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Abstract

The efficiency of a build system is an important factor
for developer productivity. As a result, developer teams
have been increasingly adopting new build systems that
allow higher build parallelization. However, migrating
the existing legacy build scripts to new build systems is
a tedious and error-prone process. Unfortunately, there
is insufficient support for automated migration of build
scripts, making the migration more problematic.

We propose the first dynamic approach for auto-
mated migration of build scripts to new build systems.
Our approach works in two phases. First, from a set
of execution traces, we synthesize build scripts that ac-
curately capture the intent of the original build. The
synthesized build scripts are typically long and hard
to maintain. Second, we apply refactorings that raise
the abstraction level of the synthesized scripts (e.g.,
introduce functions for similar fragments). As differ-
ent refactoring sequences may lead to different build
scripts, we use a search-based approach that explores
various sequences to identify the best (e.g., shortest)
build script. We optimize search-based refactoring with
partial-order reduction to faster explore refactoring se-
quences. We implemented the proposed two-phase mi-
gration approach in a tool called METAMORPHOSIS that
has been recently used at Microsoft.

1. Introduction

At the heart of modern software development processes
lies a build system (e.g., Ant [1], Make [7], Maven [8],
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MSBuild [6], and NMake [10]). The role of the build
system varies widely, from compiling source code (such
as C, C++, Java, or C#) into machine code or bytecode
to running regression tests to launching static analy-
sis tools to packaging and deploying applications. The
actual build steps are specified in a build script (e.g.,
Makefile, build.xml, and pom.xml).

Being able to build software quickly and reliably is
of utmost importance in today’s world of never-ending
requirement changes [17]. The efficiency of the build sys-
tem is therefore an important enabler of developer pro-
ductivity. As a result, developer teams are increasingly
adopting cloud-based build systems [2, 4, 12, 17, 52]. For
example, Microsoft recently developed a cloud-based
build system called CLOUDMAKE [24]. A key feature of
CLOUDMAKE is to parallelize build based on statically
computed dependencies among tool invocations (such
as csc, cl, and powershell).

Success of a new build system depends on the ef-
fort that developers make to migrate from existing build
systems to the new system. Manual migrations are te-
dious and error-prone due to the size and complexity
of industrial build scripts [16, 17, 47, 48]. For exam-
ple, Linux developers spent a year on a failed (man-
ual) migration? for version 2.5 and another year on a
successful (manual) migration [17]. Automated migra-
tions are non-trivial because accurately inferring depen-
dencies between a multitude of tools invoked by build
scripts is challenging [25, 51, 52, 62]. Existing auto-
mated approaches [5, 8] use static analysis and there-
fore only work in a limited number of cases, such as
when new build scripts need not specify the depen-
dencies explicitly, which limit parallelization. Further,
static-analysis based approaches are tightly coupled to
the original build system.

I Although we focus on migration to cloud-based build systems,
inspired by Microsoft’s effort to migrate to CLOoUDMAKE, there
are numerous reasons for migrating from one build system to
another [14, 16, 17, 47, 48].

2 Migration from kbuild 2.4 to kbuild 2.5.



This paper introduces the first approach based on dy-
namic analysis for migrating legacy build scripts to new
build systems. The dynamic nature enables migration
of build scripts written for any existing build system
to a new build system. In addition, our dynamic ap-
proach captures all dependencies necessary for parallel
builds. The new approach works in two phases. In the
first phase, from a set of execution traces obtained by
running the old build script, we synthesize a new build
script that accurately captures the intent of the original
build. However, as is the case with runtime execution
traces, these scripts contain duplicate or similar frag-
ments as well as unstructured tool invocations. In the
second phase, we apply refactorings that automatically
raise the abstraction level of the synthesized scripts by
introducing functions for similar fragments.

One can apply various refactorings on the synthe-
sized scripts. As some refactorings can disable/enable
other refactorings, different refactoring sequences can
result in different build scripts. We use search-based
refactoring [55, 61] to explore various refactoring se-
quences and to identify the best build script (according
to a fitness function). We propose a partial-order reduc-
tion (POR), adopted from model checking [34, 41], as
an optimization to our search-based refactoring. Our ex-
perimental evaluation shows that POR greatly reduces
the exploration space.

This paper makes the following contributions:

* Migration Approach: We describe the first ap-
proach that uses dynamic analysis to automatically
migrate legacy build scripts to a new build system.

* Synthesis: We synthesize new build scripts from cap-
tured execution traces. Because of its dynamic nature,
our approach is independent of the original build sys-
tem and translates entire scripts by considering mul-
tiple executions (for various build flavors).

* Efficient Search-Based Refactoring: We propose
an optimization of search-based refactoring: partial-
order reduction. This optimization is important for
faster exploration when numerous refactorings are
available.

* CLOUDMAKE Refactorings: We propose and for-
mally define a set of 17 refactorings specific to
CLOUDMAKE, whose goal is to raise the abstraction
of the synthesized scripts. To the best of our knowl-
edge, this is the most extensive set of refactorings for
a build language.

* Evaluation: We implemented our two-phase migra-
tion approach and all 17 refactorings for CLOUD-
MAKE in a tool called METAMORPHOSIS. We present
an evaluation of METAMORPHOSIS on four large Mi-
crosoft projects, some containing over 1,000 legacy
build scripts. The results show that METAMORPHOSIS

Program = {Stmt}
Stmt = VarStmt | ReturnStmt
VarStmt = var identifier = Exp;
ReturnStmt = return Exp;
Exp = Lit | identifier | Exp ? Exp : Exp
| PrefixOp Exp | Exp InfixOp Exp
| Exp Invocation | Exp Refinement | LambdaExp
Lit := true | false | undef | number | string | path
|ObjLit | ArrLit
ObjLit = {[identifier:Exp{,identifier:Exp}]}
ArrLit = [Exp{,Exp}]
PrefixOp = -
InfixOp = *|+]|-|>=] ...
Invocation = ([Exp{,Exp}])
Refinement = .identifier | [Exp]
LambdaExp = (identifier | ([identifier{,identifier}]) => Exp

Figure 1: CLOUDMAKE’s grammar, in Extended BNF

can migrate the build scripts of such large projects to
CLOUDMAKE; that search-based refactoring reduces
script size up to 46% over synthesized build scripts;
and that our optimized search explores refactoring se-
quences up to 6.3x faster than naive exploration.

2. CLoOUDMAKE by Example

This section briefly introduces build systems in general,
Microsoft’s CLOUDMAKE [24] build system in particu-
lar, and describes migration of a simple Makefile to
CLOUDMAKE script.

Build systems: Build systems execute build scripts
to achieve various tasks including compilation, running
tests, deployment, etc. Build scripts specify the tools to
be executed and the dependencies between these tools.
Cloud-based build systems work best when the under-
lying parallelism in the build script is exposed by mak-
ing dependencies explicit. Existing build languages such
as NMake and MSBuild, however, do not adequately
expose dependencies to enable fine-grained parallelism.
For instance, build systems often use build phases and
not explicit dependencies to specify that all header files
have to be generated before the system can be compiled.

