
Towards Fully Automatic Placement
of Security Sanitizers and Declassifiers

Benjamin Livshits

Microsoft Research

livshits@microsoft.com

Stephen Chong

Harvard University

chong@seas.harvard.edu

Abstract

A great deal of research on sanitizer placement, sanitizer
correctness, checking path validity, and policy inference, has
been done in the last five to ten years, involving type sys-
tems, static analysis and run-time monitoring and enforce-
ment. However, in pretty much all work thus far, the burden
of sanitizer placement has fallen on the developer. However,
sanitizer placement in large-scale applications is difficult,
and developers are likely to make errors, and thus create
security vulnerabilities.

This paper advocates a radically different approach: we
aim to fully automate the placement of sanitizers by ana-
lyzing the flow of tainted data in the program. We argue
that developers are better off leaving out sanitizers entirely
instead of trying to place them.

This paper proposes a fully automatic technique for san-
itizer placement. Placement is static whenever possible,
switching to run time when necessary. Run-time taint track-
ing techniques can be used to track the source of a value,
and thus apply appropriate sanitization. However, due to the
run-time overhead of run-time taint tracking, our technique
avoids it wherever possible.

Categories and Subject Descriptors D.2.4 [Software/
Program Verification]: Validation; D.3.4 [Processors]: Com-
pilers; D.4.6 [Operating Systems]: Security and Protection—
Information flow controls

General Terms Languages, Security, Verification

Keywords Security analysis, vulnerability prevention

1. Introduction

Tracking of explicit information flow has received a great
deal of attention in recent years. Two primary applications
for explicit information flow tracking stand out prominently:

• preventing injection attacks within web applications such
as cross-site scripting (XSS) and SQL injection; and
• preventing private data leaks, such as those recently

observed in a variety of popular mobile applications [10].

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $15.00

These attacks have motivated a great deal of research in
the last five to ten years on sanitizer placement, sanitizer
correctness [15, 45], checking path validity, and policy in-
ference [23, 41], involving type systems [8, 32], static anal-
ysis [17, 18, 22, 42, 43, 47], and run-time monitoring and
enforcement [6, 7, 11, 25].1

Much academic work in this space focuses on finding
missing sanitizers and is applied to relatively small appli-
cations. Several projects have explored the use of run-time
techniques, motivated in part by the scalability and preci-
sion challenges that static analysis typically encounters. Ad-
ditional motivation for exploring run-time techniques comes
from the complexity of large-scale web applications with
multiple, potentially nested sanitizers, which recent assess-
ments [38, 39] suggest is well beyond the ability of developers
to address using static reasoning and code reviews.

We also feel that the run-time approach is most prac-
tical in the long run. However, the overhead of run-time
approaches can be considerable. Prior work on sanitizer
placement advocates dynamic sanitizer placement through
a combination of inline instrumentation [25] and library-
based instrumentation [6, 7]. The main advantage of library-
based instrumentation is reduced overhead: only library code
(as opposed to application code) needs to be instrumented.
However, library-based approaches do not deal well with in-
formation propagated through non-library code and data
structures such as char[], byte[], and custom character-
level sanitizers. Custom character-level sanitizers are quite
common, and sanitizers typically deal with string data at the
level of characters [15]. The overhead of these approaches
varies, but is generally between 1–20%, depending on the
application. In the case of library-based instrumentation,
the “depth” of the data propagation path largely determines
the overhead. In large enterprise applications, we know that
data can undergo a high number of transformations during
its lifetime [28], resulting in higher overhead than experi-
ments with smaller applications would lead us to believe.
Prior research has proposed the use of pointer analysis as a
way to reduce the number of instrumentation points [2, 24].
However, the number of program points that are deemed to
be reachable from sources and may flow to sinks is still quite
large in practice, leading to a high number of instrumenta-
tion points. We feel that it is crucial to develop novel ways to
decrease the performance penalty for inline instrumentation
to make it practical.

1For simplicity, in the rest of this paper, we shall talk pri-
marily about sanitizer placement (for integrity preservation). Our
techniques apply equally well to the placement of declassifiers (for
confidentiality preservation).

7

6 8 9

10

17

11

12 13

14 15 16

2119

42 31 5

2018

Figure 1. Motivating example of a small, but illustrative
flow graph. Sources are at the top; sinks are at the bottom.

