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Abstract—Much of the power of modern Web comes from the
ability of a Web page to combine content and JavaScript code
from disparate servers on the same page. While the ability
to create such mash-ups is attractive for both the user and
the developer because of extra functionality, code inclusion
effectively opens the hosting site up for attacks and poor
programming practices within every JavaScript library or API
it chooses to use. In other words, expressiveness comes at the
price of losing control. To regain the control, it is therefore
valuable to provide means for the hosting page to restrict the
behavior of the code that the page may include.

This paper presents CONSCRIPT1, a client-side advice im-
plementation for security, built on top of Internet Explorer 8.
CONSCRIPT allows the hosting page to express fine-grained
application-specific security policies that are enforced at run-
time. In addition to presenting 17 widely-ranging security and
reliability policies that CONSCRIPT enables, we also show how
policies can be generated automatically through static analysis
of server-side code or runtime analysis of client-side code. We
also present a type system that helps ensure correctness of
CONSCRIPT policies.

To show the practicality of CONSCRIPT in a range of settings,
we compare the overhead of CONSCRIPT enforcement and
conclude that it is significantly lower than that of other systems
proposed in the literature, both on micro-benchmarks as well
as large, widely-used applications such as MSN, GMail, Google
Maps, and Live Desktop.
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aspects; browsers; language security; security policies

I. INTRODUCTION

Much of the power of modern Web comes from the ability
of a Web page to combine HTML and JavaScript code from
disparate servers on the same page. For instance, a mash-
up such as a Yelp! page describing a restaurant may use
APIs from Google Maps to show the restaurant’s location,
jQuery libraries to provide visual effects, and Yelp APIs
to obtain the actual review and rating information. While
the ability to create such client-side mash-ups within the
same page is attractive for both the user and the developer
because of the extra functionality this provides, because
of including untrusted JavaScript code, the hosting page
effectively opens itself up to attacks and poor programming
practices from every JavaScript library or API it uses. For

1The name CONSCRIPT has been chosen to reflect our desire to restrict
malicious script.

instance, an included library might perform a prototype
hijacking attack [1], drastically redefining the behavior of
the remainder of the JavaScript code on the page.

CONSCRIPT, a browser-based aspect system for security
proposed in this paper, focuses on empowering the hosting
page to carefully constrain the code it executes. For ex-
ample, the hosting page may restrict the use of eval to
JSON only, restrict cross-frame communication or cross-
domain requests, allow only white-listed script to be loaded,
limit popup window construction, limit JavaScript access to
cookies, disallow dynamic IFRAME creations, etc. These
constraints take the form of fine-grained policies expressed
as JavaScript aspects that the hosting page can use to change
the behavior of subsequent code. In CONSCRIPT, this kind
of behavior augmentation is done via the script include tag
to provide a policy as follows:

<SCRIPT SRC="script.js" POLICY="function () {...}">

With CONSCRIPT, the first general browser-based policy
enforcement mechanism for JavaScript to our knowledge,
at a relatively low cost of several hundred lines of code
added to the JavaScript engine, we gain vast expressive
power. This paper presents 17 widely-ranging security and
reliability policies that CONSCRIPT enables. To collect these
policies, we studied bugs and anti-patterns in both “raw”
JavaScript as well as popular JavaScript libraries such as
jQuery. We also found bugs in and have rewritten many
of the policies previously published in the literature [2,
3] in CONSCRIPT. We discovered that in many cases a
few lines of policy code can be used instead of a new,
specialized HTML tag. Our experience demonstrates that
CONSCRIPT provides a general enforcement mechanism for
a wide range of application-level security policies. We also
show how classes of CONSCRIPT policies can be generated
automatically, with static analysis of server-side code or
runtime analysis of client-side code, removing the burden
on the developer for specifying the right policy by hand.
Finally, we propose a type system that makes it considerably
easier to avoid common errors in policies.

We built CONSCRIPT by modifying the JavaScript inter-
preter in the Internet Explorer 8 Web browser. This paper
describes our implementation, correctness considerations
one has to take into account when writing CONSCRIPT



policies, as well as the results of our evaluation on a
range of benchmarks, both small programs and large-scale
applications such as MSN, GMail, and Live Desktop.

A. Contributions

This paper makes the following contributions.

Security aspects in the browser. We present a case for the
use of aspects for enforcement of rich application-specific
policies by the browser. Unlike previous fragile wrapper
or rewriting aspect systems for the Web and dynamic lan-
guages, we advocate deep aspects that are directly supported
by the JavaScript and browser runtimes. Modifying the
JavaScript engine allows us to easily enforce properties that
are difficult or impossible to fully enforce otherwise.

Correctness checking for aspects. CONSCRIPT proposes
static and runtime validation strategies that ensure that
aspects cannot be subverted through common attack vectors
found in the literature.

Policies. We present 17 wide-ranging security and reliability
policies. We show how to concisely express these policies
in CONSCRIPT, often with only several lines of JavaScript
code. These policies fall intro the broad categories of con-
trolling script introduction, imposing communication restric-
tions, limiting dangerous DOM interactions, and restricting
API use. To our knowledge, this is the most comprehensive
catalog of application-level security policies for JavaScript
available to date.

Automatic policy generation. To further ease the policy
specification burden on developers, we advocate automatic
policy generation. We demonstrate two examples of di-
rectly enforcing CONSCRIPT policies automatically gener-
ated through static or runtime analysis.

Evaluation. We implemented the techniques described in
this paper in the context of Internet Explorer 8. We assess
the performance overhead of our client-side enforcement
strategy on the overall program execution of real programs
such as Google Maps and Live Desktop, as well as a set
of JavaScript micro-benchmarks previously used by other
researchers. We conclude that CONSCRIPT results in runtime
enforcement overheads that hover around 1% for most large
benchmarks, which is considerably smaller than both time
and space overheads incurred by implementations previously
proposed in the literature.

B. Paper Organization

The rest of the paper is organized as follows. Section II
provides background on aspect systems. Section III gives a
description of our implementation. Section IV talks about
challenges of writing correct and secure policies and de-
scribes our policy verifier. Section V describes concrete poli-
cies we express using our aspect language. Section VI talks
about how to automatically generate policies using static
or runtime analysis. Section VII discusses our experimental

results. Finally, Sections VIII and IX describe related work
and conclude.

II. OVERVIEW

This section presents an overview of the use of advice to
enforce security and reliability properties in a browser.

A. Browser Enforcement of Application Policies

Many Web security policies are being proposed for both
browsers and Web applications [4–6]. Similarly, correspond-
ing enforcement mechanisms at the browser and script levels
are also being advocated. These proposals highlight the
diverse nature of Web security policies and suggest that the
security concerns of a Web application are often orthogonal
from those of the browser.

Currently, when determining how to enforce security
policies of a Web application by using browser-level or script
rewriting and wrapping approaches, there are large trade-
offs in granularity, performance, and correctness [7–9]. We
propose to expose browser mechanisms and to make them
accessible through an advice system. Doing so lowers perfor-
mance and code complexity barriers for current cross-cutting
security policies (and those that have been too difficult or
onerous to implement). Furthermore, enabling applications
to deploy their own policies decreases the reliance upon
browser upgrades to mitigate security threats.

B. Motivating Policy Example in CONSCRIPT

We start our description of CONSCRIPT advice by show-
ing a motivating example of how it may be used in practice.
One feature of the JavaScript language that is often consid-
ered undesirable for security is the eval construct. At the
same time, because this construct is often used to de-serialize
JSON strings, it is still commonly used. A naı̈ve approach
to prevent unrestricted use of eval involves redefining eval
as follows:

window.eval = function(){/ ∗ ...safe version... ∗ /};

However, references to the native eval functions are dif-
ficult to hide fully. This is because window.eval and
window.parent.eval, for instance, are both aliases for
the same function in the JavaScript interpreter. Are there
other access paths specified by Web standards, or, perhaps,
provided by some non-standard browser feature for a par-
ticular release? Another issue is that some native JavaScript
functions eschew redefinition, as the BrowserShield project
experience suggests [9].

