreasing fre-
quency. Actua usage patterns are printed in boldface, thus the pre-
cision is 40%. Below we discuss afew examples.

e addModel Event Li st ener,
renrovelMbdel Event Li st ener
This pattern is used when elements are changed. First, the
listener is removed for the old element, then the element
is changed, and finally the listener is added for the new
element.

i f (Model . get Facade().i sAEl ement(target)) {
Model . get Punp() . renbveModel Event Li st ener
(this, target);
}
target = t;
i f (Model . get Facade().i sAEl ement(target)) {
Model . get Punp() . addModel Event Li st ener
(this, target, "name");

}

e addFocusLi st ener,addKeyLi st ener
This pattern indicates a relationship between the focus and a
key listener: A user may enter text only to graphical elements
that arein focus.

e i sl nfoEnabl ed,i nfo
Sometimesthereturnvalueof i sl nf oEnabl ed ischecked
before thei nf o method is called.

if (LOGislnfoEnabled()) {
LOG i nfo("Renoving feature " + feature);

}

e cont ai nsNode, cont ai nsEdge
These two methods are frequently called with the same argu-
ments to check whether an edge is valid; if not, an error is
logged.

i f (!containsNode(dest Model El emrent)
&& ! cont ai nsEdge(dest Model El ement)) {
LOG error("some nessage");
return fal se;

}
4. MINING CROSS-CUTTING CONCERNS

Programs can be modularized in only one way at atime. Aspect-
oriented programming (AOP) remedies this by factoring out as-
pects and weaving them back in a separate processing step. For
existing projects to benefit from AOP, these cross-cutting concerns
must be identified first. Thistask is called aspect mining.

Our hypothesis is that not all cross-cutting concerns exist from
the beginning, but some emerge over time. By analyzing where de-
velopers add code to a program, we can identify cross-cutting con-
cerns. Our approach searches transactions for sets of locations L
where at each location callsto a set of methods M have been added.
In other words. The calls to methods M are spread throughout
source code locations L. We call such apair (M, L) an aspect can-
didate. In order to identify aspect candidates that actually cross-cut
a considerable part of a program, we ignore all candidates (M, L)
where |L| < 7 or [M]-|L| < 20. Thismeans that each aspect can-
didate hasto cross-cut at least 7 locations, and it has to comprise at
least 3 method calls that got added.

For ArgouML we identified 230 aspect candidates in 73 out
of 6,286 transactions. Below we discuss afew examples.

Logging. We observed that the transaction with the log message
“ Replaced deprecated log4j Category with Logger.” inserted
severa calls to methods debug, error, and warn. The
last two methods turned out to be false positives. However,
for debug we found several cross-cutting calls that logged
the method names as shown in the following example:

public void doAction(int oldStep) {
LOG debug("doAction " + ol dStep);

}
Thislogging could have easily been realized with an aspect.

Illegal arguments. The transaction with the log message “ Made
the methods look a little more alike. Collected the numer-
ous |llegal Argument callsin methods. [...]" inserted many
cross-cutting cals to i | | egal Argunment or one of its
variants. These calls are lways last in the method body:

public String getVal uet Tag(Obj ect handle) {
if (handl e i nstanceof MraggedVal ue) {
return ((MraggedVal ue) handl e). get Val ue();

}
return illegal Argunment String(handl e);

}

In this case the method il | egal Argument String
throwsan | | | egal Ar gunent Except i on and returns a
nul | object. Most of the 262 callstoi | | egal Ar gunent
methods could have been realized as aspects.

Instance of athing. The transaction with the log message “ Re-
place every single instance of something instanceof MThing
with ModelFacade.isAThing(something)” inserted many
i sAcallsto the source code. i sA methodslook as follows:

public bool ean i sAC assifier(Ooject handle) {
return handl e i nstanceof MJ assifier;

}

There exist 111 methods of the above form; these methods
could have easily been generated with aspects.

In our previous work [1] we showed that mining cross-cutting con-
cerns from version archives has a high precision, for the top 20
aspect candidates of ECLIPSE we reached up to 90%. Measuring
recall requires knowing all aspect candidates, which is typicaly
only possible for afew small benchmark projects.

5. CONCLUSION

Co-addition of method calls identifies usage patterns; a usage pat-
tern may be actually a cross-cutting concern when al locations
where calls were added call the same set of locations. Both usage
pattern and cross-cutting concerns can be identified by mining ver-
sion archives, as demonstrated by the ones we found in ArgoUML.

Usage patterns and cross-cutting concerns have several benefits.
Mining usage patterns can locate defects in software and supports
program understanding. Knowing cross-cuttings concerns helps to
reduce maintenance effort and is the prerequisite for refactoring a
legacy system into an aspect-oriented design.

For amore detailed description of our mining approaches, we re-
fer to our publications on finding usage patterns [3] and identifying
cross-cutting concerns [1].

6. REFERENCES

[1] S. Breuand T. Zimmermann. Mining Aspects from History.
Submitted for publication.

[2] eROSE. Guiding Programmersin Eclipse.
http://www.st.cs.uni-sb.de/softevo/erose).

[3] V.B. Livshitsand T. Zimmermann. Dynamine: Finding
Common Error Patterns by Mining Software Revision
Histories. In Proc. Europ. Software Engineering Conf./ACM
S GSOFT Symp. on the Foundations of Software Engineering,
2005.

[4] MSR. Mining Challenge 2006.
http://msr.uwaterloo.ca/challenge/.

[5] Prudsys AG. XELOPESLibrary.
http://www.prudsys.com/Produkte/Algorithmen/X el opes.

http://www.st.cs.uni-sb.de/softevo/erose/
http://msr.uwaterloo.ca/challenge/
http://www.prudsys.com/Produkte/Algorithmen/Xelopes/

	Introduction
	Input Data and Tools
	Mining Usage Patterns
	Mining Cross-Cutting Concerns
	Conclusion
	REFERENCES -9pt