CLOUDMAKE: CLOUDMAKE [24] is a cloud-based
build system (and language) developed by Microsoft.
Syntactically, CLOUDMAKE is a purely functional sub-
set of TypeScript. Figure 1 shows CLOUDMAKE’s gram-
mar. Similar to other modern build systems (e.g.,
Google build system [4], Vesta [14], Buck [2], SCons [12],
Ninja [11], and others, fine-grained dependencies be-
tween the tools are made explicit in CLOUDMAKE, to
enable parallelization, incremental builds, and other
key features of reliable high-performance build sys-
tems. Specifically, a build script has to define which
files, registry keys, or environment variables each tool
reads, writes, or updates. These dependencies are then
used not only to create parallel schedules, but also for
runtime enforcement. The runtime system ensures that



/// <reference path="Latex.ms" />

var name = "oopslal4.tex”;

var bib = "oopslal4.bib”;

var common = ['abstract.tex”, "intro.tex”, ...];

var pdflatexl = pdflatex(name, common);

var bibtex2 = bibtex(bib, pdflatexl.aux);

var pdflatex3 = pdflatex(name, common +-+
bibtex2.bbl ++ bibtexZ.blg);

var pdflatex4 = pdflatex(name, common ++
bibtex2.bbl ++ pdflatex3.aux);

var main = copy(pdflatex4.pdf, "final.pdf");
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(a) Refactored CLOUDMAKE script

// Latex.ms
function pdflatex(src, deps) {
var result = exec({
dir: ", tool: "pdflatex.exe”, args: [src]|,
deps: src + deps, env: [],
out: [changeExt(src, "aux”), changeExt(src, "pdf”)]});
return {aux: result.out[0], pdf: result.out[1]};}

// Common.ms
function copy(src, dst) {
var result = exec({
dir: ", tool: "cp.exe”, args: [src, dst],
deps: [src], env: [], out: [dst]});
return result.out[0];}

(b) Two library functions

Figure 2: Examples of library functions and refactored
CLOUDMAKE script for building this paper. (“++4” con-
catenates two arrays or appends an element to an array)

build tools behave as specified, i.e., read only what they
claim and write at most what they declare.

CLOUDMAKE's extensibility is provided by the prim-
itive exec({dir, tool, tool_args, deps, env, out}). This
primitive allows for external tool invocation, including
compilers and linkers, during a build. The function exec
takes the following as arguments: working directory
(dir); the tool to invoke (tool); a list of arguments for
the tool itself (tool_args); a list of (paths to) artifacts
that the tool reads (deps); environment variables that
the tool may use (env); and a list of artifacts that the
tool produces (out). If exec terminates successfully, it
produces the artifacts whose paths are specified in out,
and returns those paths.

Motivating example: We illustrate the CLOUDMAKE
language using a script for building this paper, shown in
Figure 2a. The build script first declares three variables
(name, bib, and common) that keep the name of the main
latex file, name of the bibtex file, and the list of common
dependencies, respectively. Second, the script invokes
four library functions. Each invocation corresponds to
a step for building a pdf from latex sources. Finally, we
copy the resulting pdf file to final.pdf.

Note that each function invocation (except the first)
takes as input the output of the previous step, thus es-
tablishing build dependencies between the invocations
(i.e., which tool takes the output of which tool). For
simplicity, we assume that evaluating a CLOUDMAKE

1 /// <reference path="Common.ms” />

2 var pdflatexl = exec({

3 dir: "c:\...\oopsla14’,

4 tool: "c:\program ...\pdflatex.exe”,

5 args: ['oopslal4.tex’],

6 deps: ['c:\...\miktex ...\epsfig.sty”, ...],

7 env: [{"PATH", "c:\program ...", ...}],

8 out: ['c:\...\oopslal4\oopslal4d.aux”, "c:\...\oopslal4\oopslal4.
paf'T});

10 var bibtex2 = exec({

11 dir: "c:\...\oopslal4”,

12 tool: "c:\program ...\bibtex.exe”,

13 args: ['oopslald’],

14  deps: [pdflatexl.out[0], "c:\...\oopslal4\oopslal4.bib",...],

15  env: [{"PATH", "c:\program ...", ...}],
16  out: ['c:\...\oopslal4\oopslal4.blg”, "c:\...\oopslal4\oopslal4.
wol]}):

17

18 var pdflatex3 = exec({

19 dir: "c:\...\oopslal4”,

20  tool: "c:\program ...\pdflatex.exe”,
21  args: ['oopslal4.tex”],

22 deps: ['c:\...\miktex ...\epsfig.sty”,

23 bibtex2.out[0], bibtex2.out[1], ...],

24  env: [{"PATH", "c:\program ..."”, ...}],

25 out: ['c:\...\oopslal4\oopslal4.aux”, "c:\...\oopslal4\oopslal4.
paf'T});

26

27 var pdflatex4 = exec({

28 dir: "c:\...\oopslal4”,

29  tool: "c:\program ...\pdflatex.exe”,
30 args: ['oopslal4.tex”],

31 deps: ['c:\...\miktex ...\epsfig.sty”,

32 bibtex2.out[1], pdflatex3.out[0], ...],

33 env: [{"PATH", "c:\program ...", ...}],

34  out: ['c:\...\oopslal4\oopslald.aux”, "c:\...\oopslal4\oopslal4.
paf'T});

36 var copy5 = exec({

37  dir: "c:\...\oopslal4”,

38  tool: "c:\windows ...\cp.exe",

39  args: [pdflatex4.out[l], "c:\...\oopslal4\final.pdf"]
40  deps: [pdflatex4.out[1]],

41 env: [{"PATH", "c:\program ..."”, ...}],

42 out : ['c:\...\oopslal4\final.pdf"]});

Figure 3: CLOUDMAKE script for our running example
after the synthesis phase of METAMORPHOSIS

program involves evaluating variable main; the evalua-
tion in CLOUDMAKE is demand-driven.

The script in Figure 2a contains a reference to
Latex.ms (the notation ///... is an include statement)
that exports the definitions of pdflatex and bibtex
functions. Underneath the surface, each function in-
vokes exec, used to read and/or write the external state.
In Figure 2b we show the implementation of pdflatex
and a standard library function for copying a file (copy);
the implementation of bibtex is similar. changeExt is
a helper function that changes the extension of a file
name. Note that the pdflatex function returns an ob-
ject as the result with paths to aux and pdf files.

Migration to CLOUDMAKE: We briefly discuss our
two-phase migration approach by migrating Makefile
(shown below), originally used to build this paper, to
the CLOUDMAKE script shown in Figure 2a. (Note that
our work is not concerned with the complexity of the



build scripts/systems, but rather with the migration
from an existing to a new build system. Therefore, we
do not compare complexity of the build scripts.)

main:
pdflatex oopslalé.tex
bibtex oopslal4d
pdflatex oopslaléd.tex
pdflatex oopslaléd.tex
copy oopslal4.pdf final.pdf

First, we monitor the execution of make and synthesize a
script that has one exec per tool invocation. The result
of this phase is shown in Figure 3. In general, a script
synthesized from an execution trace is long, repetitive,
and difficult to maintain, since all abstractions that were
present in the original build scripts have been lost.

Second, we apply a set of refactorings to raise the
level of abstraction of the synthesized scripts. Our
refactorings are based on our knowledge of the ab-
stractions that CLOUDMAKE developers commonly use
in practice. Developers use (single-assignment) vari-
ables for common sub-expressions such as in builds to
set shared paths or flags, functions to define shared
parametrized behavior, function composition to define
composed functionality (e.g., call bibtex passing in the
result of pdflatex), loops to summarize repetitive work
(e.g., copy several files to a directory), case distinctions
to specialize behavior (e.g., one flag for one build fla-
vor and another flag for the other flavor), and modules
or/and separate files to support multi-directory builds.

The challenge of automatic refactoring is to per-
form sophisticated pattern-matching at the level of the
CLOUDMAKE abstract syntax tree (AST) and to con-
vert them to higher-level abstractions. To illustrate
some of the general principles, here we highlight several
relevant refactorings applied to the script in Figure 3 to
obtain the CLOUDMAKE script in Figure 2a.

* Properties of CLOUDMAKE’s semantics. It is
common that a tool is invoked multiple times while
some arguments remain the same. In our exam-
ple, all invocations of the pdflatex have all li-
brary dependencies in common. By applying the
ExtractTOOLDependencies refactoring, common de-
pendency arrays (lines 6, 14, 22, and 31) would be re-
placed by a shared variable, line 4 in Figure 2a. This
refactoring is similar to clone detection [19, 22, 40, 63].