These factors combined call for browser-based support
for such interposition, which can be implemented with the
notion of aspects [10]. An aspect combines code (advice) to
execute at specified moments of execution (pointcut). We
are among the first to consider the use of aspects in an
adversarial environment, as discussed in Section IV. Figure 1



1. <SCRIPT SRC="" POLICY="
2. var substr = String.prototype.substring;
3. var parse = JSON.parse;
4. around(window.eval,
5. function (oldEval, str) {
6. var str2 = uCall(str, substr, 1,
7. str.length - 1);
8. var res = parse(str2);
9. if (res) return res;

10. else throw "eval only for JSON";
11. } );">

Figure 1: Disallowing arbitrary eval calls.

shows how we support eval interception and argument
checking. There are several things to point out:

1) Advice registration is done through a reference such
as window.eval on line 4, pointing to the function
closure whose execution will be advised.

2) The original advised function is passed into the advice
function as the first parameter oldEval on line 5.

3) The argument to the original eval is passed as the
second parameter str on line 5.

4) Exceptions may be thrown by advice on line 10; here
we throw an exception to prevent eval on non-JSON
arguments.

5) We leverage existing JavaScript features like using
a closure to make a protected reference parse on
line 3 that points to the function initially pointed to
by json parse.

6) Instead of a regular call to str.substr, we use a
special construct uCall on line 6 to do the same
so that this policy type-checks. Section IV addresses
security considerations that arise when writing advice
code that are mitigated through static typing.

C. Aspects: Binding Pointcuts to Advice

Our modification to the JavaScript runtime introduces so-
called around advice by providing a new built-in function
around (Figure 1). The function parameter is invoked di-
rectly before (and instead of) any function call specified by
the first parameter. The advised function is no longer called:
it is up to the policy (advice) designer whether and how to
invoke the function and how to resume the program, i.e.,
forge a result, throw an exception, etc.

heap object

foo

function 

getElementById

getElementById

bar

stack heap

...

...

document

location

ge

x

y

z

...

Figure 2: Multiple aliases of function document.getElementById.

D. Deep Advice

Unlike class-based object-oriented languages such as
Java or C#, JavaScript does not natively support a class
structure. So, a typical pointcut consisting of a fully-
resolved class name and a method name simply does
not apply to JavaScript. To refer to a function or an
object field, one can use an access path, a sequence
of identifiers like window.location.href. A function re-
ferred to by access path document.getElementById is
just an object allocated on the JavaScript heap and,
as such, it can easily be aliased with a statement
var ge = document.getElementById;

Previously proposed advice systems in JavaScript [3]
generally use wrapping of a particular access path to mediate
access to it, which is a form of shallow advice. The issue
is that this form of mediation is not complete; other aliases
such as ge for the function being advised can be used to
access the function directly. It is quite difficult to prove that
no reference leaks occur.

CONSCRIPT advocates the notion of deep
advice. The idea behind deep advice is best
illustrated with an example: as mentioned before,
function document.getElementById is referred to
by at least two access paths: document.getElementById
and ge, as illustrated in Figure 2. Registering advice on
one of these access paths will in fact advise the function
itself, independently of which access paths is used for the
call. Deep advice is the default approach in CONSCRIPT.

E. Boot Sequence and Attack Model

CONSCRIPT attempts to limit the allowed behavior of
JavaScript code by using application-level policies. We as-
sume that an uncompromised browser properly initializes the
JavaScript runtime, which creates built-in objects like Array
and Date as well as objects pertaining to the browser embed-
ding of the JavaScript engine such as document or window.
Clearly, if the browser has been compromised, CONSCRIPT-
style enforcement may not provide much protection.

Next in this “bootup sequence”, advice registration is
performed. An appropriate analogy here is that advice is
“kernel-level”, trusted code. Advice can be registered by the
hosting page, which may subsequently proceed to load third-
party, potentially untrusted JavaScript. However, the subse-
quent script’s execution will be restricted through advice
registered by the hosting page.

Throughout this paper, we assume a powerful attacker
who may try to introduce an arbitrary script into the page
during library loading, which will be checked by CON-
SCRIPT. For instance, we may limit the scripts that can be
injected into the page to a known whitelist, thereby limiting
the potential of code injection attacks such as XSS [4].
Alternatively, it may be used to disallow accessing third-
party links after cookie access, as explained in Section V.



<script src="jQuery.js" policy="
around($, function ($, expr, ctx) {

var nodes = $(expr, ctx);
if (!nodes.length) throw ‘Nothing was selected.’;
else return nodes; }); "/>

Figure 3: jQuery policy.

A special case of aspect loading pertains to when we
need to load some code before registering an aspect. An
example of this is a policy for controlling jQuery library
behavior from Section V-D is shown in Figure 3. The
policy is registered around the $ function, which is only
available in the global namespace after the jQuery library
has been loaded. However, to make sure that jQuery.js
is not changing the environment in undesirable ways, we
need to make sure that jQuery.js only declares new code
and does not execute anything as part of being included.
This can be achieved through either a static analysis [11,
12] or by observing library loading at runtime. It is our
assumption that in the future a CONSCRIPT-like system will
be integrated with a library loading mechanism that will
ensure that the loaded library is not trying to do anything
other than registering new code. This is similar to some
recent module proposals for JavaScript [13].

III. TECHNIQUES AND IMPLEMENTATION

A design goal for our implementation has been to make
minimal changes to the JavaScript engine in Internet Ex-
plorer 8. All of our modifications are within the scripting
engine; we did not need to modify any other browser
subsystems such as the HTML rendering engine. We discuss
advising functions and script introduction in Sections III-A
and III-C. Section III-B focuses on optimizing advice.

A. Advising Functions

Our implementation changes the handling of the three
types of JavaScript function pointers, as described below.

User-defined functions. Within the Internet Explorer’s
JavaScript engine, JavaScript functions are represented with
heap-allocated garbage-collected closures. For CONSCRIPT,
we modified the closure object representation to contain
1) an optional pointer to an advice function pointer and 2)
a bit to represent whether it is temporarily disabled. Upon
initialization, the advice pointer is NULL. Binding advice to
a closure is implemented within the runtime by setting the
advice pointer on the closure to point to the function that
should be run instead (Figure 4). Note that these extra fields

Body of function 
add1

Body of function 
add2

var add1 = function (x) { return x + 1 }
var add2 = function (_, x) { return x + 2}
around(add1, add2)

Figure 4: Heap representation of a closure with advice.
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Figure 5: Foreign function (e.g., DOM) interpositioning.

are not exposed as JavaScript object fields; they are only
visible within the C++ interpreter.

We modified the execution of a user-defined function to
first check whether advice was registered and enabled. If
so, execution proceeds by running the advice function. This
interpositioning is fast in practice because the function to
jump into has been resolved at registration time and the stack
is already set up for a function call, with the exception of
the function being advised being passed as a parameter on
the stack.
Native functions. JavaScript supports a standard set of func-
tions, like eval and its math libraries, that might be handled
more efficiently than more general user-defined functions.
As with user-defined functions, there is an explicit object
in the interpreter for every such function: interpositioning is
analogous to that for user-defined functions.
Foreign functions. A JavaScript engine is typically em-
bedded within a larger hosting application, like a browser,
and the host provides functions to the interpreter, which,
in turn, exposes them to scripts. For example, Internet
Explorer 8 provides COM functions to the JavaScript in-
terpreter for cross-frame communication, which are reach-
able through the window and document objects, such as
window.postMessage.

While such a function is still perceived by the script
developer as a JavaScript closure, the hosting environment
actually manages the underlying representation. The prob-
lem is that Internet Explorer 8’s JavaScript interpreter simply
represents such functions with a single pointer; there is no
object to which we can directly bind advice.

Our solution is to build a translation table on demand.
As shown in Figure 5, whenever a script binds advice to an
external function, the mapping from a function pointer to the
corresponding advice function is added to the table. Once a
function call is resolved to a foreign function, a check is first



made whether advice has been registered: a hit causes the
advice to be called, while a miss continues the regular flow.
The size of the table is bounded by the number of registered
external functions to advise. We believe that compared
to alternative implementation strategies, such as using fat
pointers, our solution involves minimal instrumentation.

B. Blessing and Advice Optimizations

Consider simple “pass-through” advice that attempts to
resume the originally invoked function:

function add1 (x) { return x + 1; }
function ok (f, x) { return f(x); }
around(add1, ok);
var three = add1(2);

Upon the initial call to add1, because advice is registered
for it, ok will be called instead. Executing ok will call f,
which is bound to add1, leading to infinite recursion.