We aim to fully automate the placement of sanitizers by
analyzing the flow of tainted data. A key observation is that,
given a policy, sources and sinks within the application in-
duce restrictions on the placement of sanitizers. It is diffi-
cult for developers to place sanitizers so as to satisfy all of
these restrictions, especially in large-scale applications [39].
In fact, we argue that developers are better off leaving out
sanitizers entirely, allowing them to be placed automatically.

In this paper we propose a fully automatic technique for
sanitizer placement. The goal is to minimize both run-time
overhead and code bloat due to instrumentation. Sanitizer
placement is static whenever possible, switching to run-
time techniques when necessary. We perform analyses on the
inter-procedural dataflow graph of the program to identify
where sanitizers can be placed, and where values must be
tracked at run-time in order to determine which sanitizer to
apply. In order to reduce run-time overhead, we resort to
run-time tracking only when necessary.

1.1 Sanitization Policies

Large applications come with libraries of sanitizers. Devel-
opers are heavily discouraged from writing their own san-
itizers. This is in part because most of the time, they get
them wrong [4, 15]. Since sanitizers are implemented as li-
brary functions, they are typically pure functions, with type
String→ String.

Policies can be given in the form of a table that for every
type of data source and data sink indicates the appropriate
sanitizer for values that flow from that source to that sink.
Policies are declarative specifications, and can both provide
developer guidance and simplify the code review process.
Section 2 gives examples of policies.

1.2 Dataflow Graphs and Policies

Figure 1 shows a simple dataflow graph that will be used
as an example throughout this paper. The policy for this
example graph is shown in Figure 2. Source types (©, �,

�, 4) are shown in rows and sink types (•, �, N) are
shown in columns. We use � as a special kind of source type
and sink type, for data production or consumption that is
not relevant to security (such as constant strings or other
trusted sources of data). Thus, we assume that every source
and sink of data has a type that appears in the table.

• � N �
© S1 S1 S4 ⊥
� S1 S2 ⊥ ⊥
� S2 S1 S3 ⊥
4 ⊥ ⊥ S3 ⊥
� ⊥ ⊥ ⊥ ⊥

Figure 2. Example policy.
Sources shown vertically;
sinks shown horizontally. ⊥
means no sanitization re-
quired.

Entries in the table
indicate which sanitizer
should be applied to data.
We use metavariable P
to range over policies,
I to range over source
types, O to range over
sink types, and S to range
over sanitizers. We write
P(I,O) for the entry in
policy P for source I and
sink O. We assume that
a node cannot be both
a source and a sink, and
write τ(n) for the source
type or sink type of node n. For example, in Figure 1, where
ni is the node labeled with integer i we have τ(n3) = � and
τ(n19) =�. Since n11 is neither a source nor a sink, τ(n11)
is undefined.

For example, let P be the policy in Figure 2. Data
originating from a source of type � and going to a sink of
type• should have sanitizer S1 applied to it. If P(I,O) = ⊥
then no sanitization should be applied data flowing from
source type I to sink type O. This may indicate, for example,
that constant string data should not be sanitized before
being displayed to the user.

1.3 Contributions

This paper makes the following contributions:

• Fully automatic sanitizer placement. We argue that
sanitizer placement should be automatic, given a policy
and an application, instead of the current approach of
the developer being responsible for getting it right.
• Node-based placement. We propose a simple node-

based strategy for static sanitizer placement. While it is
simple to implement and incurs no run-time overhead, it
is incorrect for many dataflow graphs.
• Edge-based placement. We propose an edge-based

strategy for sanitizer placement, which attempts to place
sanitizers statically and “spills over” into run time when-
ever necessary. This strategy is appropriate to use when
the simple node-based strategy fails.
• Correctness. We define the correctness of sanitization

of values in a dataflow graph, and prove that our edge-
based strategy for placement is correct.
• Experiments. We extensively evaluate how our place-

ment strategies affect the number of instrumentation
points on both large applications (up to 1.8 million lines
of code) and synthetically generated dataflow graphs.
While the node-based approach only instruments a frac-
tion of all nodes, in most cases it fails to provide sani-
tization on all paths. The edge-based approach, while it
requires more sophisticated analysis, provides full san-
itization, while reducing the number of instrumenta-
tion points by 6.19× on average. Our edge-based tech-
nique works even better in the case of a precise under-
lying dataflow graph: for sparser synthetically generated

graphs, we see a reduction in the number of instrumenta-
tion points as high as 27×, compared to the näıve version.