* Reuse library functions. Many tools (e.g., csc,
pdflatex, etc.) are reused across projects. If an aux-
iliary library function is available for a given tool, we
can apply the ReuseTOOL refactoring to identify execs
that can be replaced by a function invocation. This
refactoring would extract the necessary arguments,
insert the appropriate function invocation, and ad-
just the usage of the output of the function invoca-

tion. To obtain the script in Figure 2a, we perform
ReusePdflatex (lines 2, 18, and 27), ReuseBibtex
(line 10), and ReuseCopy (line 36).

* Introduce tools. In cases when a tool (e.g., csc) is
invoked a considerable number of times and no library
function is available, the IntroduceTools refactoring
can automatically create a function with common
arguments and introduce the necessary function invo-
cations. In our example, running the IntroduceTools
refactoring would identify multiple invocation of
pdflatex (lines 2, 18, and 27) and introduce a func-
tion with common arguments.

To obtain the best script, based on some fitness func-
tion, we use search-based refactoring [39, 54, 55, 57, 61]
that explores various refactoring sequences. We discuss
the ezploration phase in Section 5.

3. Phase One: Synthesis

In this section, we describe the first phase of our migra-
tion approach. Figure 4 (left part) illustrates this phase.
The inputs to this phase are build scripts written for any
existing build system and commands that specify how
to build all possible flavors (e.g., Debug and Release).
Outputs are synthesized new build scripts; one build
script per build flavor.

We execute two steps to obtain the synthesized build
scripts. First, we execute the original build for each
build flavor and capture the execution traces for these
builds [16]. An execution trace is essentially a list of
tool invocations observed during the original build. In
the execution trace each tool invocation is associated
with working directory, set of environment variables at
the time of the invocation, arguments passed to the
tool, and all input/output activities performed by the
tool (e.g., file creation, file read, etc.). METAMORPHO-
SIS takes an execution trace as input, analyzes the list of
tool invocations, and builds a dependency graph based
on the input/output information. Using the informa-
tion from the dependency graph and other collected in-
formation, METAMORPHOSIS creates one exec per tool
invocation. Second, we synthesize a “flat” CLOUDMAKE
script for each execution trace. An example of a “flat”
CLOUDMAKE script is shown in Figure 3.

The key insight that underlies METAMORPHOSIS is
that, independently of the original build system that
the software project uses, be it Make, NMake, MSBuild,
Ant, Maven, or a set of loosely-connected Perl scripts,
we can execute a build and monitor its actual behavior
through operating system-based instrumentation. Dur-
ing migration the original build should be executed as
“clean build” to ensure that all dependencies are cap-
tured. Note that we use existing operating system-based
instrumentation with minor changes; the novelty lies in
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Figure 4: Two-phase migration approach using dynamic analysis and search-based refactoring

the idea of using the infrastructure to migrate build
scripts from one system to another.

Process monitoring: To produce execution traces, we
use Detours [42] to intercept operating system functions
that perform file reads, file writes, and process creations.
Detours is a library for instrumenting Win32 functions
by rewriting the in-memory code for target functions.
Detours also preserves the original target functions as
subroutines that can be used by the instrumentation.
We rewrite the functions that perform file reads and
file writes to also dump information about the files be-
ing read or written by the corresponding process. We
also rewrite the function that creates processes to ap-
ply the same rewriting for file reads and file writes to
the created process. Thus, we are able to capture the
file reads and writes performed by the child processes.
(Some build scripts start only a single process, but this
process spawns a great number of child processes for
tool invocations.) We assume that inter-process com-
munication between tool invocations is only by means
of reading from and writing to files. For example, we do
not, capture communication through registry keys.

4. Refactorings in METAMORPHOSIS

In this section we formally define a set of transforma-
tions for build scripts (Section 4.1). We use these trans-
formations to implement 17 refactorings for CLOUD-
MAKE (Section 4.2).

4.1 Transformations

Notation: We express transformations as rewrite rules
over script schemes in the following form

Name :: input — output, if precondition

where input and output are CLOUDMAKE script schemes,
i.e., terms that may contain free variables. A formal def-
inition of calculus that we use is provided elsewhere [20].
Our rewrite rules are derived from (1) CLOUDMAKE’s
semantics; (2) data type-specific insights such as prop-
erties of paths; (3) tool-specific insights, e.g., special
properties for copy or csc.

Intuitively, if a term matches the input and the
precondition holds, the instantiated input term can be
replaced by the instantiated output term. In the follow-
ing, we refer to the precondition only in the text. To
replace the free occurrence of an identifier x by another
script part ¢ in schema S, we write S[t for z]. For sim-
plicity, we assume that during substitution, bound vari-
ables are renamed to resolve name clashes. The rules be-
low use the following naming conventions: S stands for
(global) statement sequences; E for expressions; F,G,
and H for functors being an expression or identifier;
a,b, x,y, and z for identifiers; root, p, and ¢ for paths or
parts there of; s, f, and .ext for strings.

Properties of rules: CLOUDMAKE’s semantics, as
well as its data types introduce many properties that
allow us to refactor and simplify expressions. For each
syntactic construct and for most data types we have
both introduction and elimination rules. For example,
functions are introduced by using A—expressions; func-
tions are eliminated when they are applied. We call
these rules Fold and Unfold, respectively, and use them
to introduce and simplify functions.

Fold :: E1([E; for z]) — ((z) => E1)(FE2)
Unfold :: ((z) => E4)(F2) — E1[E; for z]

Variables can be introduced, eliminated, and reordered.
We often use variable introduction for common subex-
pression elimination.

IntroVar :: S[E for x] — var z = E; Sz for E]
ElimVar :: var z = E; S — S[F for z]
ReorderVar :: var t = E; S — S;var z = F

The possibility of reordering variables is essential for our
matching. Each of CLOUDMAKE’s statements and data
types (numbers, strings, paths, arrays, and objects) de-
fines a neutral element and an overloaded associative
combine operator. For statements, the combine opera-
tor is simply concatenation; for data types we assume it
to be (+), noting that in proper CLOUDMAKE we have
to use different function names for the overloaded (+)
operators. This allows us to express rewrite rules suc-



cinctly and to apply associative, and possibly even com-
mutative, matching to instantiate program schemes.

Introduce relative paths: Paths describe traversals
through the directory structure. CLOUDMAKE supports
three literals for paths. Absolute paths start with a drive
letter, as in C:. Relative paths start with a single /
and are relative to a given root. Paths starting with
a // are UNC paths. Paths without a leading slash are
relative to the current directory of the CLOUDMAKE
script. A root and the first location step of UNC paths
are configuration parameters to a CLOUDMAKE build.

The goal of path transformations is to eliminate
absolute paths and to shorten paths as much as possible.
Given a source root, rule IntroRoot makes all possible
source paths relative to the source root. Remaining
paths should come from outside the root directory. Rule
IntroAlias introduces aliases for all external prefixes. The
rule’s applicability condition assumes that the chosen
alias ‘q’ is unique, that is, that there should be no two
files p/q/s and u/q/s which could not be distinguished
by choosing ‘q’ as the alias. Rule IntroArtifact introduces
objects for files identified by those external aliases. As
in the previous rule, the rule assumes that f does not
occur in S.

IntroRoot :: S[‘root/P’ for ] — S[*/P’ for z]
IntroAlias :: S['p/q/s’ for ] — S[*//q/s’ for x|
IntroArtifact :: S['p/ f.ext’ for z] —

var f = {ext : ‘p/f.ext’};
S[f.ext for z]

In order to support multi-directory builds, we parti-
tion the set of definitions into a set of build scripts,
spread over the directory hierarchy, inverting the effect
of the split by generating proper include statements.
Our heuristic is to split the build scripts according to
the working directory for each tool run.

