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Abstract
SQL injection and cross-site scripting are two of the most com-
mon security vulnerabilities that plague web applications today.
These and many others result from having unchecked data input
reach security-sensitive operations. This paper describes a language
called PQL (Program Query Language) that allows users to declare
to specify information flow patterns succinctly and declaratively.
We have developed a static context-sensitive, but flow-insensitive
information flow tracking analysis that can be used to find all the
vulnerabilities in a program. In the event that the analysis gener-
ates too many warnings, the result can be used to drive a model-
checking system to analyze more precisely. Model checking is also
used to automatically generate the input vectors that expose the
vulnerability. Any remaining behavior these static analyses have
not isolated may be checked dynamically. The results of the static
analyses may be used to optimize these dynamic checks.

Our experimental results indicate the language is expressive
enough for describing a large number of vulnerabilities succinctly.
We have analyzed over nine applications, detecting 30 serious
security vulnerabilities. We were also able to automatically recover
from attacks as they occurred using the dynamic checker.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification–Reliability

General Terms Security, Reliability

Keywords pattern matching, web applications, SQL injection,
cross-site scripting, static analysis, dynamic analysis, model check-
ing

1. Introduction
The security of Web applications has become increasingly impor-
tant in the last decade. With more and more Web-based applications
deal with sensitive financial and medical data, it is crucial to pro-
tect these applications from hacker attacks. A security assessment
by the Application Defense Center, which included more than 250
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Web applications from e-commerce, online banking, enterprise col-
laboration, and supply chain management sites concluded that at
least 92% of Web applications are vulnerable to some form of
attack [41]. Another survey found that about 75% of all attacks
against Web servers target Web-based applications [18].

1.1 Information Tracking

Many vulnerabilities in web applications are caused by permitting
unchecked input to take control of the application, which an at-
tacker will turn to unexpected purposes.SQL injectionis one of
the top five external threats to corporate IT systems [37]. Via SQL
injection, an attacker can introduce additional conditions or com-
mands to a database query, thus allowing the attacker to bypass
authentication or even alter or destroy data. Incross-site scripting
(XSS), one of the top vulnerabilities in the past two years [6, 31],
an attacker can trick a victim into clicking on a URL that takes over
the browser. In the so-called “reflection attack” [14] XSS is used by
a phisher to inject credential-stealing code into official sites without
having to actually mimic the site he hopes to penetrate. SQL injec-
tion and XSS are but twotaint-based vulnerabilitieswhich can be
detected by tracking the flow of untrusted data entered by the user
and seeing if it flows unsafely into security-critical operations.

While this paper focuses on the use of information flow for
securing web applications, the techniques described are useful for
other topics such as debugging and avoiding leakage of confidential
data. It is a general concept that has been used not only at the
programming level [27], but also in operating systems [44] and
hardware [11]. It is highly desirable that programmers be able
to specify the information flow of interest simply in a high-level
language and have tailored, sophisticated analyses automatically
generated to detect such flow. In this way, programmers are able
to leverage sophisticated analyses without being program analysis
experts themselves.

Information tracking is a program property that requires new
language support; using traditional techniques, such as program
assertions or type declarations, to track information would require
many lines of specifications sprinkled throughout the source code.

1.2 PQL

This paper describes a high-level declarative language called PQL
(Program Query Language) [26]. PQL allows programmers to de-
scribe a class of information flow as a pattern that resembles an
excerpt of Java code. For example, we can specify a simple SQL
injection, which involves the flow of input data to database com-
mand routines, in just a few lines of PQL. Our system automatically
detects the existence of information flow in a program matching a
specified pattern both statically and dynamically, In addition, the
programmer can specify the corrective actions to take if such a pat-
tern is detected dynamically. In this way, the program heals auto-



matically rather than simply reporting an error and terminating the
program. This auto-healing property is important to prevent users
from mounting a denial-of-service attack by crashing the program.

1.3 Integrating Static and Dynamic Analyses

From a PQL query, our system automatically generates a set of
complementary static and dynamic analyses to detect matches to
the information flow specification. Our system leverages three
kinds of analysis techniques to help users track information flow,
as shown in the overview in Figure 1.

• Sound static information trackers using context-sensitive
pointer alias analysis. Sound information flow analysis is chal-
lenging because objects carrying the information may be passed
around as heap references and method parameters through-
out the program. We have developed an accurate information
tracking analysis based on a context-sensitive, flow-insensitive
pointer alias analysis [43]. PQL queries are systematically
translated into Datalog queries, a logic programming language
for deductive databases [36]. We use thebddbddb (Binary-
Decision-Diagram Based Deductive DataBase) system to trans-
late Datalog queries into BDD operations–the BDD representa-
tion makes it possible to encode the exponentially many calling
contexts in large Java applications succinctly [42]. We also use
the pointer alias analysis to help resolve reflection accurately.
We have shown in some cases that the analysis is strong enough
to identify all the possible vulnerabilities [25]. In cases where
static analysis generates too many potential errors to analyze,
further steps are taken as discussed below.

• Optimized dynamic instrumentation.PQL automatically gener-
ates a specialized matcher for a query and weaves instrumenta-
tion into the target application to perform the match at runtime.
PQL transcends traditional syntax-based approaches by match-
ing against the history of events witnessed by object instances.
The higher-level semantics of PQL enables the use of static an-
alysis to reduce the overhead of dynamic checking.