1.4 Paper Organization

Section 2 presents examples that highlight the need for
automated sanitizer placement. Section 3 gives an overview
to our approach for automatic sanitizer placement. Section 4
presents dataflow analyses and algorithms to implement our
approach. Section 5 describes our experimental evaluation.
Related work is discussed in Section 6. Finally, Sections 7
and 8 describe future work and conclude.

2. Motivating Examples

Our examination of large-scale applications has shown that
data processing is typically performed via a fixed set of
sanitizers whose proper selection depends on the kind of
source and sink and can be expressed as a table, as in
Figure 2 [39]. Sanitization policies in this section illustrate
the complexity of real-world data manipulation scenarios.

2.1 Web Applications

URL CSS

input encodeForURL encodeForCSS

The OWASP En-
terprise Security
API (ESAPI) is an
open-source web-
application security
library. Usage guidelines of ESAPI reveal that the cor-
rect sanitization to apply to data depends on how the
data will be used, that is, on the sink context. To
sanitize a user-provided URL, function ESAPI.encoder().
encodeForURL(input) should be used. But to sanitize user in-
put that will be used to construct a CSS attribute, function
ESAPI.encoder().encodeForCSS(input) should be used.

2.2 Web Application Roles

In large-scale web applications, sanitization requirements of-
ten vary based on who is interacting with the application.
This is referred to as role-based sanitization. For example,
Wordpress allows authors to insert certain HTML tags in
their blog posts that commenters may not [46]. Similar ap-
proaches are taken by phpBB and Drupal. This complexity
is reflected in sanitization libraries such as AntiXSS [27],
OWASP HTML Sanitizer Library [30], and HTML Puri-
fier [48], where the developer can select different policies
for sanitization of HTML.

This source sensitivity arises because not all users are
created equal, and that authentication provides a degree of
trust (and increase of capabilities) that is not warranted for
non-authenticated users.

2.3 Encrypted Cloud

output cloud

input ⊥ encrypt

cloud decrypt ⊥

Consider a web application us-
ing a public cloud provider for
storage. The web application
wants to use the cloud for scal-
ability and to reduce storage
hardware costs, but does not
fully trust the cloud to protect the confidentiality of its data.
The application therefore will use encryption when serializ-
ing data to the database, and decryption when deserializing.

In this scenario, the sources are of types input and cloud
and sinks are of types output and cloud. The policy would
encrypt data before it goes into the cloud and decrypt it on
the way out of the cloud. The correct sanitization to apply
(if any) depends on both the source and sink of data.

2.4 Mobile App Privacy and Security

Previous studies have shown that applications on Android
and other mobile platforms leak user data to untrusted
parties. One solution is that the developer needs to filter
out private data before it is allowed to go outside [9, 10].
However, the app often has legitimate reasons to send user
input and data outside. Consider a gmail app that needs
to communicate with its “parent” site, or its host, in this
case, mail.google.com. It is necessary to send information
to that hosting URL, including keystrokes, files on the local
system if those are to be attached to email, etc. There is
perhaps no compelling need to send user data to AdMob.com,
a third-party mobile advertisement provider whose library is
embedded in the app [10], and so data sent to a third-party
should be cleansed, i.e., should have sensitive information
removed, a form of declassification. This highlights the need
to treat the hosting site differently from third-party sites.

Source types for this scenario are user input, data from
host, and data from 3rd-party site. Sink types are screen
output, isolated app storage, send to host, and send to 3rd-
party site. Data sent to a third party site that does not
originate from the third party site should be cleansed. Also,
third-party data being shown to the screen might need to be
pretty-printed or checked for integrity in some way, which
we we refer to in the table below as ascii-sanitizer. No
other sanitization or declassification is required.

screen isolated to to 3rd-party

output app storage host site

user input ⊥ ⊥ ⊥ cleanse

host ⊥ ⊥ ⊥ cleanse

3rd-party site ascii-sanitizer ⊥ ⊥ ⊥

2.5 Properties of the Placement Problem

Sink sensitivity: Sanitization is sink sensitive: sanitization
to apply to data depends on how the data will be used.

Source sensitivity: Sanitization is source sensitive: the
correct sanitizer to use on data depends on where the data
comes from. Source sensitivity also makes full automatic
sanitization (as advocated by Samuel et al. [38]) difficult.

