
Fast: a Transducer-Based

Language for Tree Manipulation

Loris D’Antoni

University of Pennsylvania

lorisdan@cis.upenn.edu

Margus Veanes Benjamin Livshits
David Molnar

Microsoft Research

{margus,livshits,dmolnar}@microsoft.com

Abstract

Tree automata and tree transducers are used in a wide range
of applications in software engineering, from XML process-
ing to language type-checking. While these formalisms are
of immense practical use, they can only model finite alpha-
bets, and since many real-world applications operate over
infinite domains such as integers, this is often a limitation.
To overcome this problem we augment tree automata and
transducers with symbolic alphabets represented as para-
metric theories. Admitting infinite alphabets makes these
models more general and succinct than their classical coun-
terparts. Despite this, we show how the main operations,
such as composition and language equivalence, remain com-
putable given a decision procedure for the alphabet theory.

We introduce a high-level language called Fast that acts
as a front-end for the above formalisms. Fast supports sym-
bolic alphabets through tight integration with state-of-the-
art satisfiability modulo theory (SMT) solvers. We demon-
strate our techniques on practical case studies, covering a
wide range of applications.

Categories and Subject Descriptors F.1.1 [Theory of
Computation]: Models of Computation, Automata

Keywords Symbolic Tree Transducers, FAST

1. Introduction

This paper introduces Fast, a new language for analyzing
and modeling programs that manipulate trees over poten-
tially infinite domains. Fast builds on top of satisfiability
modulo theory solvers, tree automata, and tree transducers.
Tree automata are used in variety of applications in soft-
ware engineering, from analysis of XML programs [27] to
language type-checking [37]. Tree transducers extend tree
automata to model functions over trees, and appear in fields
such as natural language processing [31, 33, 34] and XML
transformations [32]. While these formalisms are of immense
practical use, they suffer from a major drawback: in the most
common forms they can only handle finite alphabets.

In order to overcome this limitation, symbolic tree au-
tomata (STAs) and symbolic tree transducers (STTs) ex-
tend these classical objects by allowing transitions to be

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

PLDI ’14, June 9 - 11 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594309

labeled with formulas in a specified theory. While the con-
cept is straightforward, traditional algorithms for deciding
composition, equivalence, and other properties of finite au-
tomata and transducers do not immediately generalize. A
notable example appears in [9] where it is shown that while
in the classical case allowing finite automata transitions to
read subsequent inputs does not add expressiveness, in the
symbolic case this extension makes most problems, such as
checking equivalence, undecidable. Symbolic tree automata
still enjoy the closure and decidability properties of classical
tree automata [39] under the assumption that the alphabet
theory forms a Boolean algebra (i.e. closed under Boolean
operations) and it is decidable. In particular STAs can be
minimized and are closed under complement, and intersec-
tion, and it is therefore decidable to check whether two STAs
are equivalent.

Taking a step further, tree transducers model transforma-
tions from trees to trees. A symbolic tree transducer (STT)
traverses the input tree in a top-down fashion, processes one
node at a time, and produces an output tree. This simple
model can capture several scenarios, however in most useful
cases it is not closed under sequential composition [22]. In
the case of finite alphabets this problem is solved by aug-
menting the transducer’s rules with regular lookahead [15],
that is the capability of checking whether the subtrees of
each processed node belong to some regular tree languages.
We extend STTs in a similar way, and introduce symbolic
tree transducers with regular lookahead (STTRs). The main
theoretical result of this paper is a new composition algo-
rithm for STTRs together with a proof of its correctness.
Similarly to the classical case, we show that two STTRs A
and B can be composed into a single STTR A◦B if either A
is single-valued (for every input produces at most one out-
put), or B is linear (traverses each node in the tree at most
once). Remarkably, the algorithm works modulo any decid-
able alphabet theory that is an effective Boolean algebra.

We introduce the language Fast as a frontend for STAs
and STTRs. Fast (Functional Abstraction of Symbolic
Transducers) is a functional language that integrates sym-
bolic automata and transducers with Z3 [12], a state-of-
the-art solver able to support complex theories that range
from data-types to non-linear real arithmetic. We use Fast
to model several real world scenarios and analysis prob-
lems: we demonstrate applications to HTML sanitization,
interference checking of augmented reality applications sub-
mitted to an app store, deforestation in functional language
compilation, and analysis of functional programs over trees.
We also sketch how Fast can capture simple CSS analysis
tasks. All such problems require the use of symbolic alpha-
bets. Figure 1 summarizes our applications and the analyses
enabling each one. In Section 7 we further contrast Fast
with previous DSLs for tree manipulation.

Composition Equivalence Pre-image

Augmented reality X X
HTML sanitization X X
Deforestation X
Program analysis X X X
CSS analysis X X X

Figure 1: Representative applications of Fast discussed in Section 5.
For each application we show which analyses of Fast are needed.

Contributions summary:
1. a theory of symbolic tree transducers with regular looka-

head (STTR), that non-trivially extends the classical the-
ory of tree transducers (§3);

2. a new algorithm for composing STTRs together with a
proof of correctness (§4);

3. Fast, a domain-specific language for tree manipulations
founded on the theory of STTRs (§3); and

4. five concrete applications of Fast showing how composi-
tion of STTR can be beneficial in practical settings (§5).

2. Motivating Example

We use a simple scenario to illustrate the main features of
the language Fast, and the analysis enabled by the use of
symbolic transducers. We choose to model a basic HTML
sanitizer. An HTML sanitizer is a program that traverses
an input HTML document and removes or modifies nodes,
attributes and values that can cause malicious code to be
executed on a server. Every HTML sanitizer works in a dif-
ferent way, but the general structure is usually the following:
1) the input HTML is parsed into a DOM (Document Ob-
ject Model) tree, 2) the DOM is modified by a sequence of
sanitization functions f1, . . . , fn, and 3) the modified DOM
tree is transformed back into an HTML document1. In the
following we us Fast to describe some of the functions used
during step 2. Each function fi takes as input a DOM tree
received from the browser’s parser and transforms it into an
updated DOM tree. As an example, the Fast program sani
(Figure 2, line 31) traverses the input DOM and outputs a
copy of it in which all subtrees in which the root is labeled
with the string "script" have been removed, and all the
characters "’" and """ have been escaped with a "\".

We informally describe each component of Figure 2.
Line 2 defines the data-type HtmlE of our trees.2 Each
node of type HtmlE contains a tag of type string and is
built using one of the constructors nil, val, attr, or node.
Each constructor has a number of children associated with
it (2 for attr) and all such children are HtmlE nodes. We use
the type HtmlE to model DOM trees. Since DOM trees are
unranked (each node can have an arbitrary number of chil-
dren), we will first encode them as ranked trees. We adopt a
slight variation of the classical binary encoding of unranked
trees (Figure 3). We first informally describe the encoding
and then show how it can be formalized in Fast.

Each HTML node n is encoded as an HtmlE element
node(x1, x2, x3) with three children x1, x2, x3 where: 1) x1

encodes the list of attributes of n, 2) x2 encodes the first
child of n in the DOM, 3) x3 encodes the next sibling of
n, and 4) tag contains the node type of n (div, etc.). Each
HTML attribute a with value s is encoded as an HtmlE
element attr(x1, x2) with two children x1, x2 where: 1) x1

1 Some sanitizers process the input HTML as a string, often
causing the output not to be standards compliant.
2 Section 6 discusses why classical tree transducers do not scale
in this case.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

// Datatype definition for HTML encoding
type HtmlE[tag : String]{nil(0), val(1), attr(2), node(3)}
// Language of well-formed HTML trees
lang nodeTree:HtmlE {

node(x1, x2, x3) given
(attrTree x1) (nodeTree x2) (nodeTree x3)

|nil() where (tag = "") }
lang attrTree:HtmlE {

attr(x1, x2) given (valTree x1) (attrTree x2)
|nil() where (tag = "") }

lang valTree:HtmlE {
val(x1) where (tag 6= "") given (valTree x1)
|nil() where (tag = "") }

// Sanitization functions
trans remScript:HtmlE->HtmlE {

node(x1, x2, x3) where (tag 6= "script")
to (node [tag] x1 (remScript x2) (remScript x3))

|node(x1, x2, x3) where (tag = "script") to x3

|nil() to (nil [tag]) }
trans esc:HtmlE->HtmlE {

node(x1, x2, x3) to (node [tag] (esc x1) (esc x2) (esc x3))
|attr(x1, x2) to (attr [tag] (esc x1) (esc x2))
|val(x1) where (tag = "’" ∨ tag = """)

to (val ["\"](val [tag] (esc x1)))
|val(x1) where (tag 6= "’" ∧ tag 6= """)

to (val [tag] (esc x1))
|nil() to (nil [tag]) }

// Compose remScript and esc and restrict to well-formed trees
def rem esc:HtmlE->HtmlE := (compose remScript esc)
def sani:HtmlE->HtmlE := (restrict rem esc nodeTree)
// Language of bad outputs that contain a "script" node
lang badOutput:HtmlE {

node(x1, x2, x3) where (tag = "script")
|node(x1, x2, x3) given (badOutput x2)
|node(x1, x2, x3) given (badOutput x3) }