• Model checking.We next apply a more accurate static analysis,
model checking, to the instrumented byte code to refine infor-
mation tracking. By simulating the program execution against
all inputs, model checking has the potential of producing a
complete set ofattack vectors—inputs that trigger a match
to the vulnerability pattern. Unlike the context-sensitive flow-
insensitive analysis, this checker produces no false positives.
The programmer is presented with the exact input vector that
causes the vulnerability and a succinct record of the events that
lead to the attack. They give the programmer the incentive and
the assistance to correct the program accordingly.

Applying model checking to real-life applications is challeng-
ing because it is hard to analyze the large number of possible
execution sequences for all possible inputs. As a result, many
have resorted to model checking an abstract model, which un-
fortunately may not accurately reflect the behavior of the pro-
gram. We show that we can apply model checking concretely,
on a large number of web applications, abstracting only the user
and the support libraries. The key is to analyze data dependen-
cies in the application so that we can focus the model checkers
on inputs that are likely to lead to a match.

• Dynamic error recovery.Finally, if static analysis cannot guar-
antee the code to be safe, we resort to monitoring the program’s
information flow dynamically. PQL queries may specify func-
tions to execute as a match is found, optionally replacing the
last event with a user-specified function. This functionality can
be used to recover from error conditions or to defend against
attempts to breach application security.
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Figure 1. Overview of the PQL system

We have implemented all the algorithms presented in this paper,
and have applied them to a large set of open-source web applica-
tions. We detected many vulnerabilities statically, and were able to
effectively defend applications against attacks via dynamic detec-
tion and response [25, 26].

1.4 Organization

The rest of the paper is organized as follows. Section 2 discusses
the nature of the security threats we counter. Section 3 discusses
PQL, the specification language we use to drive our analyses.
Sections 4, 5, and 6 discuss our techniqures. Section 7 provides
a sample of our experimental results. Section 8 discusses related
work, and Section 9 concludes.

2. Security Vulnerability Patterns
This section starts by presenting SQL injection, one of the most
popular web vulnerabilities, then gives a high-level description of
other vulnerabilities. It also introduces our Program Query Lan-
guage by showing how a query for one of those vulnerabilities is
expressed in PQL.

2.1 SQL Injection

SQL injection vulnerabilities are caused by unchecked user input
propagating to a database for execution. A hacker may be able to
embed SQL commands into an SQL query the application passes



query simpleSQLInjection()
var object String p;
matches {

p = HttpServletRequest.getParameter(_);
Connection.execute(p);

}

Figure 2. Simple SQL injection query.

to the database for execution. These unauthorized commands may
view, update, or delete records. This type of vulnerability is espe-
cially critical in Web applications exposed to a large audience; any
vulnerabilities at all mean that database information may be forged
or stolen by anyone.

Let us look at a simple, concrete example. Here is a code
fragment that may be found in a Java servlet hosting a Web service:

String p = request.getParameter(_);
con.execute(p);

This code reads a parameter from an HTTP request and passes it
directly to a database back-end. By supplying a properly crafted
query, a malicious user can gain unauthorized access to data, dam-
age the contents in the database, and in some cases, even execute
arbitrary code on the server.

To catch this kind of vulnerability in applications, we wish to
ask if there exist some

• objectr of typeHttpServletRequest,
• objectc of typeConnection, and
• objectp of typeString

in some possible run of the program such that the result of invoking
getParameter on r yields stringp, and that stringp is eventually
used as a parameter to the invocation ofexecute on c. Note that
these two events need not happen consecutively; the stringp can
be passed around as a parameter or stored on the heap before it is
eventually used.

The PQL language allows us to describe this pattern simply,
as shown in Figure 2. PQL queries are expressed as a pattern
of dynamically executed statements. The statements listed in the
query form a regular expression (in this case, a simple sequence of
two method invocations) and the variables represent parameterized
objects. Variables whose values are immaterial (such asr andc) can
be specified purely by type name. Variables whose values and types
are both immaterial are represented by the “don’t care” symbol “_”.
Conceptually, these statements represent the smallest piece of code
that could produce the behavior we are searching for. We do not
care about any statements that may occur between them, nor do we
care precisely how the objects are named in the code.

It is easy to see how we can translate this to a static analysis.
We are looking for two static statements

p1 = r.getParameter("query");

and

c.execute(p2);

such thatp1 andp2 may point to the same object.
In general, SQL injections are more subtle and require more

sophisticated patterns to detect. In particular, the contents of the
string are typically processed in some way, often inserted into a
preformed query, before being passed to the database for execu-
tion.

Figure 3 gives a more complete PQL query for SQL injections.
The main query binds the variablesource to an initial input drawn
from an HTTP request, then bindstainted to any value reach-
able with zero or more derivation steps. This is handled via the

query main( object Object source, object Object tainted)
matches {

source = HttpServletRequest.getParameter();
derivedString(source, tainted);
java.sql.Statement.execute(tainted);

}

query derivedString( object Object x, object Object y)
var object Object temp;
matches

y := x
| { temp.append(x); derivedString(temp, y); }
| { temp = x.toString(); derivedString(temp, y); }

Figure 3. A more complete SQL injection query in PQL.

derivedString subquery, a tail recursive loop that tracks deriva-
tion through the functions involved in string concatenation. Once
a tainted object has been identified, it then searches for its use by
the database. This query can similarly be translated into a static
analysis.