Context-sensitivity: As elaborated in ScriptGard [39] and
by Weinberger et al. [46], sanitization is context-sensitive: to
choose the proper sanitizer, the nested context needs to be
determined. Consider the following snippet of HTML code,
which displays a comment (the value untrusted) when the
element is clicked.

<div class=’comment-box’
onclick=’displayComment(untrusted, this)’>

... hidden comment ...
</div>

The untrusted comment is in two nested contexts: it is in
the onclick attribute of an HTML tag, and it is in a single-
quoted JavaScript string context. To properly sanitize the
untrusted comment, we must ensure that the untrusted com-
ment does not contain either JavaScript or HTML meta-
characters. In general, more than one sanitizer may be
needed on a path between a given source and a sink. We
model this using a single function to represent the composi-
tion of sanitizers, as required.

Not idempotent or reversible: Note that sanitizers are
not guaranteed to be either idempotent or reversible, mean-
ing that we cannot apply them more than once. A recent

study [15] shows that out of 24 sanitizers considered, 19 are
idempotent, and that only 2 are reversible. Moreover, order
is important, as less than 30% of pairs of sanitizers com-
mute. Finally, over-sanitization is also a significant issue,
which often leads to malformed double-encoded data.

3. Overview

In this section we define the problem and present an
overview of two solutions: a completely static node-based
solution, and an edge-based solution that uses static analysis
and run-time taint tracking. The static node-based solution
incurs no run-time overhead, but doesn’t always result in
correct sanitization. The edge-based solution is always cor-
rect, but may incur run-time overhead due to taint tracking.

3.1 Valid Sanitizer Placement Problem

A dataflow graph G = 〈N,E〉 is a directed graph over a set of
nodes N with edges E that describes how data flows through
a system. Nodes represent computation and/or storage lo-
cations, and edges represent the flow of data in the system.
As the program performs computation, values traverse the
dataflow graph, following edges in the graph, with nodes rep-
resenting both computation performed on values, and where
values are stored during execution. A dataflow graph may
have cycles in it. This work is not directly concerned with the
precision or soundness of the analysis used to produce the
dataflow graph: improvements to the precision and sound-
ness of analyses for dataflow graph construction will seam-
lessly improve the quality and soundness of our results. Our
focus is to ensure correct sanitization of data in a program,
and as such we require an interprocedural dataflow graph.

Suppose policy P describes which sanitizer should be
applied to data traversing a dataflow graph. We aim to
provide sanitization for values traversing the dataflow graph,
according to the following correctness definition.

Definition 1. Given a dataflow graph G = 〈N,E〉, sani-
tization for the graph is valid for policy P if for all source
nodes s, and all sink nodes t:

• if P(τ(s), τ(t)) = S then every value that flows from s
to t has sanitizer S applied exactly once, and no other
sanitizer is applied.
• if P(τ(s), τ(t)) = ⊥ then every value that flows from s to
t has no sanitizer applied.

We require that a sanitizer be applied at most once
on any given path because sanitizers are not necessarily
idempotent [15]: applying it multiple times might result in
incorrect sanitization. We require that sanitizers are not
applied needlessly. We model multiple (potentially nested)
sanitizers as a single (composite) sanitizer.

We consider two strategies for sanitizer placement: a
node-based formulation (Section 3.2) that is efficient, but
may fail to produce valid sanitization; and an edge-based
formulation (Section 3.3) that always provides correct san-
itization, but may require run-time taint tracking in order
to determine the correct sanitizer to apply.

We assume that the dataflow graph G = 〈N,E〉 does not
contain any node that has both multiple in-coming edges
and multiple out-going edges. This assumption is without
loss of generality, since if a graph does not satisfy this
requirement, it can easily be transformed to one that does by
the insertion of synthetic nodes. This assumption is required
for the correctness of the edge-based formulation, and is
analogous to assumptions in control-flow graph analysis of

Possible Exclusive

S1 1, 2, 3, 6, 7, 10, 18, 19 1
S2 2, 3, 6, 7, 8, 10, 11, 12, 14, 15, 17, 19, 20
S3 3, 4, 7, 8, 11, 13, 16, 21 13
S4 5, 9, 16, 21 5, 9
⊥ 4, 8, 11, 12, 14, 15, 17, 20

Figure 3. Si-possible and Si-exclusive nodes for Figure 1.

the absence of critical edges: edges that go from nodes with
multiple successors to nodes with multiple predecessors.