SplitModule :
//original script
var 1 = Fy({dir : \/p'} + E1);. ..
var x, = F,({dir : */p'} + E,,);
S —
//script ‘/p/MakeScript’
var r; = F1(E1[‘Q17 for ‘/p/qf]); e
var x, = F,(E,u['q," for */p/qn’]);

//original script
///] < reference path = ‘/p/MakeScript’ >
S

After applying these rules systematically, there are no
absolute paths left; the remaining parts are as short as
possible. In fact, because the execution trace preserves
working directories, all generated descriptions end up in
the directory they initially came from.

Introduce tools: Every execution trace uses a limited
set of tools. As a refactoring step we can introduce
automatic abstractions for all tools. To do so we can
simply partition all exec calls based on the value of their
tool field. Rule IntroTool matches an exec call with a
particular tool and replaces it with the proper function
call. The rule assumes that the input tool is described
by a variable as introduced earlier by rule IntroArtifact.

IntroTool ::
S[exec({tool : f.exe} + E) for 1‘] —
var F = (z) => exec({tool : f.exe} + 2);
S[F(E) for )]

Having introduced the tools, METAMORPHOSIS special-
izes the introduced functions. As an applicability pre-
condition, we require that all of F’s applications have
the same constant value F, as its parameter.

SpecializeCall ::
var F = (z) => E,;S[F({z : E,} + E) for y] —
var F = (z) => E,[E, for z.z]; S[F(E) for y]

Note that if E, does not refer to z.x, the parameter
{z : E,} was superfluous in the first place. In this
situation we can weaken the applicability condition of
the above rule and apply it irrespective of x’s value.

Composition: Builds often use repeated patterns; for
instance after compiling a C# file, its resulting DLL is
often passed to a static analyzer, in .NET called £xCop.
Rule Composition below introduces a new function that
captures the combined effect; it replaces both calls by
the new call, adopting the return values in the process.

Composition ::
var z = F(E,);var y = G(E,);
S —
var H = (a,b) => {
var z = F(a);var y = G(b); return z + y;
}
var 2y = H(E,, E,);
Slayld] for z[i], zy[j + K] for y[j]]

where K is the length of x. The rule’s applicability
condition requires that x be used in G,,.

Next, we merge the parameters, to get to one param-
eter per call. To that end, we introduce a new helper
function +H; we define f ++g¢g to be like f + g, except
that all field labels that are present in both, but whose
values are different get indexed with their origin. For
example, {z : B} ++{z: E.} = {a;: E;} ++{x, : E,.}.
Projection functions left and right are the correspond-
ing projections, e.g., left(f + g) = f, similarly for right.



Refactoring Description Transformations Type
ComposeCscCopy Compose csc and copy Composition 1-to-1
ExtractCscDependencies Extract dependencies common among csc invocations Properties of rules 1-to-1
ExtractClDependencies Extract dependencies common among cs invocations Properties of rules 1-to-1
ExtractFxCopDependencies Extract dependencies common among fxCop invocations Properties of rules 1-to-1
ExtractIclDependencies Extract dependencies common among Icl invocations Properties of rules 1-to-1
IntroduceTools Introduce tool for common exec invocations Introduce tools 1-to-1
IntroduceCopyLoops Introduce loop for copy invocations Introduce iterations 1-to-1
IntroduceDeploy Adjust paths Introduce iterations, Copy elimination 1-to-1
IntroduceTttLoops Introduce loop for ttt invocations Introduce iterations 1-to-1
ReuseCopy Reuse copy library function Copy elimination 1-to-1
ReuseCsc Reuse csc library function Reuse library functions 1-to-1
ReuseTtt Reuse ttt library function Reuse library functions 1-to-1
ReuseTypeXCopy Reuse xcopy library function Reuse library functions 1-to-1
UseLibraryDlls Transform paths to use library dlls Properties of rules 1-to-1
RemoveEmptyOptionalFields  Remove optional fields Properties of rules 1-to-1
InlineCopies Inline copy invocations Copy elimination 1-to-1
ArrayCompression Extract common array elements Properties of rules 1-to-1
MergeFlavors Merge scripts obtained for various build flavors Merging scripts N-to-1
SplitModule Distribute script to appropriate directory Introduce relative paths 1-to-N
Figure 5: Refactorings for CLOUDMAKE
numerous parameters to a simple copy call, that takes
MergeArgs:: as its input only the source path of the file to copy and

var H = (a,b) => {
var ¢ = F(a);var y = G(b); return z + y;

S[H(E,, Ey) for z] —

var H = (ab) => {
var © = F(left(ab)); var y = G(right(ab));
return z + y;

S[H(f ++g) for z]

Reuse library functions: Tools such as compilers
or linkers are used repeatedly by different builds. In-
stead of rediscovering each tool, we use library auxil-
iary helper functions if available. Let us assume that
each tool definition F' is in a particular library and that
it is defined by two functions F' and its helper Fg;gs.

//in file ¢/ /tool / F”
var F = (z) => Ep
var Forgs = () = Epargs

Function F' calls the original tool definition, that is
F(F) will call exec({tool : ‘//tool/F.exe’} + ...), but
in general F' might have different arguments than exec.
This is the case where the helper Fi,4, comes in. It
adapts exec’s arguments to match F’s arguments. We
can now map every library use of a tool to its special-
purpose tool.

ReuseFun ::
var = = exec({tool : ‘//tool/F.exe’} + E); S —
/// < reference path = *//tool/F’ >
var & = F(Fyrg(E)); S

By unfolding F.ys we get to required calls that have
tool specific parameter information. For instance, META-
MORPHOSIS reduces an exec call to copy.exe with its

its destination path.

Copy elimination: Builds often perform a great deal
of copy operations, frequently more than is necessary.
In most cases the trivial elimination rule ElimCopy takes
care of this redundant copying.

ElimCopy ::
var o = copy(s,d); S — S|s for o]

Unfortunately, we cannot always safely apply this sim-
ple rule without breaking a build. Certain tools, like
fxCop for example, require files at certain location. If
fxCop is the consumer of the copy operation, we are
not allowed to apply this rule. We are also not allowed
to apply this rule for copy operations whose output is
not used by another tool in the program. Those copies
are typically part of the deployment. The applicability
condition of this rule thus depends on the property of
the consumer.

We can sometimes eliminate copies whose source is
provided by tools that place results at an expected
location, as shown below:

RedirectOut::
var t = F({out : [Ep, ...
var o = copy(t[i], d);
S —
var t = F({out :
[Eo,...E; —1,d,E; +1,...,E,} + B);
S|t[é] for o]

7En]}+E)§

Recall that the field out denotes the sequence of paths
for the tool’s expected outputs. Here, we force the out-
put of the preceding tool to go to the destination of the
copy. This may in fact improve the overall performance.



Merging scripts: Builds are often parameterized with
settings that determine target platforms (e.g., x86,
TA64, etc.) and configurations (e.g., debug, release, con-
tinuous integration, etc.). We call a build with a specific
setting a build flavor. For generality of the resulting
build script, we need to “merge” the build scripts that
are synthesized from execution traces of different build
flavors. There can be a large number of build flavors
due to combinations of setting values. However, accord-
ing to our observations at Microsoft, product groups
typically have fewer than ten flavors.

Without loss of generality, we consider merging two
build scripts D and R for debug and release builds,
respectively. The idea of build script merging consists
of four steps:

1. Perform a-conversion on D and R such that they
have disjoint sets of variable names.

2. Concatenate the scripts D and R, and denote the
result of concatenation by D ® R.

3. For definitions in D ® R that invoke the same tool
and operate on the same set of input dependencies
(including source files and intermediate outputs),

(a) define a new binding with joint effect, and

(b) substitute definitions with the newly introduced
bindings.

4. Simplify arguments of the new bindings by pushing
inwards the conditional expressions resulting from
merging expressions.

As we will see, the substitution in step (3) can make
some definitions unused, so they can be removed from
the resulting build script.

In describing our rewrite rules below, we focus on
step (3). We assume that the a-conversion has been
performed such that all variables coming from D and
R are subscripted with, respectively, D and R. We also
assume that the concatenation has been performed.