// Check that no input produces a bad output
def bad inputs:HtmlE := (pre-image sani badOutput)
assert-true (is-empty bad inputs)

Figure 2: Implementation and analysis of an HTML sanitizer in Fast.

div

br

εεε

script

εεtext

εa

ε

id

εe

”

ε

Figure 3: HtmlE encoding of the HTML tree <div
id=’e"’><script>a</script></div>
. div, script, and br
are built using the constructor node. Nodes labeled with id, and
text, are built using attr. Single character nodes are built using val,
and ε’s using nil. The strings appearing in the figure are the tags
of each node. Sanitizing this tree with the function sani of Figure 2
yields the HtmlE tree corresponding to <div id=’e\"’></div>
.

encodes the value s (nil if s is the empty string), 2) x2

encodes the list of attributes following a (nil if a is the last
attribute), and 3) tag contains the name of a (id, etc.). Each
non-empty string w = s1 . . . sn is encoded as an HtmlE
element val(x1) where tag contains the string “s1”, and x1

encodes the suffix s2 . . . sn. Each element nil has tag "", and
can be seen as a termination operator for lists, strings, and
trees. This encoding can be expressed in Fast (lines 4-13).
For example, nodeTree (lines 4-7) is the language of correct
HTML encodings (nodes): 1) the tree node(x1, x2, x3) is in
the language nodeTree if x1 is in the language attrTree,
x2 is in the language nodeTree, and x3 is in the language
nodeTree; 2) the tree nil is in nodeTree if its tag contains
the empty string. The other language definitions are similar.

We now describe the sanitization functions. The transfor-
mation remScript (lines 15-19) takes an input tree t of type
HtmlE and produces an output tree of type HtmlE: 1) if
t = node(x1, x2, x3) and its tag is different from "script",

remScript outputs a copy of t in which x2 and x3 are re-
placed by the results of invoking remScript on x2 and x3

respectively; 2) if t = node(x1, x2, x3) and its tag is equal to
"script", remScript outputs a copy of x3, 3) if t = nil, rem-
Script outputs a copy t. The transformation esc (lines 20-27)
of type HtmlE->HtmlE escapes the characters ’ and ", and
it outputs a copy of the input tree in which each node val
with tag "’" or """ is pre-pended a node val with tag "\".
The transformations remScript and esc are then composed
into a single transformation rem esc (line 29). One might
notice that rem esc also accepts input trees that are not in
the language nodeTree, and therefore do not correspond to
correct encodings. Therefore, we compute the transforma-
tion sani (line 31), which is same as rem esc, but restricted
to only accept inputs in the language nodeTree.

We can now use Fast to analyze the program sani.
First, we define the language bad output (lines 33-36), which
accepts all the trees containing at least one node labeled
with "script".3 Next, using transducers composition, we
compute the language bad inputs (line 38) of inputs that
produce a bad output. Finally, if bad inputs is the empty
language, sani never produces bad outputs. When running
this program in Fast this checking (line 40) fails, and Fast
provides the following counterexample:

node ["script"] nil nil (node ["script"] nil nil nil)

where we omit the attribute for the nil nodes. This is due
to a bug in line 18, where the rule does not recursively
invoke the transformation remScript on x3. When fixing
this bug the assertion becomes valid.4 In this example we
showed how in Fast simple sanitization functions can be first
coded independently, and then composed without worrying
about efficiency. Finally, the resulting transformation can be
analyzed using transducer based techniques.

3. Symbolic Tree Transducers and FAST

The concrete syntax of Fast is shown in Figure 4. Fast is
designed for describing trees, tree languages and functions
from trees to trees. These are supported using symbolic tree
automata (STAs), and symbolic tree transducers with regular
lookahead (STTRs). This section describes these objects and
how they describe the semantics of Fast.

3.1 Background

All definitions are parametric with respect to a given back-
ground theory, called a label theory, over a fixed background
structure with a recursively enumerable universe of ele-
ments. Such a theory is allowed to support arbitrary op-
erations (such as addition, etc.), however all the results in
the following only require it to be 1) closed under Boolean
operations and equality, and 2) decidable (quantifier free for-
mulas with free variables can be checked for satisfiability).

We use λ-expressions for defining anonymous functions
called λ-terms without having to name them explicitly. In
general, we use standard first-order logic and follow the
notational conventions that are consistent with [40]. We
write σ for a type and the universe of elements of type σ
is denoted by σ. A σ-predicate is a λ-term λx.ϕ(x) where x
has type σ, and ϕ is a formula whose free variables FV(ϕ)

3 This definition illustrates the nondeterministic semantics of
Fast: a tree t belongs to bad output if at least one of the three
rules applies.
4 Both versions available at http://rise4fun.com/Fast/4K, and
http://rise4fun.com/Fast/Hc.

Indentifiers ID : (a..z|A..Z|_)(a..z|A..Z|_|.|0..9)∗
Basic types σ : String | Int | Real | Bool . . .
Built-in operators op : < | > | = | + | and | or | . . .
Constructors c : ID Natural numbers k : N
Tree types τ : ID Language states p : ID
Transformation states q : ID Attribute fields x : ID
Subtree variables y : ID

Main definitions :

Fast ::= type τ [(x:σ)∗] {(c(k))+} | tree t : τ := TR

| lang p : τ { Lrule+ } | trans q : τ -> τ { Trule+ }
| def p : τ := L | def q : τ -> τ := T
| assert-true A | assert-false A

Lrule ::= c(y1, . . . , yn) (where Aexp)? (given ((p y))+)?
Trule ::= Lrule to Tout

Tout ::= y | (q y) | (c[Aexp+] Tout∗)

Aexp ::= ID | Const | (op Aexp+)
Operations over languages, transductions, and trees :

L ::= (intersect L L) | (union L L) | (complement L) |
(difference L L) | (minimize L) | (domain T)
| (pre-image T L) | p

T ::= (compose T T) | (restrict T L) | (restrict-out T L) | q
TR ::= t | (c[Aexp∗] TR∗) | (apply T TR) | (get-witness L)

A ::= L == L | (is-empty L) | (is-empty T) | TR ∈ T
| (type-check L T L)

Figure 4: Concrete syntax of Fast. Nonterminals and meta-symbols
are in italic. Constant expressions for strings and numbers use C#
syntax [24]. Additional well-formedness conditions (such as well-typed
terms) are assumed to hold.

are contained in {x}. Given a σ-predicate ϕ, [[ϕ]] denotes the
set of all a ∈ σ such that ϕ(a) holds. The set of σ-predicates
is denoted by Ψ(σ). Given a type σ (such as int), we
extend the universe with σ-labeled finite trees as an algebraic
datatype T σΣ where Σ is a finite set of tree constructors f
with rank \(f) ≥ 0; f has type σ × (T σΣ)\(f) → T σΣ .5 Let

Σ(k)
def
= {f ∈ Σ | \(f) = k}. We require that Σ(0) is non-

empty so that T σ
Σ is non-empty. We write f [t](ū) for f(t, ū)

and abbreviate f [t]() by f [t].

Example 1. The Fast program in Figure 2, declares
HtmlE = T String

Σ over Σ = {nil, val, attr, node}, where
\(nil) = 0, \(val) = 1, \(attr) = 2, and \(node) = 3. For

example attr["a"](nil["b"], nil["c"]) is in T String
Σ . �

We write ē for a tuple (sequence) of length k ≥ 0 and denote
the i’th element of ē by ei for 1 ≤ i ≤ k. We also write (ei)

k
i=1

for ē. The empty tuple is () and (ei)
1
i=1 = e1. We use the

following operations over k-tuples of sets. If X̄ and Ȳ are

k-tuples of sets then X̄] Ȳ def
= (Xi∪Yi)ki=1. If X̄ is a k-tuple

of sets, j ∈ {1, . . . , k} and Y is a set then (X̄]j Y) is the
k-tuple (if i=j then Xi∪Y else Xi)

k
i=1.

3.2 Alternating Symbolic Tree Automata

We introduce and develop the basic theory of alternating
symbolic tree automata, which adds a form of alternation to
the basic definition originally presented in [39].