3.2 Node-based Formulation

We say that a node n is Si-possible if it is on a path from
a source node s to a sink node t that requires sanitizer Si,
that is, P(τ(s), τ(t)) = Si. Thus, if n is Si-possible, then
at least some of the data passing through node n requires
application of Si. We say a node n is Si-exclusive if it is
Si-possible, and it is not Sj-posible for any j 6= i. In other
words, node n is Si-exclusive if it is Si-possible, and for any
source s and sink t, if n is on a path from s to t, then that
path requires sanitizer Si (i.e., P(τ(s), τ(t)) = Si).

Definition 2. Node n ∈ N is Si-possible if there is a source
node s and sink node t such that n is on a path from s to t
and P(τ(s), τ(t)) = Si.

Definition 3. Node n ∈ N is Si-exclusive if it is Si-possible
and for all source nodes s and sink nodes t, if n is on a path
from s to t then P(τ(s), τ(t)) = Si.

Figure 3 shows possible and exclusive nodes for sanitiz-
ers S1, S2, S3, and ⊥ for the dataflow graph of Figure 1.
Note that while possible nodes are plentiful, exclusive nodes
are rarer. In fact, S2 and ⊥ have no exclusive nodes at all.
Note that node n13 is on a path both from n3 to n21, and
from n4 to n21. However, it is S3-exclusive because both
τ(n3) = � and τ(n4) =4 require the same sanitizer when
going to sink N: P(�,N) = P(4,N) = S3.

For sparser dataflow graphs, exclusive nodes will be more
plentiful. Exclusive nodes are good candidates at which to
apply a sanitizer to all data passing through the node. How-
ever, exclusive nodes are not necessarily unique: there may
be multiple Si-exclusive nodes on a single path from a source
to a sink. If there are multiple Si-exclusive nodes on a path,
we need to choose just one of them at which to apply sani-
tizer Si. Since in many common applications of data saniti-
zation, a sanitized value is larger than the unsanitized value
(e.g., escaping special characters in a string will increase the
length of the string), we prefer to perform sanitization as
late as possible. We say that node n is Si-latest-exclusive if
it is Si-exclusive, and for every path going through n, it is
the last Si-exclusive node on that path.

Definition 4. Node n ∈ N is Si-latest-exclusive if n is Si-
exclusive and for every source node s and sink node t, and
for every path from s to t, if n is on that path, then n is the
last Si-exclusive node on the path.

By this definition, we see that in Figure 1 nodes n1, n9,
and n13 are latest exclusive nodes (for sanitizers S1, S4 and
S3 respectively). Node n5 is not an S4-latest exclusive node,
since there is another S4-exclusive node later on a path from
n5. It is easy to see from the definition that for any path from
source node s to sink node t with P(τ(s), τ(t)) = Si, there
is at most one Si-latest-exclusive node on that path.

There may, however, be no Si-latest-exclusive node on a
path: if there is a path from source node s to sink node t with

P(τ(s), τ(t)) = Si, but there is no Si-latest-exclusive node
on that path, then node-based placement will not sanitize
values traveling from s to t on that path. Thus, placing
sanitizers only at latest-exclusive nodes may fail to produce
a valid placement (Definition 1).

As will be seen in Section 5, the static node-based ap-
proach does not produce a valid placement for all but simple
and sparse dataflow graphs.

3.3 Edge-based Formulation

We consider instead an edge-based formulation that is able
to always find a correct placement of sanitizers in a dataflow
graph, although it may be necessary to record and track at
run time some information about the path that a value has
taken in the graph in order to determine the correct sanitizer
(if any) to apply to the value.

Figure 4 summarizes the key concepts used in our edge-
based solution. We provide full definitions and intuition for
each of these terms below.

We say that an edge e is source dependent if the sanitiza-
tion to apply to values traversing e depends on which source
produced the value.

Definition 5. An edge e is source dependent if there
exist sources s0 and s1 and sinks t such that e is on
a path from s0 to t and on a path from s1 to t and
P(τ(s0), τ(t)) 6= P(τ(s1), τ(t)) (i.e, the sanitizer to use de-
pends on the source).

Similarly, we say an edge is sink dependent if the sani-
tization to apply to values traversing it depends on which
sink the value will go to.