We consider three cases in merging build scripts:
isomorphic tool invocations, tool invocations with the
same dependencies but different arguments, and injec-
tion of intermediate steps. We say that two tool invoca-
tions are isomorphic if they invoke the same tool with
the same set of arguments, including input dependen-
cies. The following simple rule is used to merge isomor-
phic tool invocations:

MergelsomorphicTools ::
var xp = F(e);
var xp = F(e);
S —
var z = F(e);
S|z for zp,x for zg]

Note that the above rule removes the unused definitions
xp and zr as well. The requirement of operating on
the exact same set of input dependencies can be further
relaxed by introducing a threshold for similarities of sets
of input dependencies.

Different build flavors can invoke the same tool with
the same set of input dependencies, but with different
arguments. For example, in the debug build the csc
compiler is called with /debug+ option, while in the
release build, to achieve high performance, the compiler
is called with /debug-. We assume that the flag debug
indicates that the debug build is enabled, and is in the
scope. The following rewrite rule can be used to merge
such tool invocations:

MergeDiffArgTools ::
var xp = F({deps : [s1,...,s,]} + Ep);
var g = F({deps : [s1,...,5,]|} + ER);

S —
var x = F({deps : [s1,...
Slx for zp,x for xR

,Sn|} + debug?Ep : ER);

Note that each input dependency s; can be either a
source file, or a variable (denoting an intermediate file)
resulting from previous merging.

The formalization of the third case in merging build
scripts, as well as Introduce iterations transforma-
tion is available in the appendix (Section A).

4.2 CLOUDMAKE Refactorings

Figure 5 lists the refactorings implemented in META-
MORPHOSIS. For each refactoring, we provide a short
description (“Description” column) and a list of trans-
formations that the refactoring uses (“Transformations”
column). In addition, we specify the type of each refac-
toring (“Type” column). The type is determined based
on the number of input/output build scripts; 1-to-1, 1-
to-N, and N-to-1 types specify that a refactoring takes
one/one/N script(s) as input and produces one/N/one
script(s) as output, respectively. (We illustrate several
refactorings in the appendix in Figure 11.)

It is important to note that all currently supported
refactorings are idempotent by design. More impor-
tantly, we manually identified commutativity relation
among refactorings; overall 72% of all refactoring pairs
commute. (Because of the space limit, we show the com-
mutativity relation in the appendix in Figure 12.) We
consider idempotence and commutativity while opti-
mizing the search for the best build script (according
to a fitness function). As shown in Section 6, these op-
timizations lead to significantly faster exploration.

5. Phase Two: Exploration

In this section, we describe the second phase of our
migration approach. Figure 4 (right part) illustrates this



phase. The inputs to this phase are synthesized build
scripts (the output of the first phase). The outputs are
refactored scripts, located in appropriate directories.
To detect a refactoring sequence that gives the best
resulting script, based on some criteria (e.g., minimal
number of nodes in the AST, etc.), we perform search-
based refactoring [55, 61]. In the rest of the text, we
refer to the content of build scripts under refactoring as
a state. Figure 6 shows the pseudo-code for an algorithm
for finding the “best” state. We first describe the naive
algorithm (Figure 6 without highlighted lines).

Search algorithm: The inputs to the algorithm are
“flat” synthesized scripts p (which is the initial state),
a fitness function F', and a maximum search depth D.
We use a priority queue (line 4) to keep the states that
should be further explored; the priority is determined
by the fitness. Each element in the queue saves a refac-
toring sequence, a script obtained by executing the se-
quence, and the length of the sequence. The algorithm
proceeds as long as there are elements in the queue
(line 7) and ignores sequences longer than the given
maximum length (line 9). Next, the algorithm modifies
the current state (that has the highest fitness value)
with each refactoring available in the set of all refac-
torings (line 11). If a refactoring is applicable and the
type of the refactoring (e.g., 1-to-1) matches the cur-
rent state (line 12), the refactoring is applied, the fitness
value of the new state is calculated, and the refactoring
is appended to the refactoring sequence. If the fitness
value of the new state is better than previous best fit-
ness value (line 22), the algorithm saves the new value
and the refactoring sequence that leads to that value.
While simple, this naive algorithm suffers from a
great challenge — state explosion. The algorithm is in-
herently exponential. We propose an optimized search-
based refactoring algorithm that uses state matching
and partial-order reduction, two optimizations com-
monly deployed in model-checking [29, 34, 41, 43].

State matching: Considering that several (indepen-
dent) refactoring sequences may lead to the same state,
we can optimize the search by performing state match-
ing. Namely, whenever a new state is encountered, we
check if the state has been previously seen. If the state
has been seen, we stop the exploration of the current
refactoring because the resulting script from a state s is
the same regardless of the sequence that led to s. To per-
form state matching, we need to save all the states that
have been encountered. As a way to reduce the mem-
ory footprint, we replace the explored state of an ex-
ploration tree discovered by Search with its hash value,
relinquishing the memory that is required to hold the
entire state.

Partial-order reduction: In addition to state match-
ing, we also reason about commutativity of refac-

1 P=90 > Visited scripts
2 R=0 > Visited sequences
3 function Search(p, F, D) > Project p, fitness F', depth D
4 Q(f, 7, p,d)y < [(0,[], p, 0)] > Priority queue based on f
5 fm,am =0
6 Thest = [] > Best discovered sequence
7 while Q # 0 do
8 t = Q.pull > Take tuple with highest priority
9 if t.d > D then continue > Depth check
10 end if
11 for all (r;) € Refactorings do
12 if IsApplicable(r;, t.p) A 7(r;) = 7(t.p) then
13 p’ = r;(t.p) > Apply refactoring
14 7 =tirer; > Add last refactoring
15 7o = GetCanonical(7") > Get canonical form
16 ifp e PVip € R > Check if explored
17 continue
18 end if
19 P = PuU({p} > Update explored sets
20 R=RU {7}
21 f=F(@p) > Get the fitness
22 if f > fimaz then > Check for better fitness
23 fmaz = f > Save best fitness
24 Thest = T > Save best sequence
25 end if
26 Q.insert((f,7,p ,d+ 1))
27 end if
28 end for
29 end while
30 return 7

31 end function

Figure 6: Search-based refactoring approach; optimized
version includes highlighted lines

torings [34]. As mentioned earlier, all refactorings in
METAMORPHOSIS are idempotent. Furthermore, 72% of
all refactoring pairs commute. These algebraic proper-
ties allow us to significantly reduce the search space,
as we only need to explore some refactoring sequences
and can prune others without the danger of missing the
highest-fitness solution.

The pseudo-code in Figure 6 (including highlighted
lines) captures the optimization ideas we have imple-
mented in METAMORPHOSIS. In this improved algo-
rithm, we keep track of both the visited states in P
and the refactoring sequences r1,...,r, in R that we
have explored thus far.

Canonization of refactoring sequences on line 15
takes care of sequences that commute. For example,
refactoring sequence r1, 77,73, r3 will be reduced by the
canonization operation to ri,rs,r7 if r3 is idempotent
and if r3 and r7 commute. This allows us to significantly
reduce the search space to be explored.

Parallelizing search: METAMORPHOSIS implements a
parallel version of the exploration algorithm, shown in
Figure 6, using the Task Parallel Library [13] (TPL).
Each refactoring invocation is executed as a single task
in a task pool. The drawback of using the default
configuration of TPL is the lack of control over the
task scheduler. To control the priorities of tasks and to
enforce parallel search, we implemented our own task
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Internal tool CLOoUDMAKE 431 13,668 2,279 5 94 69 0 0 71
Synthetic MSBuild 3,221 143,331 22,770 2 400 200 200 0 200
Cloud managment NMake 8,935 187,959 51,848 39 1,760 0 0 916 1,034
Analytics engine MSBuild 15,962 419,476 52,462 28 16,643 433 14,590 562 575

Figure 7: Characteristics of projects and synthesized build scripts

scheduler that greedily gives priority to the tasks that
work on states with higher fitness values.