Definition 1. An Alternating Symbolic Tree Automaton
(Alternating STA) A is a tuple (Q, T σΣ , δ), where Q is a finite
set of states, T σΣ is a tree type, and δ ⊆

⋃
k≥0(Q × Σ(k) ×

Ψ(σ) × (2Q)k) is a finite set of rules (q, f, ϕ, ¯̀), where q is
the state, f the symbol, ϕ the guard, and ¯̀ the lookahead.

For q ∈ Q, δ(q)
def
= {r ∈ δ | state of r is q}. In Fast δ(q) is

lang q : τ {c(ȳ) where ϕ(x̄) given ¯̀(ȳ) | . . .}

Example 2. Consider the following Fast program.

5 When \(f) = 0 then f has type σ → T σΣ .

type BT [i : Int]{L(0), N(2)}
lang p:BT { L() where (i > 0) | N(x, y) given (p x) (p y) }
lang o:BT { L() where (odd i) | N(x, y) given (o x) (o y) }
lang q:BT { N(x, y) given (p y) (o y) }

An equivalent STA A over T Int
BT has states {o, p, q} and rules

{ (p, L, λx.x > 0, ()), (p, N, λx.true, ({p}, {p})),
(o, L, λx.odd(x), ()), (o, N, λx.true, ({o}, {o})),

(q, N, λx.true, (∅, {p, o})) }.
Since the first subtree in the definition of q is unconstrained,
the corresponding component in the last rule is empty. The
definition for q has no case for L, so there is no rule. �

Next, we define the semantics of an STA A = (Q, T σΣ , δ).
Definition 2. For every state q ∈ Q the language of A at
q, is the set

LqA
def
= {f [a](t̄) ∈ T σ

Σ | (q, f, ϕ, ¯̀)∈δ, a∈[[ϕ]],

\(f)∧
i=1

∧
p∈`i

ti∈LpA}

Each subtree lookahead `i above is treated as a conjunction
of conditions. If `i is empty then there are no restrictions on
the i’th subtree ti. We extend the definition to all q ⊆ Q:

Lq
A

def
= (

⋂
q∈q

LqA, if q 6= ∅; T σ
Σ , otherwise.)

In the following we say STA for alternating STA.6

Definition 3. A is normalized if for all (p, f, ϕ, ¯̀) ∈ δ, and
all i, 1 ≤ i ≤ \(f), `i is a singleton set.

For example, the STA in Example 2 is not normalized be-
cause of the rule with source q. Normalization is a practically
useful operation of STAs that is used on several occasions.

Normalization. Let A = (Q, T σΣ , δ) be an STA. We com-
pute merged rules (q, f, ϕ, ρ̄) over merged states q ∈ 2Q

where ρ̄ ∈ (2Q)\(f). For f ∈ Σ let δf =
⋃
p⊆Q δ

f (p) where:

δf (∅) = {(∅, f, ∅, (∅)\(f)
i=1)}

δf (p ∪ q) = {r ! s | r ∈ δf (p), s ∈ δf (q)}
δf ({p}) = {({p}, f, {ϕ}, ρ̄) | (p, f, ϕ, ρ̄) ∈ δ}

where merge ! of rules is defined as follows:

(p, f,ϕ, p̄) ! (q, f,ψ, q̄)
def
= (p ∪ q, f,ϕ ∪ψ, p̄] q̄)

We can then define Normalize(A) as the STA

(2Q, T σΣ , {(p, f,
∧
ϕ, ({qi})

\(f)
i=1) | f ∈ Σ, (p, f,ϕ, q̄) ∈ δf})

where the original rules are precisely the ones whose states
are singleton sets in 2Q.7 Checking whether LqA 6= ∅ can
be done by first normalizing A, then removing unsatisfiable
guards using the decision procedure of the theory Ψ(σ), and
finally using emptiness of classical tree automata.

Proposition 1. The non-emptiness problem of STAs is
decidable if the label theory is decidable.

6 When compared to the model in [8], the STAs defined above
are “almost” alternating, in the sense that they can only allow
disjunctions of conjunctions, rather than arbitrary Boolean com-
binations. Concretely, the lookahead of a rule r corresponds to a
conjunction of states, while several rules from the same source
state provide a disjunction of cases.
7 In practice, merged rules are computed lazily starting from the
initial state. Merged rules with unsatisfiable guards ϕ are elimi-
nated eagerly. New concrete states are created for all the reachable
merged states. Finally, the normalized STA is cleaned by elimi-
nating states that accept no trees, e.g., by using elimination of
useless symbols from a context-free grammar [26, p. 88–89].

While normalization is always possible, an STA may be
exponentially more succinct than the equivalent normalized
STA. This is true already for the classical case, i.e., when
σ = {()}. Using the intersection non-emptiness problem of
classical tree automata [19, 37], and emptiness of alternating
tree automata [8] we have the following bound.

Proposition 2. The non-emptiness problem of alternating
STAs without attributes is ExpTime-complete.

We decided to use alternating STAs because they are suc-
cinct and arise naturally when composing tree transducers.

3.3 Symbolic Tree Transducers with Regular
Lookahead

Symbolic tree transducers (STTs) augment STAs with out-
puts. Symbolic tree transducers with regular lookahead fur-
ther augment STTs by allowing rules to be guarded by sym-
bolic tree automata. Intuitively, a rule is applied to a node
if and only if its children are accepted by some symbolic
tree automata. We first define terms that are used below
as output components of transformation rules. We assume
that we have a given tree type T σΣ for both the input trees as
well as the output trees. In the case that the input tree type
and the output tree type are intended to be different, we
assume that T σΣ is a combined tree type that covers both.
This assumption avoids a lot of cumbersome overhead of
type annotations and can be made without loss of general-
ity because we have partial definitions. The guards and the
lookaheads can be use to restrict the types as needed.

The set of extended tree terms is the set of tree terms
of type T σΣ∪{State} where State /∈ Σ is a new fixed symbol
of rank 1. A term State[q](t) is always used with a concrete
value q and State[q] is also written as q̃. The idea is that, in
q̃ the value q is always viewed as a state.

Definition 4. Given a tree type T σΣ , a finite set Q ⊆ σ of
states, and k ≥ 0, the set Λ(T σΣ , Q, k) is defined as the least
set T of λ-terms called k-rank tree transformers that satisfies
the following conditions, let ȳ be a k-tuple of variables of
type T σΣ∪{State} and let x be a variable of type σ,

• for all q ∈ Q, and all i, 1 ≤ i ≤ k, λ(x, ȳ).q̃(yi) ∈ T ;
• for all f ∈ Σ, all e :σ→σ and, all t1, . . . , t\(f) ∈ T ,
λ(x, ȳ).f [e(x)](t1(x, ȳ), . . . , t\(f)(x, ȳ)) ∈ T .

Definition 5. A Symbolic Tree Transducer with Regular
lookahead (STTR) S is a tuple (Q, q0, T σΣ ,∆), where Q is a
finite set of states, q0 ∈ Q is the initial state, T σΣ is the tree
type, ∆ ⊆

⋃
k≥0(Q×Σ(k)×Ψ(σ)× (2Q)k × Λ(T σΣ , Q, k)) is

a finite set of rules (q, f, ϕ, ¯̀, t), where t is the output.8 A
rule is linear if its output is λ(x, ȳ).u where each yi occurs
at most once in u. S is linear when all rules of S are linear.

A rule (q, f, ϕ, ¯̀, t) is also denoted by q
f,ϕ,¯̀−−−→ t. The open

view of a rule q
f,ϕ,¯̀−−−→ t is q̃(f [x](ȳ))

ϕ(x),¯̀−−−−→ t(x, ȳ). The

open view is technically more convenient and more intuitive
for term rewriting. The lookahead, when omitted, is ∅̄ by
default. Figure 5 illustrates an open view of a linear rule.
Let S be an STTR (Q, q0, T σΣ ,∆). The following construc-
tion is used to extract an STA from S that accepts all the
valid input trees accepted by S. Let t be a k-rank tree trans-
former. For 1 ≤ i ≤ k let St(i, t) denote the set of all states
q such that q̃(yi) occurs in t.

8 For k = 0 we assume that (2Q)k = {()}, i.e., a rule for c ∈ Σ(0)
has the form (q, c, ϕ, (), λx.t(x)) where t(x) is a tree term.

q̃(g[x])

y3y2y1

x<4−−−→

f [x+1]

p̃(y3)f [x−2]

p̃(y1)q̃(y2)

Figure 5: A depiction of a linear rule of rank 3.

Definition 6. The domain automaton of S, d(S), is the

STA (Q, T σΣ , {(q, f, ϕ, (`i ∪ St(i, t))
\(f)
i=1) | q f,ϕ,¯̀−−−→ t ∈ ∆}).

The rules of the domain automaton also take into account
the states that occur in the outputs in addition to the
lookahead states. For example, the rule in Figure 5 yields
the domain automaton rule (q, g, λx.x < 4, ({p}, {q}, {p})).