Definition 6. An edge e is sink dependent if there exist
source s and sinks t0 and t1 such that e is on a path from
s to t0 and on a path from s to t1 and P(τ(s), τ(t0)) 6=
P(τ(s), τ(t1)) (i.e., the sanitizer to use depends on the sink).

Intuitively, if an edge is sink dependent, then when a
value traverses the edge, we do not yet know which sanitizer
to apply. By contrast, if an edge is source dependent, we do
not know which sanitizer to apply to values traversing the
edge unless we know from which source the value originated.
If an edge is neither source dependent nor sink dependent,
then all values traversing the edge are meant to have the
same sanitizer applied.

We say that edge e is source (sink) independent if it is
not source (sink) dependent.

In Figure 1, the edge from node n6 to node n10 is both
source dependent and sink dependent. It is sink dependent
because it is on paths from n2 to both n18 and n19, but
P(τ(n2), τ(n18)) = S1 6= S2 = P(τ(n2), τ(n19)). It is source
dependent since it is on paths from both n1 and n2 to n19

and P(τ(n1), τ(n19)) = S1 6= S2 = P(τ(n2), τ(n19)).
The edge from node n7 to node n8 is source indepen-

dent (since only one source node can reach it), but is sink
dependent.

3.3.1 Trigger Edges

To apply a sanitizer at a source-dependent edge, we must
know from which source a value originated. We can use run-
time tracking to “taint” a value so that we can determine its
source. However, run-time taint tracking can be expensive,
and we do not need to track all values manipulated by the
system, just those for which we need to know the source in
order to determine which sanitizer to apply.

We identify edges where it is necessary to start run-time
tracking of values, and edges where, if we were tracking, it
suffices to stop tracking. Edge e is an in-trigger edge if it
is a source-independent edge but has an edge after it that
is source dependent. In-trigger edges are the edges where
we have sufficient information to know where a value came
from, and need to start run-time tracking because the origin
of a value affects which sanitizer to apply. If e is an in-trigger
edge from node n1 to n2, then there must be at least one
other edge going to node n2, since n2 is a node where paths
from different sources merge.

Definition 7. Edge e is an in-trigger edge if it is a source-
independent edge from node n1 to node n2 such that there
exists a source-dependent edge n2 → n3.

Edge e is an out-trigger edge if it is a source-independent
edge that is preceded by a source-dependent edge e′. If we
were tracking run-time values as they traverse edge e′, then
we no longer need to track them when they traverse edge e.
If e is an out-trigger edge from node n1 to n2, then there
must be at least one other edge leaving n1, since n1 is a node
where paths from different sources to different sinks split.

Definition 8. Edge e is an out-trigger edge if it is a source-
independent edge from node n1 to node n2 such that there
exists a source-dependent edge n0 → n1.

Once we have sanitized a value, we will not need to
perform run-time tracking for the value. (This is an invariant
that our run-time discipline will enforce: only values that
require sanitization and have not yet been sanitized will be
tagged at run time.) Because run-time tracking of values can
be expensive, we typically want to perform sanitization as
early as possible. We can only perform sanitization at sink-
independent edges (because at sink-dependent edges, the
sanitization to apply depends on the future use of the value).
Sanitization edges are the earliest possible edges at which we
can perform sanitization: they are sink-independent edges
that are the earliest sink-independent edge for some path
from a source to a sink. That is, if e is a sanitization edge,
then for at least one path from a source to a sink, it is the
earliest sink-independent edge.

Definition 9. Edge e is a sanitization edge if it is a sink-
independent edge and there is a source node s and sink node
t such that e is the earliest sink-independent edge on a path
from s to t.

Figure 5 shows the source-dependent edge, sink-depen-
dent edges, in-trigger edges, out-trigger edges, and saniti-
zation edges for our running example from Figure 1. For
example, edge n4 → n8 is an in-trigger edge, since it is
source independent, but has a successor edge n8 → n11 that
is source dependent. Edge n10 → n19 is a sanitization edge
as it is the earliest sink-independent edge on the path from
node n2 to n19. Note that edge n13 → n16 is not a san-
itization edge, even though it is sink independent. This is
because any path that goes through n13 → n16 must first go
through the sink independent edge n11 → n13.

In addition, Figure 5 shows for each edge e the policy
table at e. This is simply the policy table P restricted to
the source types I and sink types O such that e is on a
path from a source node of type I to a sink node of type O.
Policy tables at edges are a useful concept for computing an
appropriate placement, and will be used in Section 4.