Our parallel runner is configurable in that one can
specify the number of threads in the pool, maximum
concurrency allowed by the task scheduler, and pro-
cessor affinity. While limiting the number of processors
was mostly done for experimental proposes, limiting the
number of threads in the pool was in fact necessary to
limit the memory consumption when the script on which
exploration is invoked is large.

Note that we constrain the search process to a small
degree by enforcing the structure (Figure 4). First, dif-
ferent build flavors are merged into one. Then additional
(1-to-1) refactorings take place. Finally, the script is
split across the directory hierarchy. The best refactor-
ing sequence in the second step is discovered through
the search algorithm outlined in Figure 6.

Fitness functions: In our current implementation of
METAMORPHOSIS, we have experimented with several
fitness functions, but ultimately used the aggregate
length of build script (i.e., number of characters) as our
metric. (We also used the number of AST nodes, but
we observed no difference in our results.) In the future,
we plan to experiment with other fitness functions that
combine both the overall size of the scripts and a mea-
sure of their complexity and maintainability.

6. Evaluation

The goal of our experimental evaluation was to answer
the following research questions:

RQ1. Is METAMORPHOSIS able to synthesize build
scripts for existing builds, regardless of the build
system used and tools invoked, while containing
thousands of tool invocations?

RQ2. What are the benefits of our optimized search-
based refactoring algorithm?
RQ@3. Does the search-based refactoring algorithm,

with 17 refactorings, lead to maintainable CLOUD-
MAKE build scripts?

We performed all the experiments on a machine with 32
cores, Intel Xeon CPU E5-2650 @ 2.00Hz, 64 GB of
RAM, 2 SSDs (in RAID), running Windows Server 2012.

6.1 Projects

Figure 7 lists the projects used in our evaluation?.

* Internal tool is our build system that parses CLOUD-
MAKE files and runs them in the cloud. Build scripts
for Internal tool are written in CLOUDMAKE.

* Synthetic is a relatively small, synthetically-generated
project, which has build scripts written in MSBuild.
This project was generated as one of the test cases for
CLOUDMAKE (independently of our study).

* Cloud managment is a large project that uses NMake
and relies on 39 different tools.

* Analytics engine is a very large project that uses MS-
Build and relies on 28 different tools.

With this selection of projects, we aimed to achieve
diversity in terms of build systems used (second column
in Figure 7) and also in terms of size, ranging from
modestly-size projects all the way to large projects with
millions lines of code.

6.2 RQ1 Synthesis

METAMORPHOSIS successfully synthesized build scripts
for all projects used in the evaluation.

Figure 7 shows the size of synthesized build script
in column 3; the size can be as large as 15 MB. Note
that in cases where multiple build flavors were present,
we measured properties of one of them, as scripts for
various build flavors are generally similar to each other.
The number of AST nodes is displayed in column 4;
the number of AST nodes indicates a scale of scripts
transformed by refactorings. The number of dependen-
cies (i.e., input files that are outputs of other tools)
between the tools is shown in column 5. The number
of unique tools used in the build is shown in column 6
(these typically correspond to build tools like the C#
compiler csc or the C++ compiler ¢1). Column 7 shows
the total number of tool invocations. The number of in-
vocations is perhaps most instructive in understanding
the scale of these projects, as it captures the number
of exec invocations that need to be run for the build
to finish. In columns 8 and 9 we also show the num-

3 Due to policy concerns, we anonymize project names.



. . Exploration Fitness (number of chars) Unique Applied
Project (Search technique) Time Original Best Reduction States Refactorings
Internal tool(Stateless) 3 sec 402,610 249,206 38% 17 23
Internal tool(Stateful) 3 sec 402,610 249,206 38% 17 22
Internal tool(Stateful +POR) 3 sec 402,610 249,206 38% 17 22
Synthetic(Stateless) >1h 3,020,687 1,619,200 46% 245 3,845
Synthetic(Stateful) 18 min 3,020,687 1,619,200 46% 654 1,321
Synthetic(Stateful + POR) 15 min 3,020,687 1,619,200 46% 618 1,086
Cloud managment(Stateless) 43 sec 9,138,210 7,284,348 20% 15 21
Cloud managment(Stateful) 37 sec 9,138,210 7,284,348 20% 15 21
Cloud managment(Stateful+POR) 38 sec 9,138,210 7,284,348 20% 15 21
Analytics engine(Stateless) >2h 15,764,073 9,155,304 41% 273 3,307
Analytics engine(Stateful) >2h 15,764,073 8,744,943 44% 1,388 3,320
Analytics engine(Stateful+POR) >2h 15,764,073 8,699,800 45% 1,741 3,422
Figure 8: Exploration times and other statistics
ber of calls to the C# compiler csc and the number of 0.50
copy invocations; several of our refactorings are related 0.45
. : [/ ‘
to these tools. Several tools have dependencies on en- 040 | T - / Aneintnnine |
vironment variables, as captured in column 10. Finally, 0.35 0.422 reduction
the scale of the used projects is also reflected in the 0.30 0228 veductio] 0422 reduction
. K i K . reduction
number of directories that contain sources, as shown in 0.25
column 11; each directory contains one build script. 0-20
0.15 ---Stateless
6.3 RQ2 Exploration 0.10 - - Stateful
. . . . 0.05 —Stateful+POR
Our proposed refactorings reduce build script size by 0.00
up to 46%. Further, optimized search-based refactoring RIS R A S S VR SRR SRS R

algorithm may explore up to 6.3x more unique states
than the naive algorithm, in the same amount of time.

Figure 8 shows some of the basic statistics for the au-
tomatic exploration of refactoring sequences. (We used
a single core for these rumns.) In column 1 we show
names of search techniques: Stateless which is naive ex-
ploration without any optimization (algorithm in Fig-
ure 6 without highlighted lines), Stateful which per-
forms state matching (as explained in Section 5), and
Stateful+POR which corresponds to the highest degree
of optimization (algorithm in Figure 6 with highlighted
lines). Column 2 shows the exploration time for each
project and search technique; exploration times vary
significantly, depending on how applicable the refac-
toring techniques turn out to be, ranging from a few
seconds to over 2 hours. It should be noted that Most
of the refactorings have been inspired by Analytics en-
gine. As we work on migrating build scripts of other
projects, we expect to introduce more refactorings that
are widely applicable. Columns 3-5 show the starting
and final fitness values, which in our case are the number
of characters in the CLOUDMAKE scripts, as well as the
reduction in the number of characters as a percentage,
ranging between 20-46%. Note that we consider the re-
duction for a sequence of 1-to-1 refactorings (Section 5).
Column 6 shows the number of unique states encoun-
tered during the exploration. Column 7 shows the total

Figure 9: Reduction with optimized and naive explo-
ration (y-axis) compared over two hours (x-axis)

number of executed refactorings. These two quantities
correlate well with the overall exploration time.

It is important to observe in Figure 8 that the most
optimized algorithm, i.e., Stateful+POR, explores 6.3x
more unique states than the naive algorithm. Figure 9
shows reduction in build script size achieved by differ-
ent algorithms (Stateless, Stateful, and Stateful+POR)
over a period of 2 hours for Analytics engine project.
Overall, we see that the more optimized algorithms get
to higher fitness levels (shown as reductions in size)
faster, i.e., in 94 minutes instead of 120 minutes. Note
that a high fitness value is achieved relatively fast in
all cases. This happens because most of currently sup-
ported refactorings commute and even naive search can
obtain one sequence that provides good result. However,
as we introduce new refactorings, finding a refactoring
sequence that leads to the script with the “best” fitness
value will become harder.