To address this issue, we provide two functions, bless
and curse, that temporarily manipulate the advice-set bit.
A status bit is associated with every closure. Calling bless
disables advice and calling an advised function checks it,
and if the bit is disabled, re-enables the advice bit for the
next call, but does not dispatch to the advice function for the
current one. The above advice function would be rewritten:

function ok(f, x) { bless(); return f(x); }

However, in our experimentation with CONSCRIPT, we
discovered that requiring an explicit call to bless, beyond
being verbose, introduces an extra script-level function call
for the typical case of a policy passing and therefore incurs a
performance penalty. We perform auto-blessing by default:
we assume advice will dispatch to the raw function and thus
disable the advice upon dispatch. For the typical case, the
advice code no longer needs to call bless.

Automatically flipping the advice bit upon advice invo-
cation introduces a new concern. If the raw function is not
called, such as for throwing an exception in response to a
policy violation, the advice must be reenabled. We provide
the function curse to turn the bit back on. For example,
to only permit calls to add1 with numeric parameters, one
would write:

function onlyNum (f, x) {
if (typeof x == ’number’) return f(x);
else { curse(); throw ’exn’; } }

around(add1, onlyNum);

Auto-blessing also results in a much lower performance
overhead than the alternatives. We assess the performance
of blessing and auto-blessing in Section VII.

C. Advising Script Introduction

Controlling the way new scripts are added to the Web
application is paramount to application security. For the
specific pointcut of script introduction, we modified the
engine to support a different form of around. Before sending
the source of a script to the parser etc., if script advice is
registered, it is sent to the advice function:

var glbl = this;
aroundScript(function (src) {

return (glbl == this) ? "" : src; });

In this case, the code about to be introduced is re-
ferred to by parameter src. As shown above, to de-
termine whether the source is associated with a new
<SCRIPT> tag or code inlined into an HTML tag (e.g.,
<a onclick ="alert(’hello’)"/>, advice must check
the object to which the this is bound. We cannot reuse
around because the deep function corresponding to code
injection is not exposed to JavaScript so its use cannot be
directly secured.

The string returned by the advice function will be passed
through the parser instead. This simple advice mechanism
could be used to completely change the way scripts are
interpreted. For instance, Caja-style rewriting [7] or AdSafe-
style subset checking [14] could be applied to the script
before being passed to the JavaScript engine: unlike previous
approaches that must account for all code injection points, all
dynamically introduced code is directly subject to mediation,
simplifying implementation.

IV. SECURING ADVICE

In this section, we consider attacks against CONSCRIPT
advice policies. Auditing policies published by other re-
searchers, we found that they are quite tricky to get right.
This is true even for policies consisting of only a few lines of
JavaScript [2, 3]. While the idea of aspects is by no means
new [15], in an adversarial environment, aspects are subject
to a host of difficult issues.

In our attack model, we distinguish between kernel code
(code loaded before an untrusted library) and user code (un-
trusted libraries that may execute after the loading sequence).
It is our intention to protect against advice tampering, i.e.
user code that attempts to interfere with the way advice is
applied and followed at runtime by tampering with code or
data. Our approach is to slightly modify the interpreter to
enable isolated reasoning about policies. In Section IV-C,
we discuss a custom static analysis to verify that policies
are safe against common attacks.

A. Motivating Example: A Whitelist Policy

Consider the policy in Figure 6a that attempts to use
a whitelist to limit which frames may be messaged. Us-
ing CONSCRIPT’s deep around advice eliminates concerns
about alternate aliases for postMessage. However, there are
further exploitable attack vectors:

1. toString redefinition: The target parameter is ex-
pected to be a string but this is never checked, so the attacker
may foil the whitelist check with a clever use of a custom
toString method:

var count = 0;
frame1.postMessage("1",

{toString: function () {
count++;



var okOrigin = {"http://www.google.com": true};
around(window.postMessage,

function (post, msg, target) {
if (!okOrigin[target]) {

curse(); throw ’err’;
} else return post.call(this, msg, target); });

let okOrigin = {"http://www.google.com": true };
around(window.postMessage,

function (post, msg, target) {
let t = toPrimitive(target);
if (!hasProp(okOrigin, t)) {

curse(); throw ’err’;
} else return uCall(this, post, msg, t); });

Figure 6: Vulnerable (a) and secure version (b) of the same intended whitelisting policy. Policy (b) passes the type checker.

return count == 1 ? "http://www.google.com"
: "evil.com" });

2. Function.prototype poisoning:
Function.prototype may be modified to have method
call invoke the auto-blessed function:

Function.prototype.call =
function () { window.postMessage("1", "evil.com"); }

frame1.postMessage("1", "http://www.google.com");

3. Object.prototype poisoning: New entries may be
added to Object.prototype, including one whitelisting the
URL "evil.com":

Object.prototype["evil.com"] = true;
frame1.postMessage("1", "evil.com");

4. Malicious getters: Combining poisoning attack 3 with a
syntactically-invisible malicious getter function, an attacker
may even gain access to the whitelist object and edit it:

Object.prototype.__defineGetter__("evil", function () {
delete this["http://www.google.com"]; });

frame1.postMessage("1", "evil");

While aspects eliminate a common source of error in se-
curing APIs — targeting the appropriate functionality —
as these examples show, writing correct policy logic is
still very tricky. Our solution is to make interpreter-level
modifications that enable isolated reasoning and then provide
a static analysis for policies. Figure 6b shows a version of
the original policy that passes our checker and is also not
vulnerable with respect to the attacks listed above.

B. New and Removed Features

To enable modular reasoning, we slightly modify the
JavaScript interpreter. Just like the ES5’s standard’s strict
mode [16] we eliminate dynamic constructs with and eval,
as they make static reasoning quite difficult by allowing
user code to manipulate seemingly encapsulated policy code.
For instance, JavaScript exposes a limited form of stack
inspection: if a policy calls an external helper function,
that function may use field caller to access and modify
arguments on the stack and call functions on the stack. In
CONSCRIPT, we disallow caller access2.

We added a new secure calling form uCall to avoid
prototype poisoning attack 2 on call, which we can also
use to build further calls. In attack 2, the policy writer wants
to invoke call on post, but invocations of post.call(...)

2This feature is deprecated in the upcoming JavaScript language stan-
dard [16]. In particular, Section 15.3.5.4 notes: “If P is caller and v is
a strict mode Function object, throw a TypeError exception.” Similar
eval restrictions needed for encapsulation are given in Section 10.4.2.1.

are subject to prototype poisoning attacks. Figure 6b demon-
strates our new primitive uCall that may be used to invoke
functions with custom this objects (post in this example)
but without prototype poisoning. Similarly, while we might
try to avoid the poisoning in attack 3 of okOrigin[target]
by writing okOrigin.hasOwnProperty(target) to check
direct (non-inherited) fields of okOrigin, we must avoid
using a poisoned hasOwnProperty. Our solution is to use
uCall to encode the safely encapsulated hasProp function:

var h = {}.hasOwnProperty();
function hasProp (o, fld) {return uCall(o, h, fld);}

Finally, to avoid type forgery attacks as in attack 1, we
provide function toPrimitive to perform the conversion
from a potentially poisoned object to a primitive type.

C. Statically Validating Policies

We propose a static verifier to check for common security
holes in policies. We use a type system in which traditional
ML-style types, like arrows for functions and records for
objects, are annotated with security labels. Only policies
must type check (program code need not) and we assume
the JavaScript interpreter restrictions from Section IV-B.

Challenging current attempts to analyze JavaScript, there
is no formal semantics realistic enough to include many
of the attack vectors we have discussed yet structured and
tractable enough that anyone who is not the inventor has
been able to use; formal proofs are therefore beyond the
scope of this work. However, our system is an application
of techniques established for analyzing C and Java using
labels or qualifiers [17, 18] with adaptations derived from
the (informal) ECMAScript standard and previous attempts
to tame JavaScript like Caja [7]. We also phrase our analysis
as a type system to present a concise yet reasonably thorough
case analysis that also guides implementations.

The rest of this section is organized as follows. First,
we present the safety properties checked at each term in
our system and the corresponding trust labels for reasoning
about them. Next, we summarize the underlying ML-like
type system and examine some representative rules. We also
briefly discuss type inference. We refer the reader to our
technical report [19] for a more thorough presentation of
our type system.