Definition 10. The edge policy at edge e is the restriction
of the (global) policy P to include only source types I and

Term Brief description

Source-dependent edge Sanitizer to apply to values traversing the edge depends on which source type the value came from.
Sink-dependent edge Sanitizer to apply to values traversing the edge depends on which sink type the value will go to.
In-trigger edge Source-independent edge with a source-dependent successor.
Out-trigger edge Source-independent edge with a source-dependent predecessor.
Sanitization edge Earliest sink-independent edge on some path from a source to a sink.
Tag edge In-trigger edge that isn’t dominated by sanitization edges. Start run-time tagging of values.
Untag edge Either a sanitization edge, or an out-trigger edge that is not dominated by sanitization edges. Stop

run-time tagging of values.
Carry edge Edge that (a) is reachable from a tag edge without an intervening untag edge, and (b) can reach an

untag edge, and (c) is neither a tag nor an untag edge. Instrument to propagate run-time taint values.

Figure 4. Summary of terms for edge-based placement.

sink types O such that e is on a path from a source node of
type I to a sink node of type O. We write Pe for the edge
policy at edge e.

3.3.2 Tag, Untag, and Carry edges

In-trigger edges and out-trigger edges help us identify where
we may need to start, and can stop, run-time tracking of
values. However, we can refine these notions to reduce the
amount of run-time tracking we must perform.

Intuitively, run-time tracking is necessary only when a
sanitization edge needs to distinguish values coming from
different sources. These are exactly the sanitization edges
that are source dependent. We need to propagate taint
information only along source-dependent edges, and only
until we sanitize the value.

This also means that we only need to start taint tracking
(which we refer to as “tagging” data) when data values move
from a source-independent edge to a source-dependent edge
and the data is not yet sanitized (and will need sanitization
in the future). Similarly, we can stop taint tracking (which we
refer to as “untagging” data) when tagged data is sanitized,
or when it moves from a source-dependent edge to a source-
independent edge.

Specifically, a tag edge (where we tag values at run time,
and start the run-time taint tracking) are in-trigger edges
such that a value traversing the edge might be unsanitized
and require sanitization in the future. A value is unsanitized
if it has not gone through a sanitization edge, and thus the
tag edges are in-trigger edges that are not dominated2 by
a sanitization edge. Note that an edge dominates itself, and
thus a tag edge cannot also be a sanitization edge.

Definition 11. Edge e is a tag edge if e is an in-trigger
edge that is not dominated by sanitization edges.

An untag edge is an edge such that a tagged value can
reach it (i.e., it is not dominated by sanitization edges), and
we no longer need to track the tagged values. It is either a
sanitization edge (since after sanitization we no longer need
to track taint), or an out-trigger edge.

Definition 12. An untag edge is either (a) an out-trigger
edge that is not dominated by a sanitization edge; or (b) a
sanitization edge.

At tag edges we tag values and start taint tracking, and
continue taint tracking the tagged value until it reaches
an untag edge: if the untag edge is a sanitization edge,
we apply the appropriate sanitizer; otherwise, the untag

2We define domination in dataflow graphs as follows. Edge e
is dominated by edge e′ if any path from any source that ends
with edge e must contain e′.

in-trig
tag

sani

carry

7

6

8
9

10

sani

17

in-trig

tag
in-trig
tag

sani

carry

in-trig
sani

in-trig

tag

11

out-trig
sani

12

13
sani

14 15

16

in-trig

2119

42

in-trig

31 5

2018

● ■
1 1○ ● ■

1 2□

● ■
1 1

1 2
○
□

2 1◇

●
1

1
○
□

2◇

■
1

2
○
□

1◇

● ■
2 1◇

● ■ ▲
2 1 3◇

●▲
⊥ 3△

▲
4○

▲
4○

▲
3◇

○ 3 ▲
4○
3◇

3△

●
2◇

⊥△

●▲
2 3◇

▲

3◇

3△

●▲
2 3◇

⊥ 3△

Figure 5. Policy tables are shown at every node and trigger
edges are marked.

edge is an out-trigger edge and we can stop taint tracking.
(Note that if we stop taint-tracking a value at an untag
edge, we may potentially resume taint tracking if the value
later encounters another in-trigger edge not dominated by
sanitization edges.) Edges between tag edges and untag
edges will need to propagate tag values. We refer to these
edges as carry edges.