To confirm that finding the best refactoring sequence
is challenging if numerous refactorings are available, we
asked 8 professional developers (familiar with CLOUD-
MAKE) at Microsoft to use our refactorings and provide
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Figure 10: The number of unique states explored and
refactorings applied (y-axis) in two hours as more CPUs
are used (x-axis)

the refactoring sequence that would lead to the “best”
(in terms of the number of characters) build script for
Analytics engine. We limited the time for each devel-
oper to 15 minutes. Interestingly, no developer proposed
the sequence that exploration obtained. The best and
the worst reduction by developers’ refactoring sequences
were 37% and 16%, respectively. As we introduce new
refactorings, the advantage of optimized exploration be-
comes evident.

We also explore the value of parallelism in optimiz-
ing search-based refactoring (discussed in Section 5).
To demonstrate the value, we run our optimized ex-
ploration of Analytics engine with a different number of
CPU cores used. Figure 10 shows how the exploration
scales with the number of cores. The run with 28 cores
consumed most of the available memory — as the synthe-
sized script being refactored is large and the exploration
maintains a number of scripts at the same time — which
leads to limited exploration speed. (Running the explo-
ration with 32 cores runs out of memory.) Comparing
the number of explored states (1,741) on a single core
(Figure 8) vs. multiple cores, we observe that the explo-
ration was not (or cannot be) parallelized ideally (due
to scheduling, synchronization, etc.). However, we still
obtained significant speedups, up to 3x.

6.4 RQ@3 Maintainability

We performed a simple preliminary study to measure
how actual developers perceive the results of the mi-
gration and refactoring. Specifically, we interviewed a
developer who ported Internal tool from MSBuild to
CLOUDMAKE, and we also performed a survey with sev-
eral developers familiar with CLOUDMAKE.

The interviewee compared several refactored scripts
and his handcrafted CLOUDMAKE scripts. Although the
scripts were almost exactly the same (e.g., the scripts
were hierarchically organized in the same manner, all
relative paths were the same, and build flavors were
merged the same way ), there were minor differences due
to several missing refactorings. The most notable miss-

ing refactorings are those that introduce uses of existing
library functions (as well as their composition) and in-
troduction of variables that keep shared expressions.

We also performed a survey, where we asked eight
professional developers to rank the maintainability of
refactored script snippets (similar to Figure 11) on a
scale from 1 to 10 (over 5 means “easier to maintain
than the original script”). We provided one snippet
for each refactoring. The snippets used in the study
were produced by METAMORPHOSIS on one of the
projects used in our experiments. Only one refactor-
ing (ComposeCscCopy) was ranked, on average, below 5
(3.7), while the average for other 16 refactorings was
higher (6.3). In the future, we plan to perform con-
trolled experiments to evaluate maintainability.

7. Threats to Validity

External: The main threat to external validity is that
our results may not be generalizable to other build sys-
tems. Although our refactorings are language-specific,
we believe that other parts of our migration approach
are general. Specifically, capturing execution traces is
independent of the original build system. Also, finding
the best refactoring sequence can be applied to any set
of refactorings (e.g., Java refactorings for code not build
scripts) where one can define a fitness function (e.g., the
length of the refactored code).

Internal: The main threat to internal validity is the po-
tentially incorrect implementation of METAMORPHOSIS.
To mitigate this threat, we tested our implementation
thoroughly. Several tests execute the original and syn-
thesized build scripts and verify that the resulting bina-
ries are the same. Furthermore, METAMORPHOSIS went
through a rigorous review process that follows accepted
engineering and coding standards at Microsoft.

Construct: Several of the refactoring preconditions are
specific to the script format produced by the migration.
Although these preconditions do not influence our re-
sults, they may be a limitation when the refactorings
become part of CLOUDMAKE. Limit for the exploration
time was set to two hours. Waiting longer than two
hours did not yield different conclusions in our experi-
ments. Finally, our migration approach is entirely based
on dynamic analysis of the original build runs. One can
argue that static analysis may lead to better results
(with less effort). However, static approaches have sev-
eral disadvantages. We list two of them here. First, so
called in-proc tasks (i.e., the tasks that are executed
by the build system itself without running an external
process) cannot be detected and detecting all implicit
dependencies between tools is difficult. Second, static
approaches are tightly couped to the original build sys-
tem. Last but not least, our dynamic approach may
remove dead code and unused options.



8. Related Work

We provide an overview of migration techniques, refac-
toring literature, and search-based software engineering.

Build migration: Migration from one build system to
another is most commonly done with the goal of improv-
ing performance and maintainability [17]. Complexity of
build scripts is high [16, 17, 47, 48]; therefore, manual
migration may lead to a number of challenges and often
to failures. Suvorov et al. [62] and Neundorf [52] stud-
ied migration of two large open-source projects: Linux
and KDE. The studies report that a year was spent
on a failed (manual) migration for Linux kernel v.2.5
and another year was spent on successful (manual) mi-
gration for v.2.6. The KDE project offers similar expe-
riences. Few approaches explored automatic migration
using static analysis of build scripts [5]. However, these
approaches do not discover all dependencies, which have
to be explicitly specified for cloud-based build systems.
We propose the first migration approach based on dy-
namic analysis that captures all the dependencies.

Fabricate [3] and Memoize [9] monitor all dependen-
cies (i.e., opened files) when a given command is exe-
cuted. Note however that these tools give only a single
list of dependencies, not a computation graph; without
the entire graph we cannot enable parallelism.

Build maintenance: Refactorings have been first
studied over a decade ago [56, 59], and attracted at-
tention from both practitioners and researchers [28,
33, 58, 60]. Integrated development environments (such
as VisualStudio, Eclipse, NetBeans, and IntelliJ) sup-
port popular refactorings [44, 50, 65]. Recently, several
refactorings were proposed to retrofit existing sequen-
tial code to use concurrent constructs [28, 60]. These
refactorings improve performance and target general-
purpose programming languages. We propose the most
extensive list of refactorings for build scripts so far; few
proposed refactorings (e.g., InlineCopies) can improve
performance of the builds.

A few projects have explored maintenance of build
scripts [16, 37, 64, 66]. Formiga [37] supports simple re-
naming and removal of targets. MAKAO [16] uses an
aspect-oriented approach to support adding new com-
mands, dependencies, etc. Although MAKAO extracts
dependencies from execution trace, it has false positives
and false negatives. SYMake [64] focuses on renaming
and extraction of targets. Vakilian et. al [66] developed
tools for decomposing Google build specifications. Al-
though valuable, previously proposed refactorings are
not suitable for improving synthesized build scripts. We
propose the most extensive list of refactorings inspired
by common patterns, which significantly reduce the size
of automatically synthesized build scripts. Also, we ap-
plied our refactorings on large industrial projects.

Search-based software engineering: Discovering a
“good” sequence of transformations has been explored in
other domains: 1) improving software design [15, 18, 21—
23, 31, 32, 38, 39, 49, 54, 55, 57, 61]; 2) improving
performance [26, 53, 67, 68]; 3) fixing bugs [35, 46] and
tests [27]; and 4) deriving formally correct functional
programs from operational specifications [36].

Whitfield and Soffa [68] created a framework for ex-
ploring compiler optimizations. Abdeen et al. [15] pro-
posed a search technique based on simulated anneal-
ing to optimize the package structure of source code.
Hill climbing has been used for cost estimation [45] and
applications of modularization [49]. Genetic algorithms
(GA) and clustering methods have been used to reduce
sizes of libraries [18, 30]. Fatiregun et al. [31] defined
transformation problems as a search for optimization
and showed that GAs outperform hill climbing. Cooper
et al. [26] apply biased random search to detect a se-
quence that leads to a minimal value of an fitness func-
tion. Nisbet [53] applied GA to search for a sequence of
transformations that would have optimal execution on
parallel architectures. Forrest et al. [35] proposed pro-
gram repair using GAs. Harman [38] introduced a tech-
nique, named “testability refactoring”, which searches
for sequences of refactorings that makes code testable
and maintainable at the same time. White et al. [67]
used GA to improve non-functional properties of pro-
grams, such as execution time.