In the following let T be the STTR and let L`T
def
= L`d(T).

Definition 7. For all q ∈ QT , the transduction of T at q is
the function Tq

T such that, for all t = f [a](t̄) ∈ T σ
Σ ,

Tq
T (t)

def
= ⇓T q̃(t)

⇓T q̃(t)
def
=
⋃
{⇓Tu(a, t̄) | (q, f, ϕ, ¯̀, u)∈∆T , a∈[[ϕ]],

\(f)∧
i=1

ti∈L`iT }

⇓T (t)
def
= {f [a](v̄) |

\(f)∧
i=1

vi ∈ ⇓T (ti)}

The transduction of T is TT
def
= Tq0

T . The definitions are
lifted to sets using union. We write TT (t, u) for u ∈ TT (t).

We omit T from Tq
T and ⇓T when T is clear from the context.

In Fast, a transformation Tq is defined by the statement

trans q :τ -> τ {f(ȳ) where ϕ(x) given `(ȳ) to t(x, ȳ)︸ ︷︷ ︸
a rule with source state q and input f [x](ȳ)

| . . .}

where `(ȳ) denotes the lookahead ({r | (r yi) ∈ `(ȳ)})\(f)
i=1 .

Example 3. Recall the transformation remScript in Fig-
ure 2. These are the corresponding rules. We use q for the
state of remScript, and ı for a state that outputs the iden-
tity transformation. The “safe” case is

q̃(node[x](y1, y2, y3))
x 6="script"−−−−−−−→ node[x](̃ı(y1), q̃(y2), q̃(y3))

the “unsafe” case is q̃(node[x](y1, y2, y3))
x="script"−−−−−−−→ ı̃(y3),

and the “harmless” case is q̃(nil[x]())
true−−→ nil[x](). �

The following property of STTRs will be used in Section 4.

Definition 8. S is single-valued if ∀(t ∈ T σ
Σ , q ∈ QS) :

|Tq
S(t)| ≤ 1.

Determinism, as defined next, implies single-valuedness
and determinism is easy to decide. Intuitively, determinism
means that there are no two distinct transformation rules
that are enabled for the same input tree. In contrast, decid-
ability of single-valuedness of STTRs is an open problem.

Definition 9. S is deterministic when, for all q ∈ Q, f ∈ Σ,

and all rules q
f,ϕ,¯̀−−−→ t and q

f,ψ,r̄−−−→ u in ∆S , if [[ϕ]]∩ [[ψ]] 6= ∅
and, for all i ∈ {1, . . . , \(f)}, L`i ∩ Lri 6= ∅, then t = u.

3.4 The Role of Regular Look-ahead

In this section we briefly describe what motivated our choice
of considering STTRs in place of STTs. The main drawback
of STTs is that they are not closed under composition, even
for very restricted classes. As shown in the next example,

when STTs are allowed to delete subtrees, the domain is
not preserved by the composition.

Example 4. Consider the following Fast program
type BBT [b : Bool]{L(0), N(2)}
trans s1:BBT -> BBT {

L() where b to L[b]
| N(x, y) where b to N [b](s1 x)(s1 y) }

trans s2:BBT -> BBT { L() to L[true] | N(x, y) to L[true] }

Given an input t, s1 outputs the same tree t iff all the nodes
in t have label true. Given an input t, s2 always outputs
L[true]. Both transductions are definable using STTs since
they do not use lookahead. Now consider the composed
transduction s = s1 ◦ s2 that outputs L[true] iff all the
nodes in t have label true. This function cannot be computed
by an STT: when reading a node N [b](x, y), if the STT
does not produce any output, it can only continue reading
one of the two subtrees. This means that the STT cannot
check whether the other subtree contains any false labels.
However, s can be computed using an STTR that checks
that both x and y contain only true labels. �

The next example shows how STTRs are simpler than STTs.

Example 5. The following STTR describes the function h
that negates a node value when the value in its left child
is odd, leaves it unchanged otherwise, and is then invoked
recursively on the children.

type BT [x : Int]{L(0),N (2)}
lang oddRoot:BT {N (t1, t2) where (odd x)| L() where (odd x)}
def evenRoot:BT := (complement oddRoot)
trans h:BT->BT {

N (t1, t2) given (oddRoot t1) to N [−x](h t1)(h t2)
| N (t1, t2) given (evenRoot t1) to N [x](h t1)(h t2)
| L() to L[x] }

This function can be expressed using a nondeterministic
STT that guesses if the label of the left child is odd or even.
Using a deterministic STTR is a more natural solution. �

3.5 Operations on Automata and Transducers

Fast allows to define new languages and new transforma-
tions in terms of previously defined ones. Fast also supports
an assertion language for checking simple program proper-
ties such as assert-true (is-empty a).

Operations that compute new languages:
minimize, intersect, complement, etc.: operations

over STAs;
domain t: computes the domain of the STTR t using

the operation from Definition 6; and
pre-image t l: computes an STA accepting all the in-

puts for which t produces an output belonging to l.

Operations that compute new transformations:
restrict t l: constructs a new STTR that behaves like t,

but is only defined on the inputs that belong to l;
restrict-out t l: constructs a new STTR that behaves

like t, but is only defined on the inputs for which t
produces an output that belongs to l; and

compose t1 t2: constructs a new STTR that computes
the functional composition t1 ◦ t2 of t1 and t2 (algo-
rithm described in Section 4).

Assertions:
a ∈ l, l1 = l2, is-empty: decision procedures for STAs;
type-check l1 t l2: true iff for every input in l1, t only

produces outputs in l2.

Several operations are special applications of composition.
For example restrict-out q p = compose q (restrict I p),
where I is the identity STTR.

4. Composition of STTRs

Closure under composition is a fundamental property for
transducers. Composition is needed as a building block for
many operations, such as pre-image computation and out-
put restriction. Unfortunately, as shown in Example 4 and
in [22], STTs are not closed under composition. Particularly,
when tree rules may delete and/or duplicate input subtrees,
the composition of two STT transductions might not be ex-
pressible as an STT transduction. This is already known for
classical tree transducers and can be avoided either by con-
sidering restricted fragments, or by instead adding regular
lookahead [2, 14, 16]. In this paper we consider the latter
option. Intuitively, regular lookahead acts as an additional
child-guard that is carried over in the composition so that
even when a subtree is deleted, the child-guard remains in
the composed transducer and is not “forgotten”. While dele-
tion can be handled by STTRs, duplication is a much more
difficult feature to support. When duplication is combined
with nondeterminism, as shown in the next example, it is
still not possible to compose STTRs. In practice this case
is unusual, and it can only appear when programs produce
more than one output for a given input.

Example 6. Let f be the function that, given a tree of type
BT (see Example 2) transforms it by nondeterministically re-
placing some leaves with the value 5. Let g be the function
that transforms a tree t into N [0](t, t). So g(f(L[1])) pro-
duces the trees N [0](L[1], L[1]) and N [0](L[5], L[5]), where
the two leaves contain the same value since they are “syn-
chronized” on the same run. The function f ◦ g cannot be
expressed by an STTR. �

4.1 Composition Algorithm

Algorithms for composing transducers with regular looka-
head have been studied extensively [20]. However, as shown
in [22], extending classical transducers results to the sym-
bolic setting is a far from trivial task. The key property that
makes symbolic transducers semantically different and much
more challenging than classical tree transducers, apart from
the complexity of the label theory itself, is the output com-
putation. In symbolic transducers the output labels depend
symbolically on the input label. Effectively, this breaks the
application of some well-established classical techniques that
no longer carry over to the symbolic setting. For example,
while for classical tree transducers the output language is
always regular, this is not the case for symbolic transducer.
Such anomaly is caused by the fact that the input attribute
can appear more than once in the output of a rule.

Let S and T be two STTRs with disjoint states We want
to construct a composed STTR S◦T such that, TS◦T =
TS◦TT . The composition TS◦TT is defined as the relation
∃y(TS(x, y) ◦TT (y, z)), following the convention in [21].

For p ∈ QS and q ∈ QT , assume that ‘.’ is an in-
jective pairing function that constructs a new pair state
p.q /∈ QS ∪ QT . In a nutshell, we use a least fixed point
construction starting with the initial state q0

S .q
0
T . Given a

reached (unexplored) pair state p.q and symbol f ∈ Σ, the
rules from p.q and f are constructed by considering all pos-
sible constrained rewrite reductions of the form

(true, (∅)\(f)
i=1 , q̃(p̃(f [x](ȳ)))) −→

S
(, , q̃())

∗−→
T

(ϕ, ¯̀, t)

where t is irreducible. There are finitely many such reduc-
tions. Each such reduction is done modulo label and looka-

head constraints and returns a rule p.q
f,ϕ,¯̀−−−→ t.