2.2 Taint-Based Vulnerabilities

SQL injection is but one of many widespread vulnerabilities caused
by unchecked input in today’s Web-based systems. These problems
can be generalized totaint-based vulnerabilities, which are speci-
fied by a set ofsources, sinks, and derivation methods. Sources
are methods that return data obtained from user input. Sinks are
the sensitive methods that should not have tainted data passed in.
Derivation methods specify how tainted data propagates from one
object to another. By varying the composition of these sets, one can
express all the vulnerabilities mentioned below.

Cross-site scriptingis an attack on applications that fail to fil-
ter or quote HTML metacharacters in user input used in dynami-
cally generated Web pages. Typically, the attacker tricks the victim
into visiting a trusted URL containing a cross-site scripting vul-
nerability. This allows the attacker to embed malicious JavaScript
code into the dynamically generated page and execute the script on
the machine of any user that views the page [7]. When executed,
malicious scripts may hijack the user’s account, change the user’s
settings, steal the user’s cookies, or insert unwanted content (such
as ads) into the page.

HTTP response splitting is an attack on applications that fail
to filter or quote newlines in header information. It enables vari-
ous other attacks such as Web cache poisoning, cross user deface-
ment, hijacking pages with sensitive user information, and cross-
site scripting [21]. The crux of the HTTP response splitting tech-
nique is that the attacker may cause two HTTP responses to be
generated in response to one maliciously constructed request. For
HTTP splitting to be possible, the vulnerable application must in-
clude unchecked input as part of a response header sent back to the
client.

Path traversal vulnerabilities allow a hacker to access or con-
trol files outside of the intended path [31, 40]. They occur when
applications use unchecked user input in a path or file name; in-
put normally arrives via URL input parameters, cookies, or HTTP
request headers. Often the file in question is part of an ad-hoc
database, for instance an image in a theme. In addition to reading
or removing sensitive files, the attacker may attempt a denial-of-
service attack by causing the application to access a file for which
it does not have permissions.

All taint-based vulnerabilities, and many other error patterns,
can be expressed easily in PQL. PQL allows programmers to use a
familiar Java syntax to track operations applied to objects simply,
regardless of how these objects are referred to in the program text.



3. PQL Language Overview
The focus of PQL is to track method invocations and accesses
of fields and array elements in related objects. To keep the lan-
guage simple, PQL currently does not allow references to variables
of primitive data types such as integers, floats and characters, nor
primitive operations such as additions and multiplications. This is
acceptable for object-oriented languages like Java because small
methods are used to encapsulate most meaningful groups of primi-
tive operations. The ability to match against primitive objects may
be added to PQL as an extension in the future.

Conceptually, we model the dynamic program execution as
a sequence of primitive events, in which the checkers find all
subsequences that match the specified pattern. We first describe
the abstract execution trace, then define the patterns describing
subsequences of the trace.

3.1 Abstract Execution Traces

We abstract the program execution as a trace of primitive events,
each of which contains a unique event ID, an event type, and a list
of attributes. Objects are named by unique identifiers. PQL focuses
on objects, and so it only matches against instructions that directly
dereference objects. We also need to be able to detect the end of
the program in order to match queries that demand that some other
event never occurs. As a result, all but the following eight event
types are abstracted away:

• Field loads and stores.The attributes of these event types are
the source object, target object, and the field name.

• Array loads and stores.The attributes of these event types are
the source and target objects. The array index is ignored.

• Method calls and returns.The attributes of these event types are
the method invoked, the formal objects passed in as arguments
and the returned object. The return event parameter includes the
ID of its corresponding call event.

• Object creations.The attributes of this event type are the newly
returned object and its class.

• End of program.This event type has no attributes and occurs
just before the Java Virtual Machine terminates.

Example 1. Abstract execution trace.
We illustrate the concept of an abstract execution trace with the
code below:

1 int len = names.length;
2 for (int i = 0; i < len; i++) {
3 String s = request.getParameter(names[i]);
4 con.execute(s);
5 }

The code above runs through the arraynames; for each element,
it reads in a parameter from the HTTP request and executes it.
Figure 4 shows an abstract execution trace for the code in the case
where thenames array has two elements. Each event in the trace is
listed with its ID, the ID of the caller in the case of a return, and
information on the event type and its attributes. In this execution,
names is bound to objecto1; o2 ando6 are elements of arrayo1

(the precise index is abstracted away);request is bound to object
o3, s is bound to objecto4 ando7 in the first and second iteration,
respectively, andcon is bound to objecto5.

This execution demonstrates two SQL injection vulnerabilities.
The first match is demonstrated with unchecked user data flowing
from o3 to o5, and again fromo7. 2

3.2 PQL Queries

A PQL query is a pattern to be matched on the execution trace and
actions to be performed upon the match. A match to the query is a

Event Caller Call/ Event
ID ID Return

1 o2 = o1[ ]
2 call o4 = o3.getParameter(o2)
3 2 return o4 = o3.getParameter(o2)
4 call o5.execute(o4)
5 4 return o5.execute(o4)
6 o6 = o1[ ]
7 call o7 = o3.getParameter(o6)
8 7 return o7 = o3.getParameter(o6)
9 call o5.execute(o7)

10 9 return o5.execute(o7)
11 call o5.execute(o8)
12 11 return o5.execute(o8)

Figure 4. Abstract execution trace for Example 1.

set of objects and a subsequence of the trace that together satisfy
the pattern.