Policy Safety. In CONSCRIPT, we protect policies against
violations of the following two properties:

1) Reference isolation: Kernel objects should not flow
to user code. E.g., the whitelist in Figure 6 may only
be referenced by policy code.



Label Policy-only Invocable

(u)ser object
(k)ernel environment function X
protected (o)bject X X

Figure 7: Label properties.

2) Access path integrity of explicitly invoked func-
tions3: When a policy invokes a function, that function
should be known at time of policy loading. Otherwise,
the call may be subject to prototype poisoning, as with
call in Figure 6a.

Security Labels. To reason about whether any term violates
one of our properties, each one is labeled with a privilege
level: u, k, or o. The privilege level determines which (if any)
of the following two properties is enforced for a particular
value, as summarized in Figure 7:

• Policy-only. The policy-only property is for reference
isolation, signaling which values user code cannot
directly reference (and, implicitly, stating user code
might have access to any other). For example, an object
representing a whitelist defined in policy code should
not leak out (Figure 6) and thus should be policy-only.
In CONSCRIPT, the opposite of being policy-only is
being a potential sink for capability leaks. For example,
if an object is not policy-only, it might be accessible
to user code, as would any of its fields. These fields
act like an escape sink towards user code; they should
not be assigned a policy-only value like a whitelist.
Label o values are policy-only (Figure 7). Only special
CONSCRIPT primitives or closures and object literals
defined in a policy are labeled o.

• Invocable. The invocable property is for tracking ac-
cess path integrity at call sites. For example, function
window.postMessage in Figure 6 is accessed in the
top-level at policy definition time and thus should be
marked as invocable in the top level without concern
for hijacking. Similarly, policy-only terms are labeled
o and are never leaked: they are not hijacked and may
be invoked.

Our labels form a lattice: (⊥ < k < u < >) ∪ (⊥ < o < >).
For example, o terms cannot be substituted for u or k terms
during assignments. Similarly, k (invocable) terms may be
substituted for u (non-invocable) terms as fewer interactions
may be performed with u terms. We represent substitution
with flow relation L1 B L2, read as L1 may flow to (or
substitute for) L2, such as kBu and oBo. Such flow checks
might be replaced with proper subtyping in future versions.

An ML-like Core Language. Our core language is an
ML-like subset of JavaScript. The base value for every

3Stronger properties might disallow any user function invocation, which
is too draconian, or any user function invocation, which is too cumbersome
(e.g., field access requires explicit permission due to setters and getters).

type (e.g., T1 in TL1
1 ) is the primitive type ? or an ML-

like type constructor: (. . . ; fldn : TLn
n ) for a record

type, . . . × TLn
n → TLo

o for a function type, and TL ref
for a reference type. Note that if T1 is a type constructor,
its component types will be labeled. We use these type
constructors to provide structure — otherwise, label tracking
would be too imprecise. Primitive types cover heap values
allocated outside of policies: we do not trust external logic so
have little interest in the structure of its values. To simplify
reasoning, new primitives like around are not first-class and,
like AdSafe [14], we statically disallow JavaScript keywords
like arguments, as detailed in our technical report [19].

Inference Rule Samples. This section examines several
examples of how labels are used in our type system.

Calling trusted foreign functions: Consider the invocation
of uCall(this, post, msg, t) in Figure 6b. uCall is for
invoking non-policy functions, but the rule must ensure that
the non-policy function has not been hijacked and that it is
not leaked a reference to policy objects:

uCall /∈ Γ Γ ` o : T Lo
o Lo B u

Γ ` f : ?Lf Lf = k

Γ ` an : T Ln
n Ln B u i ∈ {. . . , n}

Γ ` uCall(o, f [, . . . , an]) : ?u
(inner-level uCall)

We cannot use an ordinary arrow type for uCall: the
first antecedant checks that it is truly the environment’s
uCall. The fourth antecedant checks that post’s base type
is ?: uCall is not intended for policy functions. The fifth
antecedant requires post to have label k, meaning it could
not have been hijacked and can thus be invoked. Using
flow relation B, the third and seventh antecedants check
that this, msg, and t arguments have low enough privilege
to be allowed to flow to user code (label u). As f is not a
policy function, we know the result of uCall is a primitive
(e.g., of non-policy origin) value of type ?.

Our system syntactically distinguishes top-level code,
executed when advice is registered and thus has access to
kernel APIs in the global environment, from code nested
within function bodies, which might run in response to user
code that has poisoned the global environment. If uCall is
used in the top-level, we label the return value as k, meaning
it can be used to load kernel APIs. However, the above rule
is for inner-level expressions so we cannot trust that the
result has not been hijacked: the return type is labeled u.

Dynamic field sets: The second rule applies to the syntactic
form o[i] = v. Intuitively, if i is not a direct field of o, o’s
prototype chain will be checked for i, which might resolve
to a field on Object.prototype. In the case of poisoning
with a setter, similar to attack 4 (Section IV-A), o may leak.
As we do not statically know the value of i, such a call is
only allowed if o’s type has a privilege label that states it is
acceptable to leak it to user code (L1 B u).



1) JKK = ?k

2) JUK = ?u

3) J{. . . , f ldn : Tn}K = (. . . ; fldn : JTnK reflabel(JTnK))o

4) J. . . x Tn → ToK = . . .× JTnK →o JToK

where label(T L) = L.

Figure 8: Interpretation J·K of policy annotations as type annotations.

Γ ` o : T L1
1 Γ ` i : T L2

2

Γ ` v : T L3
3 L1, L2, L3 B u

Γ ` o[i] = v : T L3
3

(dyn set)

If term i is an object, it will be dispatched to the toString
method. toString might be poisoned to leak object i, so
we must check that i’s label allows it to flow to user values
(L2 B u). Due to these same attacks, we must also ensure
that it is acceptable to leak v to user code: L3Bu. The other
antecedents simply check that the terms are well-typed.

Static field sets with records. The third rule applies to form
o.f = v where o is defined within the policy code, such as
if we wanted to modify the whitelist. In this case, o must
be a record type (with policy origin):

Γ ` o : (f : T L; r)o Γ ` v : T L

Γ ` o.f = v : T L
(k stat set)

Unlike with dynamic field sets, we can check that the desired
field actually exists in the record, in which case there is no
prototype poisoning attack to leak o. If the record’s field
and assignment’s right-hand side labels and types match,
the assigned value will not be leaked either.

Label Inference. Label inference follows base type infer-
ence. If labels are ignored, the base types may be inferred
using ML-style unification. Concrete label o is introduced
for type constructors and labels k and u for top-level
and inner-level global variables, respectively. The remaining
labels are variables that may be inferred as as suggested in
the JQual project, for instance [18] for general type qualifier
labels.

V. POLICIES

In this section we present a variety of fine-grained policies
we expressed with CONSCRIPT. To collect these policies, we
studied bugs and anti-patterns in both “raw” JavaScript as
well as popular JavaScript libraries such as jQuery. We also
investigated and rewrote some of the policies published in
the literature [2, 3] in CONSCRIPT. We discovered that in
some cases, a few lines of policy code can replace a new
specialized HTML tag. This demonstrates that CONSCRIPT
provides a general enforcement mechanism for a wide range
of application-level security policies. Crucially, our type
system helped us avoid many errors found in previously
proposed policies and even a few of our own.

To help demonstrate the value our type system described
in Section IV-C provides, we manually annotate variable
declarations and function parameters with security labels.
Due to some invariants of CONSCRIPT’s use of labeled

types, our policy annotations (Section V) use a simpler
language than that of our type annotations . Figure 8 defines
a syntax-directed translation from policy annotations to more
verbose but canonical labeled type annotations. The intuition
is that terms with label u or k have base type ? (rules 1
and 2, exercised in policy 2) and that terms whose base types
are constructors will have label o (rules 3 and 4, exercised
in policies 2 and 4, respectively). As these redundancies
may be reconstructed in a simple, direct manner, our policy
annotation language elides them.

In the remainder of this section, the policies are grouped
as controls on vectors for dynamic code introduction (Sec-
tion V-A), communication restrictions (Section V-B), doc-
ument object policies (Section V-C), and API and library
reliability guidelines (Section V-D).