Example 7. Suppose p̃(f [x](y1, y2))
x>0−−−→
S

p̃(y2). Assume

also that q ∈ QT and that p.q has been reached. Then

(true, ∅̄, q̃(p̃(f [x](y1, y2)))) −→
S

(x>0, ∅, q̃(p̃(y2)))

where q̃(p̃(y2)) is irreducible. The resulting rule (in open

form) is p̃.q(f [x](y1, y2))
x>0−−−→ p̃.q(y2). �

The rewriting steps are done modulo label constraints.
To this end, a k-configuration is a triple (γ, L, u) where γ is
a formula with FV(γ) ⊆ {x}, L is a k-tuple of sets of pair
states p.q where p ∈ QS and q ∈ QT , and u is an extended
tree term. We use configurations to describe reductions of
T . Composition of S and T is defined formally as follows

S◦T def
= (QS ∪ {p.q | p ∈ QS , q ∈ QT }, q0

S .q
0
T , T σΣ ,

∆S ∪
⋃

p∈QS ,q∈QT ,f∈Σ

Compose(p, q, f))

For p ∈ QS , q ∈ QT and f ∈ Σ, the procedure for creating
all composed rules from p.q and symbol f is as follows.

Compose(p, q, f)
def
=

1. choose (p, f, ϕ, ¯̀, u) from ∆S

2. choose (ψ, P̄ , t) from Reduce(ϕ, (∅)\(f)
i=1 , q̃(u))

3. return (p.q, f, ψ, ¯̀] P̄ , t)
The procedure Reduce uses a procedure Look(ϕ,L, q, t)

that, given a label formula ϕ with FV(ϕ) ⊆ {x}, a composed
lookahead L of rank k, a state q ∈ QT , and a term t including
states from QS , returns all possible extended contexts and
lookaheads. Assume, without loss of generality, that d(T) is

normalized. We let ε({e}) def
= e for any singleton set {e}.

Look(ϕ,L, q, t)
def
=

1. if t = p̃(yi) where p ∈ QS then return (ϕ,L]i {p.q})
2. if t = g[u0](ū) where g ∈ Σ then

(a) choose (q, g, ψ, ¯̀) from δd(T) where IsSat(ϕ∧ψ(u0))

(b) L0 := L, ϕ0 := ϕ ∧ ψ(u0)

(c) for (i = 1; i ≤ \(g); i++)

choose (ϕi, Li) from Look(ϕi−1, Li−1, ε(`i), ui)

(d) return (ϕ\(g), L\(g))

The function Look(ϕ,L, q, t) returns a finite (possibly
empty) set of pairs because there are only finitely many
choices in 2(a), and in 2(c) the term ui is strictly smaller
than t. Moreover, the satisfiability check in 2(a) ensures that
ϕ\(g) is satisfiable. The combined conditions allow cross-level
dependencies between labels, which are not expressible by
classical tree transducers.

Example 8. Consider the instance Look(x>0, ∅̄, q, t) for
t = g[x+1](g[x−2](p̃1(y2))) where g ∈ Σ(1). Suppose there
is a rule (q, g, λx.odd(x), {q}) ∈ δd(T) that requires that all
labels of g are odd and assume that there is no other rule
for g from q. The term t itself may arise as an output of a
rule p̃(f [x](y1, y2)) → g[x+1](g[x−2](p̃1(y2))) of S. Clearly,
this outrules t as a valid input of T at q because of the
cross-level dependency between labels due to x, implying

that both labels cannot be odd at the same time. Let us
examine how this is handled by the Look procedure.

In Look(x>0, ∅̄, q, t) line 2(c) we have the recursive
call Look(x>0 ∧ odd(x+1), ∅̄, q, g[x−2](p̃1(y2))). Inside the
recursive call we have the failing satisfiability check of
IsSat(x>0 ∧ odd(x+1) ∧ odd(x−2)) in line 2(a). So that
there exists no choice for which 2(d) is reached in the orig-
inal call so the set of return values of Look(x>0, ∅̄, q, t) is
empty. �

In the following we pretend, without loss of generality,
that for each rule τ = (q, f, ϕ, ¯̀, t) there is a state qτ that
uniquely identifies the rule (qτ , f, ϕ, ¯̀, t); qτ is used to refer
to the guard and the lookahead of τ chosen in line 2(a) in
the call to Look in 2(b) below, qτ is not used elsewhere.

Reduce(γ, L, v)
def
=

1. if v = q̃(p̃(yi)) where q ∈ QT and p ∈ QS then
return (γ, L, p̃.q(yi))

2. if v = q̃(g[u0](ū)) where q ∈ QT and g ∈ Σ then

(a) choose τ = (q, g, , , t) from ∆T

(b) choose (γ1, L1) from Look(γ, L, qτ , g[u0](ū))

(c) choose χ from Reduce(γ1, L1, t(u0, ū)) return χ

3. if v = g[t0](t̄) where g ∈ Σ then

(a) γ0 := γ, L0 := L

(b) for (i = 1; i ≤ \(g); i++)

choose (γi, Li, ui) from Reduce(γi−1, Li−1, ti)

(c) return (γ\(g), L\(g), g[t0](ū))

There is a close relationship between Reduce and Defi-
nition 7. We include the case

Tq
T (p̃(t))

def
= Tq

T (Tp
S(t)) for p ∈ QS and t ∈ T σ

Σ , (1)

that allows states of S to occur in the input trees to Tq
T

in a non-nested manner. Intuitively this means that rewrite
steps of T are carried out first while rewrite steps of S are
being postponed (called by name). In order to justify the
extension (1) we need the following Lemma.

Lemma 3. For all t ∈ Λ(T σΣ , QS , k), a ∈ σ, and ui ∈ T σ
Σ :

1. Tq
T (⇓S(t(a, ū))) ⊆ Tq

T (t(a, ū)), and
2. Tq

T (⇓S(t(a, ū))) = Tq
T (t(a, ū)) when S is single-valued or

T is linear.

Example 9. The example shows a case when

Tq
T (⇓S(t(a, ū))) 6= Tq

T (t(a, ū)).

Suppose p
c,>−−→
S
N, p

c,>−−→
S
4, and q

g,>−−→
T

λxy.f [x](q̃(y), q̃(y)).

Let f = f [0], c = c[0], g = g[0]. Then

q̃(g(p̃(c))) −→
T

f(q̃(p̃(c)), q̃(p̃(c)))
∗−→
S
{f(q̃(N), q̃(N)), f(q̃(4), q̃(4))}∪
{f(q̃(N), q̃(4)), f(q̃(4), q̃(N))}

but

q̃(g(p̃(c))) −→
S
{q̃(g(N)), q̃(g(4))}

∗−→
T
{f(q̃(N), q̃(N)), f(q̃(4), q̃(4))}

where, for example, f(q̃(N), q̃(4)) is not possible. �

The assumptions on S and T given in Lemma 3 are
the same as in the classical setting, however the proof of

Lemma 3 does not directly follow from classical results
because either the concrete alphabet Σ × σ is infinite, or
else, if σ is encoded as trees, linear rules become non-
linear in the classical sense, such as the rule in Figure 5.
Theorem 4 uses Lemma 3. It implies that, in general, TS◦T
is an overapproximation of TS◦TT and that TS◦T captures
TS◦TT precisely when either S behaves as a partial function
or when T does not duplicate its tree arguments.

Theorem 4. For all p ∈ QS, q ∈ QT and t ∈ T σ
Σ ,

Tp.q
S◦T (t) ⊇ Tq

T (Tp
S (t)), and if S is single-valued or if T is

linear then Tp.q
S◦T (t) ⊆ Tq

T (Tp
S (t)).

5. Evaluation

Fast can be applied in multiple different applications. We
first consider HTML input sanitization for security. Then
we show how augmented reality (AR) applications can be
checked for conflicts. Next, we show how Fast can perform
deforestation and verification for functional programs. Fi-
nally, we sketch how CSS analysis can be captured in Fast.

5.1 HTML Sanitization

A central concern for secure web application is untrusted
user inputs. These lead to cross-site scripting (XSS) attacks,
which, in its simplest form, is echoing untrusted input ver-
batim back to the browser. Consider bulletin boards that
want to allow partial markup such as and <i> tags
or HTML email messages, where the email provider wants
rich email content with formatting and images but wants
to prevent active content such as JavaScript from propa-
gating through. In these cases, a technique called saniti-
zation is used to allow rich markup, while removing ac-
tive (executable) content. However, proper sanitization is
far from trivial: unfortunately, for both of these scenar-
ios above, there have been high-profile vulnerabilities stem-
ming from careless sanitization of specially crafted HTML
input leading to the creation of the infamous Samy worm
for MySpace (http://namb.la/popular/) and the Yaman-
ner worm for the Yahoo Mail system. In fact, MySpace
has repeatedly failed to properly sanitize their HTML in-
puts, leading to the Month of MySpace Bugs initiative
(http://momby.livejournal.com/586.html).