To the best of our knowledge, we are the first to op-
timize the exploration by using partial-order reduction
in search-based refactoring algorithms. In addition, we
parallelize the search and evaluate its scalability.

9. Conclusions and Future Work

We have developed an automatic approach that uses
dynamic analysis for migrating build scripts from any
build system to CLOUDMAKE. Our approach works in
two phases. First, we execute the original build, monitor
the execution, and synthesize a new build script from
execution traces. Second, we use search-based refactor-
ing to discover a refactoring sequence that leads to the
best build script (according to a fitness function). As
search in the space of possible refactoring sequences is
a formidable task, we optimize search through the use
of parallelism and partial-order reduction. We imple-
mented our approach in a tool called METAMORPHO-
s1s and configured the tool to use 17 refactorings for
CLOUDMAKE that we developed.

We have applied METAMORPHOSIS to large software
projects at Microsoft, some of which contain over 1,000
build scripts written for various build systems. The re-
sults show that METAMORPHOSIS can reduce size of
synthesized scripts up to 46%. Further, our optimized



search may explore up to 6.3x more refactoring se-
quences than naive search in the same amount of time.

In future, we plan to define additional refactorings
and explore how they generalize to other build systems.
Also, we believe a hybrid approach that does some
static analysis of the original build scripts in addition
to dynamic analysis will enhance the end-result.
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A. Formalization Continued

In this section, we expand the set of transformations
introduced in Section 4.1.

Introduce iterations: Arrays are introduced by ar-
ray enumeration and concatenation (4), elimination is
indexing. METAMORPHOSIS uses maps over arrays to
represent iterative behavior. We introduce loops at the
expression and the statement level:

IntroLoopExp ::
[F(EL),...,F(E,)] —
[E1,...,E,).map(z => F(x))
IntroLoopStm ::
var x; = F(E1);...;var x, = F(E,);
S —
var zs = [E1,..., E,].map(z => F(x));
Slas[i] for x;)

After systematically applying these two rules the refac-
tored program has no further repetition.

Merging scripts (continued): Some build flavors can
inject intermediate steps. For example, a continuous-
integration build may enables static analysis like code
contracts. However, one can easily track the input de-
pendencies of those intermediate steps. The following
rules can be used to merge this particular case:

MergeDiffArgTools ::
var zg = G(y);
var xp = F({deps : [s1,...,5n,y]} + ED);
var xp = F({deps : [s1,...,5n,2r]} + ER);
S —
var ¢ = F({deps : [s1,...,Sn,debug?y : zr|}

+debug?Ep : ER);

Slx for zp,x for xR

Note that, like s;, the input dependency y can be either
a source file, or a variable (denoting an intermediate file)
resulting from previous merging. In the above rule, the
release build script R contains additional intermediate
step, i.e., calling tool G on argument .

We can achieve even better result by pushing the case
distinction inside expressions. The following rules relat-
ing conditionals and objects allow us to push the case
distinction inside the object or eliminate it completely.

(The rules for arrays, strings, and paths are similar.)

ElimCond ::
debug?FE . E
— F
DistrSameFieldSameValue ::
debug?{z: E,} + E: {z: E,} + E,
— {z: E;} + (debug?E; : E,)
DistrLeftObjectEmpty ::
debug?{} : {z: E,} + E,
— {debug?undefined : E,} + E,
DistrRightObjectEmpty ::
debug?{z : E;} + E, : {}
— {debug?E, : undefined} + E,
DistrSameFieldDifferent Value ::
debug?{z : Ey}+ By {x: Ex} + B,
— {z : debug?Ey; : Er} + (debug?E; : E,.)

Distribution rules are confluent, that is once they ter-
minate, the resulting program distinguishes values only
where needed. Merging more than two build scripts,
works iteratively by merging two scripts at a time.

B. Examples of Refactorings

Figure 11 shows several examples of refactorings cur-
rently supported in METAMORPHOSIS.

C. Commutativity Relation

Figure 12 shows commutativity relation among refac-
torings.



Refactoring

Before

After

var cscAndCopy = cscAndCopy ({

var csc = csc({ out: projA + "obj\debug\A.dll", ...}) out: projA + "obj\debug\A.dll",
ComposeCscCopy var copy = copy(csc.dll, projA + "bin\debug\A.dll"); d11Dst: projA + "bin\debug\",
¥
var copy = exec({ fun copy(src, dst):
dir: projh, exec ({
tool: "c:\windows...\cp.exe", dir: ".",
tool_args: [ tool: "c:\windows...\cp.exe",
csc.dll, tool_args: [src, dstl,
IntroduceTools projA + "bin\debug\A.d11"] deps: [src],
deps: [csc.dll], env: [],
env: [{"PATH", programFiles + "..."}1, out: [dst]
out: ["c:\projects...\A\bin\debug\A.d11l"] i)
»H var copy = // unchanged
. ) var copies = [{csc.dll, projA + "bin\debug\A.dl1l"}
var copyDll = copy(csc.dll, projA + "bin\debug\A.d1ll"); N
IntroduceCopyLoops _ ) s e {csc.pdb, projA + "bin\debug\A.pdb"}
Py P var copyPdb copy(csc.pdb, projA + "bin\debug\A.pdb"); ].map(s, d => copy(s, d))
var copyh = copy(csc.dll, projh + "bin\debug\h.dll"); var deploy = [{csc.dll, projA + "bin\debug\A.d11"}
IntrOduceDePloy {csc.dll, projB + "bin\debug\B.d11"}
var copyB = copy(csc.pdb, projB + "bin\debug\B.d11"); y : Prol EAB.
]l.map(s, d => copy(s, d))
var copy = exec({
dir: projh,
tool: "c:\windows...\cp.exe",
tool_args: [csc.dll, projA + "bin\debug\A.d11l"] _ X e ..
ReuseCopy deps: [esc.dll], var copy = copy(csc.dll, projA + "bin\debug\A.dll");
env: [{"PATH", programFiles + "..."}],
out: ["c:\projects...\A\bin\debug\A.d11"]
»H
. ["/reference:", "c:\program...\vd.5\mscorlib.d11l"], ["/reference:", MsCorLib.d11],
UseLibraryDlls ["/reference:", "c:\program...\vi.5\system.core.dl1"] ["/reference:", System.Core.dll]
var cscl = csc({ out: projA + "obj\debug\A.dll", ...}) ;
: . _ X s o var cscl = csc({ out: projA + "obj\debug\A.dll", ...})
InllneCoples var copy = copy(cscl.dll, projA + "bin\debug\A.dll"); var cse2 = cse({ referemces: csel.dll, ...})
var csc2 = csc({ references: copy, ...})
. ["/reference:", "c:\program...\v4.5\mscorlib.d11l"], N .
ArrayCompre331on ["/reference:", "c:\program...\vd.5\system.core.dl1"] uncompress ("/reference:", MsCorLib.dll, System.Core.dll)
var csct = csc({ // Debug trace
debug: "+",
filealign: 512,
optimize: "-", var csc = csc({
b debug: DEBUG ? "+" : "pdbonly",
MergeFlavors filealign: 512,
var csc2 = csc({ // Release trace optimize: DEBUG 7 "-" : "+",
debug: "pdbonly", 1
filealign: 512,
optimize: "+",
»
script { scriptA { // in dir projA
. var cscl = csc({ sources: [projA + "C.cs"] ...}) var cscl = csc({ sources: ["C.cs"] R
SPlltMOdule var csc2 = csc({ sources: [projC + "C.cs"] ...}) scriptC { // in dir projC
} var csc2 = csc({ sources: ["C.cs"] B}

Figure 11: Examples of refactorings in METAMORPHOSIS
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Figure 12: Commutativity relation among refactorings in METAMORPHOSIS