The grammar of a PQL query is shown in Figure 5. The query
execution pattern is specified with a set of primitive events con-
nected by a number of constructs including sequencing, partial se-
quencing, and alternation. Named subqueries can be used to define
recursive patterns. Primitive events are described using a Java-like
syntax for readability. A query may declare typed variables, which
will be matched against any values of that type and any of its sub-
types. The use of the same query variable in multiple events indi-
cates that the same object is used in all of the events.

3.2.1 Query Variables

Query variables correspond to objects in the program that are rel-
evant to a match. They are declared inside of subqueries and are
local to the query they are declared in.

The most common variables representobjects, and represent
individual objects on the heap, Object variables have a class name
that restricts the kind of object instances that they can match. If that
name is prefixed with a “!”, then the object mustnot be castable to
that type. If the same object variable appears multiple times in a
query, it must be matched to the same object instance. Thecontents
of the object need not be the same for multiple matches.

There are alsomembervariables, which represent the name of
a field or a method. Member variables are declared with textual
pattern that the member name must match. A pattern of “∗” will
match any method name. If a member variable occurs multiple
times in a pattern, it must represent the same field or method name
in each event.

For convenience, we introduce a wildcard symbol “_” whose
different occurrences can be matched to different member names
or objects. However, values matched to wildcard symbols cannot
be examined or returned.

Query variables are eitherarguments(passed in from some
other query that has invoked it),return values(acted upon by
the query’s action, or returned to an invoking query, or both),
or internal variables(used inside the query to find a match, but
otherwise isolated from the rest of the system).

3.2.2 Statements

Most primitive statements in our query language correspond di-
rectly to the event types of the abstract execution trace. Method
invocations are the exception to this; they match all events between



queries −→ query*

query −→ query qid ( [decl[, decl]*] )
[var declList; ]
[within methodInvoc)]
[matches { seqStmt}]
[replaces primStmtwith methodInvoc;]*
[executes methodInvoc[, methodInvoc]* ;]*

methodInvoc −→ methodName(idList)

decl −→ object [! ] typeName id|
member namePattern id

declList −→ object [! ] typeName id( , id )* |
member namePattern id( , id )*

stmt −→ primStmt| ∼ primStmt|
unifyStmt| { seqStmt}

primStmt −→ fieldAccess= id |
id = fieldAccess|
id [ ] = id |
id = id [ ] |
id = methodName( idList ) |
id = new typeName( idList )

seqStmt −→ ( poStmt; )*
poStmt −→ altStmt( , altStmt)*
altStmt −→ stmt( "|" stmt)*

unifyStmt −→ id := id
qid ( idList )

typeName −→ id ( . id )*
idList −→ [ id ( , id )* ]
fieldAccess −→ id . id
methodName−→ typeName. id
id,qid −→ [A-Za-z ][0-9A-Za-z_ ]*
namePattern −→ [A-Za-z*_ ][0-9A-Za-z*_ ]*

Figure 5. BNF grammar specification for PQL.

a call to the method and its matching return event. References to
objects in a primitive statement must be declared object query vari-
ables, or the special variable “_”, which is a wildcard placeholder
for any object not relevant to the query. References to members may
be literals or declared member query variables. A field or method
in an event need not be declared in the type associated with its base
variable; in such cases, a match can only occur if a subclass defines
it.

Primitive statements may be combined into compound state-
ments, as shown in the grammar. A sequencea; b specifies thata
is followed byb. Ordinarily, this means any events may occur be-
tween them as well—the primary focus is on individual objects, so
sequences are, by default, not contiguous. An event may be forbid-
den from occurring at a point in the match by prefixing it with the
exclusion operator “∼”. Thus, the sequencea;∼ b; c matchesa
followed byc if and only if b does not occur between them. Wild-
cards are permissible, so excluding all possible events can force a
sequence to be contiguous in the trace if desired.

The alternation operator is used when we wish to match any of
several events (or compound statements): ifa andb are statements,
thena|b is the statement matching eithera or b.

To match multiple statements independently of one another, we
use partial-order statements, which separate the statements to be
matched with commas. The statementa, b, c; would match the three
statementsa, b, andc in any order. If a clause in a partial-order
statement is a sequence itself, then sequencing within that clause is
enforced as normal.

Of the three combination operators, alternation has the highest
precedence, then partial-order, and lastly sequencing. Braces may
be used to enforce the desired precedence.

The within construct is introduced to allow the specification
of a pattern tofully match within a (dynamic) invocation of a
method. This translates to matching against a method call event,
then matching the pattern—and insisting that the return of the
method not occur at any point between the call and the full match
of the pattern.

Queries that end with excluded events representliveness prop-
erties. If the query is embedded in awithin clause, then it will
return a match if and when the end of the invocation of the method
is reached without the excluded event occurring. If the main query
ends with excluded events, then the match cannot be confirmed un-
til the program exits.