This has lead the emergence of a range of libraries at-
tempting to do HTML sanitization, including PHP Input
Filter, HTML Safe, kses, htmLawed, Safe HTML Checker,
HTML Purifier. Among these, the last one, HTML Purifier
(http://htmlpurifier.org) is believed to be most robust,
so we choose it as a comparison point for our experiments.
Note that HTML Purifier is a tree-based rewriter written in
PHP, which uses the HTMLTidy library to parse the input.

We show how Fast is expressive enough to model HTML
sanitizers, and we argue that writing such programs is eas-
ier with Fast than with current tools. Our version of an
HTML sanitizer written in Fast and automatically trans-
lated by the Fast compiler into C# is partially described in
Section 2. Although we can’t argue for the correctness of our
implementation (except for the basic analysis shown in Sec-
tion 2), sanitizers are much simpler to write in Fast thanks
to composition. In all the libraries mentioned above HTML
sanitization is implemented as a monolithic function in or-
der to achieve reasonable performance. In the case of Fast
each sanitization routine can be written as a single function
and all such routines can be then composed preserving the
property of traversing the input HTML only once.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000
[0

-1
)

[1
-2

)

[2
-4

)

[4
-8

)

[8
-1

6
)

[1
6

-3
2

)

[3
2

-6
4

)

[6
4

-1
2

8
)

[1
2

8
-2

5
6)

[2
5

6
-5

1
2)

[5
1

2
-1

,0
2

4
)

[1
,0

2
4

-2
,0

4
8

)

[2
,0

4
8

-4
,0

9
6

)

[4
,0

9
6

-8
,1

9
2

)

[8
,1

9
2-

1
6,

3
8

4)

[1
6

,3
84

-3
2

,7
68

)

[3
2

,7
68

-6
5

,5
36

)

N
u

m
b

e
r

o
f

co
m

p
le

te
d

 t
as

ks

time intervals in milliseconds

Composition Input restrictions Output restrictions

Figure 6: Augmented reality: running times for operations on trans-
ducers. The x-axis represent time intervals in ms. The y-axis shows
how many cases run in a time belonging to an interval. For example
about 1,600 compositions were completed between 8 and 16 ms.

Evaluation: To compare different sanitization strategies in
terms of performance, we chose 10 web sites and picked
an HTML page from each content, ranging from 20 KB
(Bing) to 409 KB in size (Facebook). For speed, the Fast-
based sanitizer is comparable to HTML Purify. In terms
of maintainability, Fast wins on two counts. First, we can
apply analysis to Fast programs that is precise, unlike
analyses for PHP. Second, our sanitizer is only 200 lines
of Fast code instead of 10000 lines of PHP. While these
are different languages, we argue that our approach is more
maintainable because Fast captures the high level semantics
of HTML sanitization, as well as being fewer lines of code
to understand. We manually spot-checked the outputs to
determine that both produce reasonable sanitizations.

5.2 Conflicting Augmented Reality Applications

In augmented reality the view of the physical world is en-
riched with computer-generated information. For example,
applications (often called taggers) on the Layar phone AR
platform applications provide up-to-date information such
as data about crime incidents near the user’s location, infor-
mation about historical places and landmarks, real estate,
and other points of interest.

We call a tagger an AR application that labels elements
of a given set with a piece of information based on the
properties of such elements. As an example, consider a
tagger that assigns to every city a set of tags representing
the monuments in such city. A large class of shipping mobile
phone AR applications are taggers, including Layar, Nokia
City Lens, Nokia Job Lens, and Junaio. We assume that
the physical world is represented as a list of elements, and
each element is associated with a list of tags (i.e. a tree).
Users should be warned if not prevented from installing
applications that conflict with others they have already
installed. We say that two taggers conflict if they both label
the same node of some input tree. In order to detect conflicts
we perform the following four-step check for each pair of
taggers 〈p1, p2〉:
composition we compute p, composition of p1 and p2;
input restriction we compute p′, a restriction of p that

only accepts trees where each node contains no tags;
output restriction we compute p′′, a restriction of p′ that

only outputs trees in which some node contains two tags;
check we check if p′′ is the empty transducer: if it is not the

case, p1 and p2 conflict on every input accepted by p′′.

 16 64 256 1,024 4,096

2

4

8

16

32

64

128

256

512

1,313

4,686

0

1,000

2,000

3,000

4,000

5,000

0 100 200 300 400 500

M
ill

is
e

co
n

d
s

Composed Functions

Fast No Fast

Figure 7: Deforestation advantage for a list of 4,096 integers.

Evaluation: Figure 6 shows the timing results for conflict
analysis. To collect this data, we randomly generated 100
taggers in Fast and checked whether they conflicted with
each other. Each tagger we generated conforms to the fol-
lowing properties: 1) it is non-empty; 2) it tags on average 3
nodes; and 3) it tags each node at most once.

The sizes of our taggers varied from 1 to 95 states. The
language we used for the input restriction has 3 states, the
one for the output 5 states. We analyzed 4,950 possible con-
flicts and 222 will be actual conflicts. The three plots show
the time distribution for the steps of a) composition, b) in-
put restriction, and c) output restriction respectively.

All the compositions are computed in less than 250 ms,
and the average time is 15 ms. All the input restrictions are
computed in less than 150 ms. The average time is 3.5 ms. All
the output restrictions are computed in less than 33,000 ms.
The average time is 175 ms. The output restriction takes
longer to compute in some cases, due to the following two
factors: 1) the input sizes are always bigger: the size of the
composed transducers after the input restriction (p′ in the
list before) vary from 5 to 300 states and 10 to 4,000 rules.
This causes the restricted output to have up to 5,000 states
and 100,000 rules; and 2) since the conditions in the ex-
ample are randomly generated, some of them may be com-
plex causing the SMT solver to slow down the computa-
tion. The 33,000 ms example contains non-linear (cubic)
constraints over reals. The average time of 193 ms per pair-
wise conflict check is quite acceptable: indeed, adding a new
app to a store already containing 10,000 apps will incur an
average checking overhead of about 35 minutes.

5.3 Deforestation

Next we explore the idea of deforestation. First introduced
by Wadler in 1988 [41], deforestation aims at eliminating
intermediate computation trees when evaluating functional
programs. For example, to compute the sum of the squares
of the integers between 1 and n, the following small program
might be used: sum (map square (upto 1 n)). Intermedi-
ate lists created as a result of evaluation are a source of
inefficiency. However, it has been observed that transducer
composition can be used to eliminate intermediate results.
This can be done as long as individual functions are rep-
resentable as transducers. Unfortunately [41] only considers
transformations over finite alphabets. We analysed the per-
formance gain obtained by deforestation in Fast.

Evaluation: We considered the function map caesar from
Figure 8 that replaces each value x of a integer list with
(x+ 5)%26. We composed the function map caesar with it-
self several times to see how the performance changed when
using Fast. Let’s call mapn the composition of map caesar
with itself n times. We run the experiments on lists contain-
ing 4,000 randomly generated elements and we consider up

type IList[i : Int]{nil(0), cons(1)}
trans map caesar:IList->IList {

nil() to (nil[0])
|cons(y) to (cons [(x+ 5)%26] (map caesar y))

}
trans filter ev:IList->IList {

nil() to (nil[0])
|cons(y) where (i%2 = 0) to (cons [i] (filter ev y))
|cons(y) where ¬(i%2 = 0) to (filter ev y)

}
lang not emp list : IList{ cons(x) }
def comp:IList -> IList := (compose map caesar filter ev)
def comp2:IList -> IList := (compose comp comp)
def restr:IList -> IList := (restrict-out comp2 not emp list)
assert-true (is-empty restr)

Figure 8: Analysis of functional programs in Fast. The final assertion
shows that comp2 never outputs a non-empty list. Example available
at http://rise4fun.com/Fast/Jv.

to 512 composed functions. Figure 7 shows the running time
with and without deforestation for a list of 4,096 integers
used as the input. The running time of the Fast composed
version is almost unchanged, even for 512 compositions while
the running time of the näıvely composed functions degrades
linearly in the number of composed functions.

5.4 Analysis of Functional Programs

Fast can also be used to perform static analysis of simple
functional programs over lists and trees. Consider again the
functions from Figure 8. As we described in the previous
experiment the function map caesar replaces each value x
of a integer list with (x + 5) mod 26. The function filter ev
removes all the odd elements from a list.