A. Script Introduction Policies

We start with an important class of policies used for
controlled dynamic introduction of code. Recall that CON-
SCRIPT is designed to protect the hosting page from either
malicious or poorly-written third-party code and libraries.
As such, the hosting page may choose to enforce properties
of the introduced code and this section explores some of
these possibilities.

As an extreme, one might write a CONSCRIPT policy to
parse dynamically injected code and perform static analysis
on it, rejecting everything that does not match a static analy-
sis policy [11, 12]. Static analysis techniques currently strug-
gle with mechanisms for intercepting dynamically injected
code [12, 20], which CONSCRIPT more cleanly exposes, as
show below. Recall that in the case of script interception
advice, the policy is designed to return the code that the
JavaScript interpreter will proceed to run instead of the code
being introduced.

1. No dynamic scripts
The simplest policy is to simply disallow any code from being
introduced after a certain point, such as after the main library loads.
We encode disabling scripts by returning the empty string back to
the JavaScript interpreter.

<script src="main.js" policy="
aroundScript(function () { return ‘’; }); "/>

2. No string arguments to setInterval, setTimeout
The functions setInterval and setTimeout run callbacks in
response to the passing of time. A closure is typically passed in
for the callback parameter. Surprisingly, and even commonly pro-
scribed in introductory tutorials, string arguments to be evaluated
may also be accepted. This attack vector may be easily dealt with.

let onlyFnc : K x U x U -> K =
function (setWhen : K, fn : U, time : U) {

if ((typeof fn) != "function") {
curse();
throw "The time API requires functions as inputs.";

} else {
return setWhen(fn, time);

}
};



around(setInterval, onlyFnc);
around(setTimeout, onlyFnc);

3. No inline scripts
Previous code injection attacks such as the Samy worm would often
try to attach malicious script to DOM elements. The policy below
aims to prevent inline scripts: if a script’s context is not the global
object, it is an inline script, so the empty string is returned to the
interpreter.

let glbl : K = this;
aroundScript(function (src) {

return glbl == this ? src : ""; });

4. Script tag whitelist
We can ensure that statically loaded script tags have a source listed
in whitelist w. When the advice function is invoked, the script
tag has been created, but the script has not yet been executed.
Therefore, for statically loaded scripts, checking the src attribute
of the last one in the document tree suffices. A more direct interface
would be to modify our system to also pass in the node or script
context as a parameter to the script advice function [6]. Issues of
correctness pertaining to whitelist use are covered in Section IV-B.

let glbl : K = this;
let getScripts : K = document.getElementsByTagName;
let doc : K = document;
let w : {"good.js": K} = {"good.js": true};
aroundScript(function (load : K, src : U) {

if (this == glbl) {
let scripts : U = uCall(doc, getScripts, "script");
return hasProp(w, scripts[scripts.length - 1].src) ?

load(src) : "";
} });

Note that we do not check the two field accesses when looking
up the script src: getter functions might be invoked at these points,
arguably violating access path integrity (but not reference isola-
tion). We could statically check for getter and setter equivalents of
uCall at these points, but found such a restriction to be of little
benefit.

5. NOINLINESCRIPT tag
BEEP [4] advocates the introduction of a <noscript> tag.
Fortunately, CONSCRIPT is general enough to implement this tag
in the form of a policy. As a finer-grained version, the following
policy prevents inline scripts from being loaded as descendants of
a <noinlinescript> tag:

let glbl : K = this;
let getScripts : K = document.getElementsByTagName;
let doc : K = document;
aroundScript(function (load : K, src : U) {

if (this == glbl) return src;
else {

let n : U = this;
while (n)

if (n.tagName == "NOINLINESCRIPT") return "";
else n = n.parentNode;

return src; } });

The significance of this example is that we can securely
previously proposed HTML tags using our primitives, sep-
arating the slow process of defining new standards and
upgrading browsers from securing applications.

B. Communication Restrictions

Our trust model, reflecting modern application design,
expands an application’s trust boundary to include the client.

By trusting client-side computations, Web applications are
now sensitive to how a client communicates with untrusted
principals. Developers should now, for example, more care-
fully restrict how messages are passed to frames belonging to
untrusted origins or what RPC calls are made to third-party
servers. Browser policies are coarse and may be ignored; we
show how applications may enforce fine-grained policies on
communication.

6. Restrict XMLHttpRequest to secure connections

XMLHttpRequest enables communication with an
application’s server without reloading a page. An instance
of the XMLHttpRequest object provides the method
open(mode, url, sync, username, password), where the
last two parameters are optional. A program that specifies a
username and password has heightened security concerns. The
following policy ensures, if a username and password is supplied,
that the connection is over HTTPS.

let substr : K = String.prototype.substr;
around((new XMLHttpRequest()).open,

function (o : K, m : U, u : U, a : U, nm : U, pw: U)
{

let name : K = toPrimitive(nm);
let password : K = toPrimitive(pw);
let url : K = toPrimitive(u);
if ((name || password)

&& uCall(url, substr, 0, 8) != "https://") {
curse(); throw "Use HTTPS for secure a XHR.";

} else
return uCall(this, o, m, url, a, name, password);

});

7. HTTP-only cookies

Servers often store state on the client to avoid costs associated with
maintaining session state between calls to the server. Cookies may
therefore contain valuable state information that should only be
read and written by the server. We therefore might want to disable
JavaScript access to cookies.

let httpOnly : K -> K = function (_ : K) {
curse(); throw "HTTP-only cookies"; };

around(getField(document, "cookie"), httpOnly);
around(setField(document, "cookie"), httpOnly);

8. Whitelist cross-frame messages

The postMessage function may transmit primitive values between
frames of differing origins. While a developer may specify the
intended origin of the receiving frame during a particular call,
which prevents man-in-the-middle attacks [21], the developer is
not obligated to. The following requires such a specification and,
further, limits communication to a whitelist of URIs.

let okOrigins : {"http://www.google.com": K}
= {"http://www.google.com": true};

around(window.postMessage,
function (p : K, msg : U, target : U) {

let t : K = toPrimitive(target);
if (!hasProp(okOrigins, t)) {

curse(); throw ’err’;
} else return p(msg, t); });

9. Whitelist cross-domain requests

The push to have more application functionality run in the browser
has led to new primitives like XDomainRequest for communicating
with foreign servers without requiring a server-side proxy (which
might have performed its own access checks). Similar to the



postMessage example, we introduce a check against a whitelist
of URIs before allowing cross-domain server requests.

let w : {"http://www.google.com": K}
= {"http://www.google.com": true};

around((new XDomainRequest()).open),
function (x : K, a1 : U, url : U) {

let u : K = toPrimitive(url);
if (!hasProp(w, u)) {

curse(); throw ’err’;
} else return x(a1, u); });

A subtlety of the XMLHttpRequest and XDomainRequest
examples are that we advise the function attached as method
open on request object instances. Each request object
calls the same function, one for XMLHttpRequest calls
and a different one for XDomainRequest calls. Using the
rqst.open(...) form just passes in rqst to the advised
function as the this object; despite advising a function
reached through one instance of a request object, we are
indeed advising the function shared by all of them. This is
analogous to advising eval by using just one alias.

C. DOM Interactions

DOM interaction are a common source of security flaws.
This section shows how CONSCRIPT policies can help reign
in some of these issues.

10. No foreign links after a cookie access
The following policy, proposed by Kikuchi et al. [2], is intended
to prevent links from being used for cookie access. The first
advice function represents eliminating side-channels. The second
advice function, after being triggered, enables a stricter policy
mode. The third advice function attaches a policy to src attributes
of dynamically generated nodes: it avoids toString rewriting
attacks and, whenever the strict policy is enabled, whitelists target
domains.

around(document.setAttribute, function () {
curse(); throw ’err’; });

let ok : K = true;
around(getFld("cookie", document), function (g : K) {

ok = false;
return g(); });

let slice : K = Array.prototype.slice;

around(document.createElement, function (c : K, t : U) {
let elt : U = uCall(document, c, t);
if (elt.nodeName == "A")

around(setFld("href", elt),
function (setter : K, v : U) {

let str : K = toPrimitive(v);
if (ok ||

uCall(str, slice, 12) == "http://g.com/"))
setter(str);

else {
curse();
throw ’err’; } });

return elt;
});

We show how this policy can be implemented in CON-
SCRIPT with only a few lines of policy code.