3.2.3 Subqueries

Subqueries allow users to specify recursive event sequences or re-
cursive object relations. Subqueries are defined in a manner anal-
ogous to functions in a programming language. They can return
multiple values, which are bound to variables in the calling query.
By recursively invoking subqueries, each with its own set of vari-
ables, queries can match against an unbounded number of objects.

Values from input and return query variables are transferred
across subqueries by unifying formals with actuals, and return
values with the caller’s variables.Unification in the context of a
PQL match involves ensuring that the two unified variables are
bound to the same value in any match. If one variable has been
bound by a previous event but the other has not, the undefined
variable is bound to the same value. If both have already been
bound to different variables, then no match is possible.

When writing recursive subqueries, it is often necessary for
the base case to force the return value to be equal to one of its
arguments. PQL provides a unification statement to express this:
the statementa := b does not correspond to any program event,
but instead unifies its parametersa andb.

3.2.4 Reacting to a Match

Matches in PQL often correspond to notable or undesirable pro-
gram behavior. PQL provides two facilities to log information
about matches or perform recovery actions.

The simplest version of these is theexecutes clause, which
names a method to run once the query matches. PQL subqueries
may also have one or morereplaces clauses. These name a
statement to watch for, and a method representing the action to
be executed in its place. This method may take query variables
as arguments. Passing the special symbol “∗” as an argument will
package every variable binding in the match into a collection that
can be handled generically.

4. Context-Sensitive Static Information Tracking
We have developed an algorithm to automatically translate PQL
queries into queries utilizing the results of a context-sensitive
pointer analysis. This shields the user from the need to directly op-
erate on the program representation or the context-sensitive results.
This translation approach is very flexible: even though our checkers
are currently flow-insensitive, flow sensitivity can be added in the
future to improve precision without needing to modify the queries
themselves.

Our checkers use pointer information from a sound cloning-
based context-sensitive inclusion-based pointer alias analysis due
to Whaley and Lam [43]. This analysis computes the points-to rela-
tions for each distinct call path for programs without recursion. Call
paths in recursive programs are reduced by treating each strongly



connected component as a single node. The points-to information
is stored in a deductive database calledbddbddb. The data are com-
pactly represented with binary decision diagrams (BDDs), and can
be accessed efficiently with queries written in the logic program-
ming language Datalog. We can then usebddbddb to resolve the
queries.

Datalog is highly expressive and includes the ability to recur-
sively specify properties, meaning that PQL queries may be trans-
lated to Datalog approximation using a simple syntax-directed ap-
proach.

Each PQL query becomes a Datalog relation defined over byte-
codes, field/method names, and heap variables; one bytecode for
every program point in the longest possible sequence of events
through the query, one field or method name for each member vari-
able in the PQL query, and one heap variable for each object vari-
able in the PQL query. Literals and wildcards are translated from
PQL into Datalog without change.

After runningbddbddb, we will have as our result a set of pro-
gram objects that could participate in the match of each subquery.

This information may be presented to the application program-
mer for inspection. The tool will reportall the potential errors,
some of which may not be errors in the program. The application
programmer can determine if the error is a true vulnerability, which
would require a fix, or it is a result of the analysis’s imprecision. If
the programmer can fix all the bugs, there is no need to perform
any more analysis.

In the case further analysis is necessary, the results are used to
reduce the amount of code that needs to be monitored. Because our
analysis is sound, any program point that our analysis doesnotflag
as suspicious is guaranteed to never participate in a match. Thus,
when modifying the binary to check dynamic results, we need not
instrument any point not present in the reported program points.

5. Dynamic Monitoring Code
PQL automatically generates a specialized matcher for a query and
weaves instrumentation into the target application to perform the
match at runtime.

A direct, näıve approach to finding matches to PQL queries
dynamically would consist of the following three steps:

1. Translate each subquery into a non-deterministic state machine
which takes an input event sequence, finds subsequences that
match the query and reports the values bound to all the returned
query variables for each match.

2. Instrument the target application to produce the full abstract
execution trace.

3. Use a query recognizer to interpret all the state machines over
the execution trace to find all matches.

The procedure as described is quite inefficient. We use two main
strategies to lower the overhead. First, we modify the program to
only track objects at program points that might generate an event
of interest for the specific query. A simple type analysis excludes
operations on types not related to objects in the query. We use the
results of our static analysis to further reduce the instrumentation
by excluding statements that cannot refer to objects involved in
any match of the query. Also, instead of collecting full traces, our
system tracks all the partial matches as the program executes and
takes action immediately upon recognizing a match.

The recognizer begins with a single partial match at the begin-
ning of the main query, with no values for any variables. It receives
events from the instrumented application and updates all currently
active partial matches. For each partial match, each transition from
its current state that can unify with the event produces a new possi-
ble partial match where that transition is taken. A single event may

be unifiable with multiple transitions from a state, so multiple new
partial matches are possible. If a skip transition is present and its
predicates pass, the match will persist unchanged. If the skip tran-
sition is present but a predicate fails the match transitions to the
fail state. If the skip transition is present but a predicate’s value is
unknown because the variables it refers to as are of yet unbound,
then the variable is bound to a value representing “any object that
does not violate the predicate.” Predicates accumulate if two such
objects are unified; unification with any object that satisfies all such
predicates replaces the predicates with that object.

If the new state hasε transitions, they are processed immedi-
ately.