One might wonder what happens when such functions are
composed. Consider the case in which we execute the map
followed by the filter, followed by the map, and again by the
filter. This transformation is equivalent to deleting all the el-
ements in the list! This property can be statically checked in
Fast. We first compute comp2 as the composition described
above. As show in Figure 8, the language of non-empty
lists can be expressed using the construct not emp list. Fi-
nally, we can use the output restriction to restrict comp2 to
only output non-empty lists and show that such function is
empty. In this example the whole analysis can be done in
less than 10 ms.

5.5 CSS Analysis

Cascading style-sheets (CSS) is a language that allows to
stylize and format HTML documents. A CSS program is
a sequence of CSS rules, where each rule contains a selec-
tor and an assignment. The selector decides which nodes
are affected by the rule and the assignment is responsible
for updating the selected nodes. The following is a typi-
cal CSS rule: div p { word-spacing:30px; }. In this case
div p is the selector while word-spacing:30px is the assign-
ment. This rule sets the attribute word-spacing to 30px for
every p node inside a div node. We call C(H) be the up-
dated HTML resulting from applying a CSS program C to
an HTML document H. In [23] CSS programs are analyzed
using tree logic. For example one can check whether given a
CSS program C, there doesn’t exists an HTML document H
such that C(H) contains a node n for which the attributes
color and background-color both have value black. This
property ensures that black text is never written on a black
background, causing the text not to be readable. Ideally
one would want to check that color and background-color
never have the same value, but, since tree logic explicitly
model the alphabet, the corresponding formula would be too
large. By modelling CSS programs as symbolic tree trans-

ducers we can overcome this limitation. This analysis relies
on the alphabet being symbolic, and we plan on extending
Fast with primitives for simplifying CSS modelling.

6. A Comparison with Classical Tree
Transducers

As we mentioned in the previous section, the HTML sani-
tization and CSS analysis problems could, in principle, be
expressed using existing classical models and do not require
symbolic alphabets. In both of these domains the alphabet
is finite, and, for example, the sanitizer in Fig. 2 can be
represented by classical finite state transducers with regular
lookahead. In the next paragraphs we show the benefit of
the symbolic representation of the alphabet and argue that
the use of classical transducers does not scale in this case.

The HTML sanitization example illustrates some core dif-
ferences between the symbolic and the classical case. In some
respect, the situation is analogous to going from SAT to
SMT solving [13], where many of the core propositional tech-
niques remain similar but where a theory specific component
adds additional succinctness and expressiveness. Consider
our encoding of HTML documents presented in Fig. 3. In
our representation each string value is modelled as a list
of characters, and this means that each possible character
should belong to the input alphabet. The input alphabet
Σ therefore needs to include the UTF16 representation of
Unicode characters, because UTF16 is used as the standard
runtime representation of characters and is the basic build-
ing block of strings. Thus, Σ has at least 216 elements, e.g., as
unary function symbols fc for the characters c. If we want
to support full Unicode, e.g., including emoticons [38], we
need to add additional rules that ensure that consecutive
characters . . . (fc(fd(. . .))) where c and d are surrogates are
indeed valid as surrogate pairs. This adds yet another layer
of complexity and there are 220 valid surrogate pairs. In con-
trast, at the level of strings, that are defined as lists of 16-bit
bit-vectors, such checks are straightforward (given a solver
that supports lists and bit-vector arithmetic, e.g., Z3 [12]),
and involve fairly simple arithmetic operations.

We need to add lookahead automata to all the rules so
that the tag subtree does not include other symbols besides
the character symbols. Such an automaton needs 216 tran-
sitions. The where-condition tag = "script" can be repre-
sented by a lookahead automaton, say A, with six transi-
tions. The constraint tag 6= "script" can be represented by
the complement Ac of A. Observe that complementation of
classical automata over large alphabets is expensive: while
A needs six rules, one per character in the string "script",
Ac needs 6 ∗ (216− 1) rules. The other string constraints are
handled similarly. Besides the additional lookahead tests,
transformation rules remain the same, where tag is treated
as the first subtree. Observe that, a further blowup would
occur if we wanted to apply transformations (other than the
identity mapping, such as HtmlEncoding) to tag, in which
case we would need explicit rules for all of the 216 symbols.

The bottom line is that tags are independent of the rest
of the tree structure and the two should, if possible, not be
mixed. Similar arguments already hold for symbolic finite
(word) transducers as a special case of symbolic tree trans-
ducers, where a symbolic representation may avoid an ex-
ponential blowup compared to an equivalent classical trans-
ducer, as demonstrated by the symbolic word transducer
implementing UTF8 encoding in [10]. The same argument
holds for the domain of CSS analysis.

7. Related Work

Tree transducers. Tree transducers have been long stud-
ied, surveys and books are available on the topic [8, 21, 35].
The first models were top-down and bottom-up tree trans-
ducers [2, 14], later extended to top-down transducers with
regular lookahead in order to achieve closure under compo-
sition [15, 16, 20]. Extended top-down tree transducers [31]
(XTOP) were introduced in the context of program inversion
and allow rules to read more than one node at a time, as long
as such nodes are adjacent. When adding lookahead such a
model is equivalent to top-down tree transducers with reg-
ular lookahead. More complex models, such as macro tree
transducers [17], and streaming tree transducers [1] have
been introduced to improve the expressiveness at the cost
of higher complexity. Due to this reason we don’t consider
extending them in this paper.

Symbolic transducers. Symbolic finite transducers (SFTs)
over lists, together with a front-end language Bek, were orig-
inally introduced in [25] with a focus on security analysis
of string sanitizers. The main SFT algorithms, in particu-
lar an algorithm for deciding equivalence of SFTs modulo
a decidable background theory, are studied in [40]. Variants
of SFTs in which multiple input symbols can be read by
a single transition are studied in [9] and in [5]. Symbolic
tree transducers are originally introduced in [39], where it
is wrongly claimed that STTs are closed under composition
by referring to a generalization of a proof of the classical
case in [21] which is only stated for total deterministic finite
tree transducers. In [22] this error is discovered and other
properties of STTs are investigated. The main result of [39]
is an algorithm for checking equivalence of single-valued lin-
ear STTs. For classical transducers, equivalence has been
shown to be decidable for deterministic or finite-valued tree
transducers [36], streaming tree transducers [1], and MSO
tree transformations [18]. We are currently investigating the
problem of checking equivalence of single-valued STTRs.

DSL for tree manipulation. Domain specific languages
for tree transformation have been studied in several differ-
ent contexts. VATA [30] is a tree automata library for an-
alyzing tree languages over large alphabets. In VATA tran-
sitions are represented symbolically using BDDs, however
the library does not support transducers and it is limited to
nondeterministic automata over finite (although large) al-
phabets. TTT [34] and Tiburon [33], are transducers based
languages used in natural language processing. TTT allows
complex forms of pattern matching, but does not enable
any form of analysis. Tiburon supports probabilistic tran-
sitions and several transducers algorithms. Both the lan-
guages are limited to finite input and output alphabets.
ASF+SDF [7] is a term-rewriting language for manipulating
parsing trees. ASF+SDF is simple and efficient, but does not
support any analysis. In the context of XML processing nu-
merous languages have been proposed for querying (XPath,
XQuery [42]), stream processing (STX [3]), and manipu-
lating (XSLT, XDuce [27]) XML trees. While being very
expressive, these languages support very limited forms of
analysis. Emptiness has been shown decidable for restricted
fragments of XPath [4]. XDuce [27] allows to define basic
XML transformations, and supports a tree automata based
type-checking that is limited to finite alphabets. We plan
to extend Fast to better handle XML processing and to
identify a fragment of XPath expressible in Fast. However,
to the best of our knowledge, Fast is the first language for

Language σ Analysis Domain

Fast ∞ composition; typechecking, pre-
image, language equivalence, deter-
minization, complement, intersection

Tree-
manipulating
programs

VATA ff union, intersection, language inclu-
sion

Tree-
automata

Tiburon ff composition; type-checking; training;
weights; language equivalence, deter-
minization, complement, intersection

NLP

TTT ff - NLP

ASF+SDF ∞ - Parsing

XPath ∞ emptiness for a fragment XML query
(only selec-
tion)

XDuce ∞ type-checking for navigational part
(finite alphabet)

XML query

XQuery,
XSLT,
STX

∞ - XML trans-
formations

Table 1: Summary of main domain specific languages for tree-
manipulating programs and their properties; σ indicates whether the
language supports finite (ff) or infinite (∞) alphabets.

tree manipulations that supports infinite input and output
alphabets while preserving decidable analysis. Table 1 sum-
marizes the relations between Fast and the other domain-
specific languages for tree transformations.