11. Limit popup window construction
Below we show the implementation of another policy proposed by
Kikuchi et al. [2], we can limit the number of attempts to open a
popup window by counting the number of invocations. Further, we
can restrict the dimensions of the popup window.

let split : K = String.prototype.split;
let toLower : K = String.prototype.toLowerCase();
let match : K = String.prototype.match;
let toInt : K = parseInt;
let count : K = 0;
around(window.open,

function (w : K, url : U, name : U, features : U) {
if (count++ > 2) {

curse(); throw ’err’;
} else if (features) {

let f = toPrimitive(features);
let a = uCall(f, split, ",");
let i = 0;
while (i < a.length) {

var o = uCall(a[i], split, "=");
var prop = uCall(o[0], toLower);
if (uCall(prop, match, "width|height"))

if (toInt(o[1]) < 100) {
curse(); throw ’err’; }

i++; }
return w(url, name, f); } });

To further prevent click-jacking, a similar policy might also
be used to restrict where the window may be moved.

12. Disable dynamic IFRAME creation
Phung et al. [3] introduce a policy to prevent the construction of
IFRAME elements using createElement. Note that unlike the
original policy, ours is safe from attacks like running delete on
the attribute or accessing the createElement function from other
aliases.

around(document.createElement,
function (c : K, tag : U) {

let elt : U = uCall(document, c, tag);
if (elt.nodeName == "IFRAME") throw ’err’;
else return elt; });

13. Whitelist URL redirections
Phung et al. [3] advocate checking programmatic URL redirections
against a whitelist. Note in the following policy the common theme
of not leaking the whitelist:

let whitelist : {"http://microsoft.com": K}
= {"http://microsoft.com": true};

around(setFld(document, "location"),
function (setter : K, url : U) {

let to : K = toPrimitive(url);
if (hasProp(whitelist, to)) setter(to);
else { curse(); throw ’err’; } });

14. Prevent resource abuse
A common policy is for preventing abuse of resources like modal
dialogs. These may be disabled simply:

let err : K -> K = function () { curse(); throw ’err’; });
around(prompt, err); around(alert, err);

D. API and Programming Reliability Guidelines

A key use case for advice is to introduce additional
constraints such as pre- and post-conditions on the use
of important APIs. In the following examples, also note
how the structured nature of advice allows us to install
upgrades to third-party libraries like jQuery without needing
to manually reinstrument or otherwise specially handle the
new versions in our policies.

15. Simple and fast jQuery selectors
$ is a core operator in the popular jQuery library that, given
a selector expression, returns the matching document elements.



For code style or, more commonly, performance concerns about
selectors, a simple pre-condition is to disallow selectors with slow
composition operators.

<script src="jQuery.js" policy="
let match : K = String.prototype.match;
let r : K = /^[a-zA-Z0-9.#:]+(( > | )[a-zA-Z0-9.#:]+)+$/;
around($, function ($ : K, selStr : U) {

let s : K = toPrimitive(selStr);
if (!uCall(s, match, r)) {

curse();
throw ‘Compose selectors only with ( > ) or ( ).’;

} else return $(s); });"/>

16. Explicit jQuery selector failure

An anti-pattern by jQuery is to silently fail when no elements are
returned by $, allowing a library user to attach behavior to the
null-set. An application may choose to add the post-condition that
$ return values should not be empty.

<script src="jQuery.js" policy="
around($, function ($ : K, expr : U, ctx : U) {

let nodes : U = $(expr, ctx);
if (!nodes.length) throw ‘Nothing was selected.’;
else return nodes; }); "/>

17. Staged eval restrictions

A common implicit invariant in JavaScript applications is that
they use eval [22] but only in restricted ways. This might more
precisely appear as a staged precondition. For example, we might
allow the trusted jQuery library to initialize itself using eval but,
for all subsequent code, we might then restrict usage of eval to
deserializing JSON objects.

<script src="jQuery.js" policy="
let parse : K = JSON.parse;
around(eval : K, function (_ : K, evalStrArg : U) {

curse();
return parse(evalStrArg); }); }); "/>

VI. AUTOMATICALLY GENERATED POLICIES

Writing policies by hand places the burden on the devel-
oper to “get things right”. Fortunately, relatively few modern
large-scale Web applications are constructed in isolation,
without using a framework or a toolkit of some kind, such
as GWT [23], Volta [24], Java J2EE, ASP.NET, etc. These
frameworks can bring in policies of their own that extend
to applications written on top of them. Policies specific to
a particular application can also be inferred through static
analysis or runtime training. In this section we explore two
case studies in generating and then enforcing such policies.
The first described in Section VI-A uses a very simple form
of static analysis on the server to restrict possible behavior
on the client. The second described in Section VI-B uses
runtime training to determine “expected” benign behavior
and then rejects behaviors outside of the training set.

Once a policy is generated, it must be correctly and
efficiently enforced. We demonstrate CONSCRIPT can en-
force our generated policies, and, in Section VII, assess
performance.

A. Private Methods in Script#

Script# is a tool that translates C# code into
JavaScript [25]. This tool is used in a variety of large-
scale commercial projects such as Live Maps to simplify
and quicken the development process. As part of its C#-
to-JavaScript translation, Script# takes a set of C# classes
and translates them into JavaScript. However, these two
languages are really quite different. One area of distinction
is that C# supports access qualifiers such as internal,
private, protected, and public, and JavaScript does
not. After the translation takes place, a previously private
method is effectively accessible as a public one to any
piece of code that is loaded before and after the code that
has been translated with Script#. This issue is sometimes
referred to as failure of full abstraction [26], and leads to
unauthorized code and data access.

Fortunately, CONSCRIPT makes this deficiency simple to
rectify by generating a policy as part of the translation
process. We traverse the original C# program source offline,
identifying private methods and, for each, also identity
public entry points to the classes (public methods) in which
the private methods are found. Note that this information is
readily available to a Script# language compiler.

We automatically generate policies from this list: an
enabled status bit is allocated for every class, where entry
through a public point is modified to enable the corre-
sponding class bit, exit resets it, and access of a private
method checks it. The privileged policy bits are encapsulated
within the set of policies and the (anonymous) policies are
associated with the method objects; private methods may
only be called when public ones are on the stack, akin to
cflow pointcuts in other aspect systems [15]. If we exposed
arguments.caller to policies, we could match the exact
access modifier semantics and would only need to instrument
the private methods.

B. Intrusion Detection of Client-Side Exploits

In practice, many JavaScript applications only exercise a
small subset of browser capabilities, but this subset varies
between applications. According to the principle of least
authority, if an application does not need a capability, it
should not have it. Instead of using a preset list, which
may be too lax, or manually generating the policy list of
acceptable functionality, which may be error-prone, here
we demonstrate the potential for automatically restricting
browser functionality to a subset. Such a subset can be
synthesized through runtime training. This is similar to intru-
sion detection techniques that train on valid runs observing
system calls or their sequences, proceeding to flag all other
possibilities as suspicious [20, 27, 28]. An interesting obser-
vation is that CONSCRIPT may be used to apply logging
aspects to a large number of functions to see which ones
are used at the time of training. CONSCRIPT can also be
used to enforce the blacklist at the time of detection.



This general approach may be used to harden many
Web sites and applications. Consider the popular Web ap-
plications GMail and Google Calendar. As a Web-based
program designed to display untrusted HTML email, GMail
is a particularly good example for this style of intrusion
detection. If a maliciously crafted message “breaks out” of
GMail sanitization, which is what happened in the case of
the Yamanner worm [29], our aspects will flag attempts
to execute previously unseen dangerous method calls. A
Google Calendar user might similarly attempt to circumvent
sanitization by creating a meeting request with a malicious
body and sending it to others.

In our experiments, we blacklisted XDomainRequest,
XMLHttpRequest, postMessage, setTimeout,
setInterval, eval, alert, prompt and several other
potentially dangerous methods not seen during training. We
did not encounter any intrusion detection alarms.

VII. EVALUATION

This section presents an evaluation of CONSCRIPT in the
context of Internet Explorer 8. Our primary focus is on
the runtime overhead introduced with CONSCRIPT instru-
mentation compared to alternative techniques. Section VII-A
talks about our experimental setup. Section VII-B evaluates
micro-benchmarks and Section VII-C focuses on applying
CONSCRIPT advice to large AJAX sites and applications
such as MSN, GMail, and Live Desktop; a summary of
information for these applications is given in Figure 10. All
measurements reported in this section were performed on
a Dual Core 3GHz Pentium 2 machine running Windows
Vista. In addition to measuring the performance overhead,
we also compare CONSCRIPT’s space overhead to that
induced by JavaScript code rewriting systems Caja [7]
and WebSandbox [8] and the advice system proposed in
Kikuchi et al. [2] in Section VII-D.