If a transition representing a subquery call is available from
the new state, a new partial match based on the subquery’s state
machine is generated. This partial match begins in the subquery’s
start state and has initial bindings corresponding to the arguments
the subquery was invoked with. A unique subquery ID is generated
for the subquery call and associated with the subquery caller’s
partial match, with the subquery callee’s partial match, and with
any partial match that results from taking transitions within the
subquery callee.

When a subquery invocation completes, the subquery ID is used
to locate the transition that triggered the subquery invocation. The
variables assigned by the query invocation are then unified with the
return values, and the subquery invocation transition is completed.
The original calling partial match remains active to accept any
additional subquery matches that may occur later.

In order for this matcher to scale over long input traces, it is
critical to be able to quickly acquire all relevant partial matches
to an event. We use a hash map to quickly access partial matches
affected by each kind of event. This map is keyed not only on the
specific transition, but also on all variables known to have values at
that point in the query. For queries whose partial matches consist
of at most one variable-value pair of binding, our implementation
is very efficient as it needs to perform only one single hash lookup.

6. Model Checking
Model checking is attractive for web security because not only can
it find errors, it can be used to generate the attack vectors to prove
the existence of a real vulnerability. This information is very helpful
for the programmers to fix the bugs. However, model checking is
challenging for real programs. A web application consists of tens
or hundreds of thousands of lines of code. It continuously accepts
inputs, so it is impossible to exhaust all possible paths.

Web developers have greatly leveraged common frameworks
to reduce the development time for creating web applications. We
show that we can exploit the use of common frameworks to produce
powerful programming tools. We have developed a model checker,
called QED (Query-based Event Director). This model checker is
designed for web applications built on top of servlets, JSPs, and
Apache Struts:

• Java servlets [34], which is a standard extension to the Java
platform for writing web applications.

• JSPs (Java Server Pages) [35], which allow page design to be
commingled with database accesses.

• Apache Struts [2], which is a web application framework that
uses the model-view-controller paradigm. In this paradigm, a
controller decouples the data model from the user view so they
can easily be changed independently.

An attack vector is a sequence of URLs, each of which consists
of a page request and a set of input parameters. One of the strengths
of QED is to be able to find attack vectors that consist of more than
one URL request quickly. Instead of generating large number of



random input vectors to exercise the program, QED uses agoal-
directed approach to generate those essential input vectors that
exercise those portions of code that may harbor vulnerabilities.

The input to QED is the Java bytecode instrumented to detect
the vulnerability patterns of interest. The monitoring code has been
optimized so only those sections that can participate in an attack,
according to the context-sensitive information tracking analysis,
are instrumented.

Each URL request generated leads to the invocation of an event.
By understanding how event handling code is dispatched in the Java
servlet framework, it can deduce the URLs that need to be supplied
to exercise instrumented code. A URL request is redundant unless
it can generate or lead to an event that contains instrumented code.
This dependence analysis allows QED to prune off unnecessary
input sequences, focusing on short, highly productive input vectors.

QED uses Java Pathfinder [38] to perform model checking on
instrumented code. QED stubs out various components in the ap-
plication. For example, for the sake of efficiency, we use non-
deterministic choices reflecting the different paths we wish to ex-
plore instead of executing a full object persistence layer. These
preparations can be re-used by appplications using the same mod-
ules.

In summary, QED takes advantage of the high-level seman-
tics of the Java servlet framework, the high-level PQL query, and
the bddbddb static analysis system to provide an effective model
checker for finding taint-based vulnerabilities in a large number of
web-based applications.

7. Experimental Results
We have applied PQL to describe a large of security flaws, includ-
ing SQL injection and cross-site scripting. Besides security vulner-
abilities we have also used PQL to find other kinds of program er-
rors such as violations of consistency invariants and resource leaks.
We have applied PQL to over 60,000 Java classes and found over
200 errors.

7.1 SQL Injection

We first show an example of a real-life vulnerability query writ-
ten in PQL. Figure 6 contains an excerpt of the SQL injection
query for web applications written in the J2EE framework.
Sources, listed in queryUserSource include return results
of HttpServletRequest’s methods such asgetParameter.
Sinks, enumerated in thereplaces clause, include argu-
ments of methodjava.sql.Statement.execute(String sql),
java.sql.Connection.prepareStatement(String sql), and
so forth.

Because a user-controlled string may be incorporated into other
strings, the main query asks if a user-controlled string (subquery
UserSource), can be propagated one or more times (subquery
StringPropStar) to create a string used in an SQL query (the ac-
tions in thereplaces clauses of the main query). Unsafe database
accesses are replaced with routines that first quote every metachar-
acter in every instance of the user string in the SQL command, thus
transforming possible attacks into legitimate commands.

Note that the string propagation queryStringPropStar is
not specific to SQL injection, and can be used for a variety of
taint queries that involve propagation ofStrings. It invokes the
StringProp query, which handles all the ways in which one string
can be derived from another. By modifying the start and end points
of the information flow, we produced PQL queries for each of the
vulnerabilities discussed in Section 2.