Applications. The connection between tree transducers
and deforestation was first investigated in [41], and then
further investigated in [29]. In this setting deforestation is
done via Macro Tree Transducers (MTT) [17]. While being
more expressive than Top Down Transducers with regular
lookahead, MTTs only support finite alphabets and their
composition is very expensive. We are not aware of an
actual implementation of the techniques in [29]. Higher-
Order Multi-Parameter Tree Transducers (HMTT) [28] are
used for type-checking higher-order functional programs.
HMTTs enable sound but incomplete analysis of programs
which takes multiple trees as input, but only support finite
alphabets. Extending our theory to multiple input trees and
higher-order functions is an open research direction.

Open problems. Several complexity related questions for
STAs and STTRs are open and depend on the complexity of
the label theory, but some lower bounds can be established
using known results for finite tree automata and transduc-
ers. For example, an STA may be exponentially more suc-
cinct than the equivalent normalized STA because one can
directly express the intersection non-emptiness problem of
a set of normalized STAs as the emptiness of a single un-
normalized STA. In the classical case, the non-emptiness
problem of tree automata is P-co, while the intersection
non-emptiness problem is ExpTime-co [8, Thm 1.7.5]. Re-
cently, new techniques based on antichains have been pro-
posed to check universality and inclusion for nondetermin-
istic tree automata [6]. Whether such techniques translate
to our setting is an open research direction. Concrete open
problems are decidability of: single-valuedness of STTRs,
equivalence of single-valued STTRs, and finite-valuedness of
STTRs. Classically these problems are decidable, but some
proofs are mathematically quite challenging [36]. Novel algo-
rithms for minimizing and learning symbolic automata over
lists have been recently proposed in [11] and [5]. Extending
such results to STAs are also unexplored topics.

8. Conclusions

We introduce Fast, a new domain-specific language for tree
manipulation based on symbolic tree automata and symbolic
tree transducers. To allow Fast to perform useful program
analysis, we design a novel algorithm for composing sym-
bolic tree transducers with regular lookahead and we prove
its correctness. Fast strikes a delicate balance between pre-
cise analysis and expressiveness, and we show how multiple
applications benefit from this analysis. A running version of
Fast can be accessed at http://rise4fun.com/Fast/.

Acknowledgements. We thank the anonymous reviewers
for their valuable feedback that helped us improving the
quality of our paper. Loris D’Antoni did this work as part
of an internship at Microsoft Research, and he is supported
by NSF Expeditions in Computing award CCF 1138996.

References
[1] R. Alur and L. D’Antoni. Streaming tree transducers. In

ICALP’12, pages 42–53. Springer, 2012.
[2] B. S. Baker. Composition of top-down and bottom-up tree

transductions. Inform. and Control, 41:186–213, 1979.
[3] O. Becker. Streaming transformations for XML-STX. In

R. Eckstein and R. Tolksdorf, editors, XMIDX 2003, vol-
ume 24 of LNI, pages 83–88. GI, 2003.

[4] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data trees and XML
reasoning. In PODS’06, pages 10–19, 2006.

[5] M. Botinčan and D. Babić. Sigma*: symbolic learning of
input-output specifications. In POPL’13, pages 443–456,
New York, NY, USA, 2013. ACM.

[6] A. Bouajjani, P. Habermehl, L. Holik, T. Touili, and T. Vo-
jnar. Antichain-based universality and inclusion testing over
nondeterministic finite tree automata. In CIAA’08, volume
5148 of Lecture Notes in Computer Science, pages 57–67.
Springer Berlin Heidelberg, 2008.

[7] M. Brand, J. Heering, P. Klint, and P. Olivier. Compiling
Rewrite Systems: The ASF+SDF Compiler. ACM Transac-
tions on Programming Languages and Systems, 24(4), 2002.

[8] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacque-
mard, D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications, 2007.

[9] L. D’Antoni and M. Veanes. Equivalence of extended sym-
bolic finite transducers. In CAV 2013, volume 8044 of LNCS,
pages 624–639. Springer, 2013.

[10] L. D’Antoni and M. Veanes. Static analysis of string encoders
and decoders. In R. Giacobazzi, J. Berdine, and I. Mastroeni,
editors, VMCAI 2013, volume 7737 of LNCS, pages 209–228.
Springer, 2013.

[11] L. D’Antoni and M. Veanes. Minimization of symbolic au-
tomata. In S. Jagannathan and P. Sewell, editors, POPL,
pages 541–554. ACM, 2014.

[12] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In TACAS’08, LNCS, 2008.

[13] L. de Moura and N. Bjørner. Satisfiability Modulo Theories:
Introduction & Applications. Communications of the ACM,
54(9):69–77, 2011.

[14] J. Engelfriet. Bottom-up and top-down tree transformations
– a comparison. Math. Systems Theory, 9:198–231, 1975.

[15] J. Engelfriet. Top-down tree transducers with regular look-
ahead. Math. Systems Theory, 10:289–303, 1977.

[16] J. Engelfriet. Some open questions and recent results on tree
transducers and tree languages. In Formal Language Theory,
pages 241–286. Academic Press, 1980.

[17] J. Engelfriet and S. Maneth. Macro tree transducers, at-
tribute grammars, and MSO definable tree translations. In-
form. and Comput, 154:34–91, 1998.

[18] J. Engelfriet and S. Maneth. The equivalence problem for de-
terministic MSO tree transducers is decidable. Inf. Process.
Lett., 100(5):206–212, Dec. 2006.

[19] T. W. Frühwirth, E. Y. Shapiro, M. Y. Vardi, and E. Yardeni.
Logic programs as types for logic programs. In LICS’91,
pages 300–309, 1991.

[20] Z. Fülöp and S. Vágvölgyi. Variants of top-down tree trans-
ducers with look-ahead. Math. Sys. Th., 21(3):125–145, 1989.

[21] Z. Fülöp and H. Vogler. Syntax-Directed Semantics: Formal
Models Based on Tree Transducers. EATCS. Springer, 1998.

[22] Z. Fülöp and H. Vogler. Forward and backward application
of symbolic tree transducers. CoRR, abs/1208.5324, 2012.

[23] P. Geneves, N. Layaida, and V. Quint. On the analysis of
cascading style sheets. In WWW ’12, pages 809–818, New
York, NY, USA, 2012. ACM.

[24] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language
Specification. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[25] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes. Fast and precise sanitizer analysis with Bek.
In Proceedings of the USENIX Security Symposium, 2011.

[26] J. E. Hopcroft and J. D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-
Wesley Longman Publishing Co., Inc., 1979.

[27] H. Hosoya and B. C. Pierce. Xduce: A statically typed
XML processing language. ACM Trans. Internet Technol.,
3(2):117–148, May 2003.

[28] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-
parameter tree transducers and recursion schemes for pro-
gram verification. In POPL’10, pages 495–508, 2010.

[29] A. Kühnemann. Comparison of deforestation techniques for
functional programs and for tree transducers. In Fuji Int.
Symp. on Functional and Logic Programming, 1999.

[30] O. Lengal, J. Šimáček, and T. Vojnar. Vata: A library for
efficient manipulation of non-deterministic tree automata.
In TACAS’12, volume 7214 of Lecture Notes in Computer
Science, pages 79–94. Springer Berlin Heidelberg, 2012.

[31] A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The power
of extended top-down tree transducers. SIAM J. Comput.,
39:410–430, June 2009.

[32] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type
checking with macro tree transducers. In PODS’05, pages
283–294, New York, NY, USA, 2005. ACM.

[33] J. May and K. Knight. A primer on tree automata software
for natural language processing, 2008.

[34] A. Purtee and L. Schubert. TTT: A tree transduction lan-
guage for syntactic and semantic processing. In Proceedings
of the Workshop on App. of Tree Aut. Tech. in NLP, 2012.

[35] J.-C. Raoult. A survey of tree transductions. In Tree
Automata and Languages, pages 311–326. sn, 1992.

[36] H. Seidl. Equivalence of finite-valued tree transducers is
decidable. Math. Systems Theory, 27:285–346, 1994.

[37] H. Seidl. Haskell overloading is dexptime-complete. Inf.
Process. Lett., 52(2):57–60, 1994.

[38] The Unicode Consortium. The Unicode Standard 6.3, Emoti-
cons. http://unicode.org/charts/PDF/U1F600.pdf.

[39] M. Veanes and N. Bjørner. Symbolic tree transducers. In
Perspectives of System Informatics (PSI’11), volume 7162
of LNCS, pages 377–393. Springer, 2011.

[40] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and
N. Bjorner. Symbolic finite state transducers: Algorithms
and applications. In POPL’12, 2012.

[41] P. Wadler. Deforestation: transforming programs to elimi-
nate trees. In Proceedings of the Second European Sympo-
sium on Programming, pages 231–248, 1988.

[42] P. Walmsley. XQuery. O’Reilly Media, Inc., 2007.