A. Browser Modifications for CONSCRIPT

As explained in Section III, we modified the JavaScript
interpreter in Internet Explorer 8 to support advising func-
tions and dynamic script introduction. In addition, for
the integrity of policies, we had to disable features like
arguments.callee, as suggested by ECMAScript 5 [16],
and introduce more secure calling forms for primitive func-
tions like around, uCall, etc., as discussed in Section IV-B.

Overall, our changes are small and we believe similar
augmentations can be made to scripting engines of other
browsers. In total, we have added 969 lines to the JavaScript
interpreter over 60 different code locations, which consti-
tutes a small fraction of the overall interpreter size. About
half of these changes were boilerplate for exposing new
functionality as JavaScript functions: once discounted, the
average instrumentation point was only 8 lines of code. In
contrast, Caja [7], a source rewriting tool, currently has
over 181,000 lines of code in its main source directory.
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USER-DEFINED FUNCTIONS

function(){} 1 3.86 1.06 1.02
function(){return + 1; } 1 4.04 1.07 1.03

NATIVE FUNCTIONS

Math.tan(5) 1 1.37 2.16 1.27
eval(”1”) 1 1.53 1.47 1.36
eval(”if(true)true; false; ”) 1 2.93 1.79 1.72

FOREIGN FUNCTIONS

getElementsByTagName(”div”) 1 5.57 1.31 1.20
createElement(”div”) 1 4.63 1.2 1.10

Average 1 3.42 1.44 1.24

Figure 9: Runtime overhead of applying aspects to micro-benchmarks.

Our modifications are not verified, but verifying even the
uninstrumented interpreter is an open problem, and our
approach assuages concerns about browser-specific logic and
library-level reimplementation of core functionality.

B. Runtime Overhead on Micro-benchmarks

Potentially thwarting our goal of fine-grained policy sup-
port is interpositioning cost. Language-level support, in
static languages, has been shown to take away much of
the instrumentation cost of an aspect system. In particular,
the cost of additional function dispatches introduced by a
naı̈ve syntactic desugaring of an aspect might be eliminated
by approaches like inlining. We find similar benefits for a
dynamic language. In this section we study the overhead
of 1) mediating a function call with advice, and 2) of lesser
concern, the initialization overhead of associating an advice
policy with a function to protect.

Overhead of Advice Interpositioning. We consider the cost
of running advice that simply proxies calls with no side-
effect beyond the seemingly inherent performance cost of an
indirected call. This removes the policy cost, leaving only the
advice mechanism and the original function. Further refining
previous benchmarks of a proposed wrapping system [3], we
distinguish between advising user defined functions, native
functions provided by the JavaScript interpreter (at low cost),
and external native DOM functions exposed to the JavaScript
interpreter through a COM interface (at a high cost). A
summary of our micro-measurements is shown in Figure 9.

To collect out measurements, for every benchmark, we
start a new JavaScript runtime, run 10,000 invocations
of the advised function, and normalize over the cost of
running 10,000 invocations of the function unadvised.

We also measure the overhead of the wrapping approach
discussed earlier. Our measured performance of wrapper-
based advice is 2–3x better than reported by others [3],
perhaps due to using a different browser or our care in



JavaScript
Application URL files size (KB)

GMail mail.google.com 32 421
Google Calendar calendar.google.com 5 360
Live Desktop www.mesh.com 3 178
MSN www.msn.com 3 17

Figure 10: Macro-benchmark information summary.

not inserting extraneous calls nor conflating policy logic
with advice mechanisms. In almost all benchmarks, even
naı̈ve language-level support of advice with explicit bless
calls (column “bless”) performs 2.7x faster than wrapping
(column “wrapping”). Introducing further optimizations, like
auto-blessing (column “auto-bless”), always outperforms
wrapping with an average 2.9x speedup over wrapped invo-
cation speed. While the benefits of language-based support
were largely expected for user-defined functions (rows 1–2),
speedup in advising native interpreter functions (tests 3–5)
and DOM functions (tests 6–7), which are often privileged,
is not as obvious.

Initialization Overhead. A survey of aspect literature shows
that advice registration can be quite expensive: an unopti-
mized DOM wrapper approach takes 9 ms to initialize [30]
and therefore can be as expensive as 100 ms on a mobile
device [31].

In CONSCRIPT, starting a new application session creates
a new interpreter session with globally available advice func-
tions. A new local environment is created that aliases these
advice function objects and global references to them are
deleted, making the local environment privileged. Note that
these manipulations only pertain to generally small advice
functions, not the large set of DOM and JavaScript library
functions that would be necessary for complete mediation
in other approaches. Policies are then run, not in the global
environment, but the privileged local one.

The initialization overhead is quite small in our ex-
periments. Based on a trial of 10,000 runs, creating the
privileged environment and removing global access costs
only 24 µs. The remaining costs for loading policies are
analogous to the optimized process of handling source
attributes for a <SCRIPT> tag.

C. Runtime Overhead on Macro-benchmarks

While the experiments on micro-benchmarks above show
superiority of CONSCRIPT compared to other techniques,
the real test of our system is when it comes to advising
large existing applications. To this end, we automatically
generate policies, as discussed in Section VI, and apply them
to large, JavaScript-heavy sites and applications such as
MSN, Google Maps, and Google Calendar, etc. to measure
the performance overhead in normal use.

For every experiment, we locally cached all resource
requests and performed dynamic rewriting of Web pages
to add our advice to the <HEAD> section using the Fid-
dler proxy [32]. For performance measurements of large
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Figure 11: Macro-benchmarks: enforcing policies in Section VI-B using
CONSCRIPT has low overhead, compared to rewriting techniques.

highly interactive Web applications, deciding how to mea-
sure the overhead presents a difficulty. Our strategy has
been to find two runtime events that do not exhibit much
runtime variance such as the onload event and the first
XmlHttpRequest being issued. Our measured slowdowns
are thus mostly of CPU time; slowdown in a network-
bound interactions like page loading is likely less than our
reported benchmarks. This approach for experimenting with
third-party sites was previously advocated in the AjaxScope
project [33].

Overhead of Private Methods in Script# Policy. For the
policy in Section VI-A, our protection of Script# private
methods exhibits two kinds of runtime costs: instantiation
overhead during application loading and then runtime moni-
toring overhead. Of concern, to protect a private method, all
public entry points in the same class are also instrumented.
This is unlike our other policies as the cost may be linear
in the program size.

For this experiment, we applied the policy to the Live
Desktop application that is part of the application suite
located at www.mesh.com. We instrumented two core file
and folder manipulation class files of the Live Desktop
shared desktop application to evaluate these overheads,
spanning 5% of the main library (23 private methods
and 32 public ones out of 1,327 total functions). We have
only automated policy generation given the namespace in-
formation: while the C# compiler generates this information,
we manually extracted it for our benchmark. We averaged
our overhead numbers over 20 trials, with most network
resources cached locally.

There is no statistically significant impact on loading
the application when measured from beginning to end (and
forcing caching). The entire set of 55 method policies was
installed in 1 ms or less — our JavaScript timer does not
provide finer granularity — representing at most 0.3% of the
processing time (and our micro-benchmarks suggest much
less). For the task of opening a folder, 2 instrumented private
calls are made, with 40 invocations of other methods in the
same classes, accounting for 1.4% of the calls. We detected
no statistically significant overhead: the average 0.9% slow-
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Figure 12: Code size increase for different instrumentation technologies.

down is below the 3.5% range of experimental error.

Overhead of Intrusion Detection Policy. For the intrusion
detection policy in Section VI-B, to perform our experi-
ments, we created a representative list of 15 common attack
vectors. For example, postMessage and XDomainRequest
can be used to circumvent the single origin policy and
functions are typically coded without considering the pos-
sibility of defineProperty changing the behavior of field
access. Next, we monitored scripts sent to a browser from
the server, checking against a master list of privileged DOM
functions. Whatever did not occur was added to the final
blacklist. As we cannot directly access the code of third-
party sites, we used Fiddler to rewrite pages received by
our test browser to load our blacklist advice, mimicking our
suggested deployment approach.