7.2 Context-Sensitive Information Tracking

We applied each of our queries to a set of representa-
tive open-source applications:jboard, blojsom, snipsnap,

query main( object Object source, object Object sink)
var

object java.sql.Connection con;
object java.sql.Statement stmt;

matches {
UserSource(source);
StringPropStar(source, sink);

} replaces con.prepareStatement(sink)
with SQL.SafePrepare(con, source, sink);

replaces stmt.executeQuery(sink)
with SQL.SafeExecute(stmt, source, sink);

query StringProp( object Object x, object Object y)
matches

y.append(x)
| y = new String(x)
| y = new StringBuffer(x)
| y = x.toString()
| ...

query StringPropStar( object Object x, object Object y)
var object Object temp;
matches

y := x |
{

StringProp(x, temp);
StringPropStar(temp, y);

}

query UserSource( object Object tainted;)
matches

tainted = ServletRequest.getParameter()
| tainted = ServletRequest.getHeader()
| ...

Figure 6. Full SQL injection query.

personalblog, pebble and blueblog are Web-based bulletin
board and blogging applications;webgoat is a J2EE application
designed as a test case and teaching tool; androad2hibernate is a
test program for the popular object persistence libraryhibernate.

The results of the experiment are shown in Figure 7. We found
that every application suffers from one or more vulnerabilities we
tested, except for the smallest application,jboard. snipsnap is
the only application that suffers from the HTTP splitting vulnera-
bility; it has eleven such errors. Path traversal vulnerabilities are
found in two applications, whereas potential SQL injection and
cross-site scripting errors are located in four applications. In total,
our experiment turned up 30 errors for further investigation.

7.3 Model Checking

The static analysis results are given in terms of objects or program
points. In order to automatically derive interactions with a web
application that produce the attack, more work is needed. The
model-checking system can fabricate attacks based on the program
points in the result. This process produced concrete attack vectors
for the Cross-Site scripting vulnerabilities inpersonalblog.

7.4 Dynamic Information Tracking

It is important to keep the runtime overhead low as we track the
information and catch security vulnerabilities dynamically. With-
out static optimization, many program locations need to be instru-
mented. For example, routines that cause oneString to be derived
from another are very common. Heavily processed user inputs that
do not ever reach the database will also be carefully tracked at run-
time, introducing significant overhead to the analysis. The model
checker relies on instrumented code to develop its attacks, so ex-
cessive instrumentation is also a problem for it.



Program SQL HTTP Cross-Site Path Total
Injection Splitting Scripting Traversal Errors

jboard 0 0 0 0 0
blueblog 0 0 1 0 1
webgoat 5 0 1 0 6
blojsom 0 0 0 2 2
personalblog 2 0 1 0 3
snipsnap 1 11 0 3 15
road2hibernate 1 0 0 0 1
pebble 0 0 1 0 1
roller 0 0 1 0 1

Total 9 11 5 5 30

Figure 7. Vulnerabilities found in 9 Web applications.

Fortunately, the static optimizer effectively removes instrumen-
tation on calls to string processing routines that are not on a path
from user input to database access. Exploiting pointer information
dramatically reduces both the number of instrumentation points and
the overhead of the system. The reduction in the number of in-
strumentation points due to static optimization can be as high as
97% inroller and 99% inpersonalblog. This reduction in the
number of instrumentation points results in a smaller overhead. For
instance, inwebgoat, the overhead is cut almost in half in the op-
timized version.

7.5 Auto-healing

Note that the query does no direct checking of the value that has
been provided by the user, so if harmless data is passed along a
feasible injection vector, it will still trigger a match to the query.
As a result of this, drastic responses such as aborting the application
are unsuitable.

We can use PQL to check for potential errors and recover grace-
fully. The query shown in Figure 6 uses areplaces clause to check
if the inputs are clean, and if not, replace it with a safe version.

TheSafePrepare andSafeExecute methods themselves find
all substrings in thesink variable that match any of the possible
values forsource. They then produce a new SQL query string
identical to the old, but it quotes all the SQL metacharacters such
as “′”. This forces them to be treated as literal characters instead of,
for instance, a string terminator. This new, safe query is then passed
to prepareStatement or executeQuery, respectively.

Using this technique we were able to defend against the two
SQL injections for which we had derived effective attacks: the two
in webgoat androad2hibernate.

8. Related Work
Web applications carry a unique set of security risks [31]. Various
systems have been developed to help secure web applications.
SABER [32] is a static tool that detects a large number of common
design errors based on instantiations of a number of error pattern
templates. WebSSARI [17] and Nguyen-Tuong et al. [29] are
dynamic systems that detects failures to validate input and output
in PHP applications. While PQL does not handle PHP, in principle
these analyses perform sequencing, type, or tainting analysis and as
such are easily amenable to representation as PQL queries directly.
The latter project is suitable for tracking taintedness at much finer
granularity. In a more general context FindBugs [16] attempts to
locate a broad class of bugs in Java applications of all kinds.

The SQLCHECK system [33] uses a much more precise tech-
nique to detect grammatical changes in commands as a result of
user input. while SQLCHECK is SQL-injection specific and Find-
Bugs is a battery of unrelated analyses. Taint flow within an ap-
plication is tracked incidentally, and only if the PQL specification
demands it.

To combat cross-site scripting, recent work has focused on
extending the DOM to permit browser extensions to block out any
unauthorized scripts [20]. While, if fully implemented, this system
will block out any possible attacks, it requires cooperation between
both site authors and clients.

8.1 Event-based Analysis

The queries in our system are defined with respect to a conceptual
abstract execution trace consisting of a stream of events. The impli-
cations of this paradigm for debugging are covered extensively in
the EBBA system [5]; later tools have expanded on the basic con-
cept to provide additional power. Dalek [30] is a debugger that de-
fines compound events out of simpler ones, and permits breakpoints
to occur only when a compound event has executed. PQL follows
Dalek in building its queries out of patterns of simple events, and
builds upon it by permitting the events to be recursively (and, in-
deed, even mutually recursively) defined.

PQL’s dynamic monitoring system also bears a certain resem-
blance toaspect-oriented programming, in which the programmer
specifies locations and conditions under which extra actions must
be taken. Walker and Veggers [39] introduce the concept ofdeclar-
ative event patterns, in which regular expressions of traditional syn-
tactic pointcuts are used to specify when advice should run. Allan
et al. [1] extend this further by permitting PQL-like free variables
in the patterns.

In an alternative approach, the Partiqle system [12] uses a SQL-
like syntax to extract individual elements of an execution stream.
It does not directly combine complex events out of smaller ones,
instead placing boolean constraints between primitive events to
select them as sets directly.

8.2 Other Program Query Languages

Systems like ASTLOG [10] and JQuery [19] permit patterns to
be matched against source code; Liu et al. [24] extend this con-
cept to include parametric pattern matching [3]. These systems,
however, generally check only for source-level patterns and cannot
match against widely-spaced events. A key contribution of PQL is
a pattern matcher that combines object-based parametric matching
across widely-spaced events.

Lencevicius et al. developed an interactive debugger based on
queries over the heap structure [22]. This analysis approach is
orthogonal both to the previous systems named in this section as
well as to PQL; however, like PQL, its query language is explicitly
designed to resemble code in the language being debugged.

8.3 Analysis Generators

PQL follows in a tradition of powerful tools that take small specifi-
cations and use them to automatically generate analyses. Metal [13]
and SLIC [4] both define state machines with respect to variables.
These machines are used to configure a static analysis that searches



the program for situations where error transitions can occur. Metal
restricts itself to finite state machines, but has more flexible event
definitions and can handle pointers (albeit in an unsound manner).

The Rhodium language [23] uses definitions of dataflow facts
combined with temporal logic operators to permit the definition of
analyses whose correctness may be readily automatically verified.
As such, its focus is significantly different from the other systems,
as its intent is to make it easier to directly implement correct
compiler passes than to determine properties of or find bugs in
existing applications. Likewise, though it is primarily intended as
a vehicle for predefined analyses, Valgrind [28] also presents a
general technique for dynamic analyses on binaries.

8.4 Model Checkers

Model checking systems such as SPIN [15] are powerful and
widespread tools for capturing complicated program properties.
Model checkers generally operate upon abstract languages such as
Promela; the Bandera project [8] abstracts Java code into a form
amenable to SPIN and other model checkers. These systems rep-
resent queries over the models as LTL formulas on predicates—
Bandera ties these predicates to expressions defined in the code
itself [9].

Our system uses the Java PathFinder system [38]. JPF was
suitable for our system primarily due to its ability to directly run
sizable Java applications as bytecode; this permitted us to treat
our dynamic analysis as just another part of the application being
checked.

9. Conclusion
Information flow is one of the basic analyses used in compiler opti-
mizations; as such it is usually applied only to local variables within
a procedure. Whole-program information flow of dynamically al-
located objects is necessary for higher level software engineering
tools. This paper describes one particularly compelling use, web
application security, where information flow information is directly
and immediately applicable. We show that we can automatically
find a large number of security vulnerabilities in real-life web ap-
plications through the synergism of a new language for describing
information flow, context-sensitive pointer alias analysis, dynamic
monitoring, and model checking.

The results presented in this paper are likely to be just the
beginning of several important trends.

1. Information flow tracking is likely to be used in many more ap-
plications. Security vulnerabilities in the form of untrusted user
input flow to security critical operations is just one example.
Another important use is the prevention of leakage of confi-
dential information. As information flow is essential to general
understanding of a program, it will make possible more sophis-
ticated software engineering tools.

2. Static information flow tracking at the object level is now pos-
sible for real-life applications thanks to a powerful context-
sensitive pointer alias analysis. We showed that it can be used
directly to prove certain facts like the absence of security vul-
nerabilities in a program, or to reduce the overhead of model
checking and dynamic analysis. This is just the beginning, as
improvements are still needed to improve the accuracy and scal-
ability of static context-sensitive analysis.

3. The use of components, libraries, frameworks has greatly ac-
celerated the development of software. We expect that more
framework-specialized tools, such as the QED model checker,
will be developed to help programmers with not just the devel-
opment, but the debugging and evolution of the software.

4. Just as high-level programming languages have greatly im-
proved software productivity, high-level languages like PQL
that help programmers with the complete software life cy-
cle will have an important impact. PQL, Datalog, BDD li-
braries, and Java Pathfinder all provide powerful abstractions.
The translation between the layers is straightforward thus ren-
dering the system robust. At the same time, the implementation
of each layer shields a significant level of details from the users.
Our experimental results demonstrate that it is possible now for
relatively näıve users to create custom program analyses involv-
ing sophisticated components.
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