We report the performance impact as part of our overall
performance analysis, as shown in Figure 11. We ran 30
trials of uninstrumented and instrumented versions. We
compare measured slowdown to that reported for JavaScript
rewriting overhead [2], though, unfortunately, error infor-
mation is unavailable. Fundamentally, when blacklisting
functions under benign scenarios, the only cost is in instru-
menting blacklist functions at initialization time. For most
applications we tested (including Google Calendar, which is
not shown), the standard deviation of the slowdown was 5%,
with the average slowdown being negligible (0%). While
we show an average 7% overhead on Google Maps, as its
slowdown deviation is 46%, the slowdown is not statistically
significant. Note that we have not observed any intrusion
detection alarms while testing these applications.

D. Code Size Increase

JavaScript code size is a major concern for Web appli-
cation performance [34], which becomes especially acute
for mobile devices with limited storage capacity and for
Web applications in general where resources are transferred
over the network. Our timing benchmark measurements
were performed on locally cached files. However, we must
consider the file size increases related to verbose policies
and rewriting, as initial network transfer time is crucial to
fast application loading.

Figure 12 shows that our advice system has small and
constant space overhead relative to other approaches, which,

in contrast, have a cost linear in the size of application.
We compare CONSCRIPT with the size blowup of running
Docomo [2]4, Caja [7], and WebSandbox [8].

We selected JavaScript files from MSN, GMail, and
Google Maps and ran them through existing rewriting
tools [7, 8], or used previously reported results when no
tool was available [2]. Reflecting best practices, we then
run both the input and output through a suite of JavaScript
compressors and pick the smallest file size.

For all, we compare the initial file size to the size of the
secured one. Our policies add an average 0.7 KB to the
compressed file size. As applications grow in size, relative
cost decreases because the policy size is constant in most of
our examples. In contrast, variable in the source rewriter and
the application, a cost linear in the source size was incurred.
We show the average linear cost per rewriter; we suspect the
importance of considering the application is that different
source generation tools (e.g., minifiers or tier-splitters) were
used on a per-application basis.

VIII. RELATED WORK

We implement much of the vision previously proposed
by Erlingsson and Livshits [6] and examine the unaddressed
problem of writing secure programmatic policies. There have
been significant advances since the original proposal:

Static analysis. Policies might be phrased as properties
to be statically verified. On benchmarks for a control-flow
analysis, Guha et al. found large JavaScript applications need
context sensitivity prohibitively higher than that for appli-
cations written in more static languages [20]. Evaluating
a points-to analysis, Guarnieri et al. [11] found JavaScript
widgets (that are typically between 50-250 lines) utilize a
more tractable language subset. It is still unclear, however,
how to apply such a static analysis to large, expressive Web
applications.

Type systems. Our type system in Section IV-C provides
a form of fully-static checking and considers the subtleties
of JavaScript, unlike Chugh’s [12]. It is derived from label-
based information flow type systems like Myer’s [17] and
Pottier’s [35]. Non-interference was too strict of a property
for our domain: we must simply prevent references to policy
heap objects from leaking. Inference is well-studied for such
systems; further aiding usability, due to our safety properties
and interpreter modifications, we only require policy code
to pass the checker.

Browser tags. There are several proposals for modifying
browsers to support coarse tag-based policies. For example,
BEEP [4] introduces both a <noscript> tag to disallow
scripts in descendant nodes and an application meta-tag for
hash-based whitelisting of dynamically loaded scripts. Our

4The measurements of Kikuchi et al. [2] are copied from the reported
ones as there was no public way to reproduce them.



more general script pointcuts enable encoding these primi-
tives by supporting context-sensitive advice at the point in
which a script enters the interpreter. MashupOS [5] proposes
open and closed sandbox tags. These enable an application
to load a script and manipulate the script’s content while
preventing the script from manipulating the application.
Section V lists examples of CONSCRIPT policies that largely
obviate the need for specialized tags.
Isolation languages. ADSafe [14], FBJS [36], Caja [7],
and WebSandbox [8] are JavaScript variants designed to run
untrusted gadgets in isolation from the rest of a page without
modifying browsers. ADSafe syntactically checks that a
gadget does not use many JavaScript language features such
as the this object; this is analogous to our heavily restricted
policy language subset except the entire program must be
written in it. The rest support larger JavaScript subsets by
rewriting gadget source to perform dynamic checks and
lookup translations. However, implementation correctness
of these systems has been questioned in the past [37]. By
instrumenting the browser instead, it is possible to get much
better assurances of enforcement correctness.
Shallow wrapping. Instead of the pervasively wrapping and
rewriting, an option is to only advise particular method
calls [3, 40] by dynamically reassigning an object’s method
to point to a wrapped, instrumented verison. While this may
be acceptable for some use cases like debugging [3] that
tolerate error, it is inappropriate for securing large APIs.
For example, there are many aliases to the function eval
that must be manually enumerated, and, unlike the rewriting
and deep wrapping systems, there are no controls against
inadvertant escaping of aliases. As a result, we found these
systems to be susceptible to our policy integrity attacks.
Weaving aspects into source code. A traditional technique
for implementing aspects that solves the above aliasing prob-
lem is, instead of forcing the developer to rewrite all aliases
to a function, to just rewrite the function. Kikuchi et al. [2]
and Washizaki et al. [41] demonstrate this idea for JavaScript
by introducing a serverside proxy to rewrite outgoing pages.
Unfortunately, the server cost is not negligible. Furthermore,
JavaScript is dynamic: traditional aspect weavers consume
type-based pointcuts, which is too imprecise for JavaScript.
Using references for finer pointcuts currently requires perva-
sive rewriting to pinpoint enforcement locations at runtime.
Next, the DOM API contains many privileged functions:
there is no source code available to rewrite. We avoid these
problems by instrumenting the interpreter.
Aspect interfaces for dynamic languages. How aspects are
exposed to developers is crucial. In JavaScript, pointcuts are
too imprecise if specified with type signatures. We do not
grant ambient authority to aspects [39]: instead of accepting
a variable or function name as a pointcut as Washizaki et
al. do [41], we advocate requiring a reference to a function
in order to be allowed to advise it. Kikuchi et al. [2] sug-

gest developers control JavaScript applications using a new
XML-based language with code template and state machine
tags. In contrast, we propose the single succinct construct
around. This construct in conjunction with libraries may be
used to develop other forms of advice (before, etc.) and to
provide pointcut combinators.

Secure aspects. While a traditional use case for aspects has
been for enforcing cross-cutting security (safety) properties,
discussion of securing aspect systems at the language level is
more recent. Dantas et al. [42] explore how to provide a non-
interference property: a program may not be behaviorally
modified by a malicious aspect. We weaken this property to
abide by the object capability model: advice may only apply
to a function given a reference to the function.

We primarily focus on an opposite threat model: aspects
should be protected from subsequent code. Systems like
Naccio [43] and SASI [44] provide instrumentation analo-
gous to ours for preserving encapsulation (Section IV-B) but
do not support policies that interact with non-policy code. In
contrast, for example, our verifier may check that a policy’s
interactions with the DOM do not leak a privileged whitelist
object (Section IV-C).

IX. CONCLUSIONS

This paper presents CONSCRIPT, a system that imple-
ments client-side deep advice for security. CONSCRIPT has
been implemented by extending the Internet Explorer 8
JavaScript engine. To demonstrate the expressive power
of CONSCRIPT, we presented 17 security and reliability
policies that are specific to an application and are drawn
from literature, practice, and analysis. We applied a type
system to these policies to ensure that, once they type-
check, they are free from a range of common bugs that were
found in JavaScript policies before. We further presented two
strategies for automatically producing CONSCRIPT policies
through static and runtime analysis, demonstrating policies
need not be created by hand, and that CONSCRIPT provides
expressive primitives that simplify the implementation of
policy generation tools.

We conducted a range of experiments with CONSCRIPT,
both using micro-benchmarks and large, popular Web ap-
plications. In our extensive experiments, both the time and
space overhead of CONSCRIPT has been demonstrated to be
negligible for most large applications, hovering around 1%,
which is often orders of magnitude smaller than what had
been shown by previously published techniques.
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