Definition 13. Edge e is a carry edge if e is on a path
from a tag edge to an untag edge such that the path does not
contain an untag edge. That is, if edges e0, . . . , en are a path
where e0 is a tag edge, en is an untag edge, and e1, . . . , en−1

are not tag edges, then edges e1, . . . , en−1 are carry edges.

In Figure 5, edge n7 → n6 is a tag edge: it is an in-
trigger edge (since it is source independent and successor
edge n6 → n10 is source dependent) that is not dominated
by sanitizer edges. By contrast, edge n13 → n16 is an in-
trigger edge, but it is not a tag edge, since it is dominated
by sanitizer edge n11 → n13. This means that any values
traversing n13 → n16 will already be sanitized, and so there
is no need to track their source type in order to determine

which sanitizer to apply. In Figure 5, all untag edges are
sanitization edges.

Edge n6 → n10 is a carry edge, as it is on a path from
tag edge n1 → n6 to untag edge n10 → n18 without an
intervening untag edge. Edge n6 → n10 will propagate the
tags that tag edges n1 → n6, n2 → n6, and n7 → n6 create,
and enable sanitization edges n10 → n18 and n10 → n18 to
apply the appropriate sanitization.

3.3.3 Run-Time Taint Tracking for Sanitization

We have defined several different kinds of edges that are
relevant to the run-time discipline for applying correct sani-
tization to values: sanitization edges, tag edges, untag edges,
and carry edges. We summarize what the instrumentation
for these edges is required to do at run time:

• tag edge: when a value traverses a tag edge, if the
value is not tagged then tag the value with one of the
source types reaching it. A reaching source node, and its
type, can be statically determined by examining the edge
policy. Multiple source types may reach the tag edge, and
any can be used, since tag edges are source independent.

• untag edge: when a tagged value traverses an untag
edge, untag it.

• sanitization edge: If the sanitization edge is not pre-
ceded by a carry edge, then no tagged values can reach
this edge, and all values traversing this edge should have
the same sanitizer applied. Otherwise, apply sanitization
only if the value is tagged by looking up the tag (which
is a source type) in the edge’s policy table to find the ap-
propriate sanitizer to apply (which might be ⊥, in which
case no sanitization is applied).

• carry edge: when a value traverses a carry edge, any
taint on the value must be propagated.

For example, in Figure 5, consider a value flowing from
source node n3 to sink node n20. At tag edge n7 → n8,
the value will be tagged with its originating source type
τ(n3) = �. The value with its tag will be propagated
over carry edge n8 → n11. Upon reaching sanitization edge
n11 → n12, its tag will be examined, and the appropriate
sanitizer (S3) applied. Note that the tag was needed for
n11 → n12 to determine which sanitizer to apply, since a
value from source node n4 could also traverse that edge,
requiring no sanitization (⊥).

Note that if an edge e is not a tag edge, untag edge,
sanitization edge, or carry edge, then e requires no instru-
mentation, as no tagged value will traverse e, and e does
not need to perform any tagging, untagging, or sanitization.
For example, in Figure 5, edges between nodes n12 and n20

require no instrumentation.

3.3.4 Correctness of Edge-based Placement

The edge-based placement produces a valid placement (Def-
inition 1). We present here the key lemma that proves this.

Lemma 1. For every path from a source node s to a sink
node t, the following conditions hold for values flowing along
that path.

1. There is at least one sanitization edge on the path.
2. If P(τ(s), τ(t)) = ⊥ then no sanitization will be applied.
3. If P(τ(s), τ(t)) 6= ⊥ then sanitizer P(τ(s), τ(t)) will be

applied at the first sanitization edge.
4. No sanitization will be applied at the second or subsequent

sanitization edges.

Proof: Condition (1) holds from the definition of sanitization
edges, and because an edge whose target is a sink node must
be sink independent.

Let e0, . . . , en be a path from a source node to a sink
node, and let ei be the first sanitization edge. Conditions
(2) and (3) hold by the following argument. If ei is source
independent then all values traversing ei will have the same
sanitization applied (either sanitizer S if P(τ(s), τ(t)) = S,
or no sanitization if P(τ(s), τ(t)) = ⊥). Suppose that ei is
source dependent. Then there must be some other source s′

such that there is a path from s′ to ei and some output t′

reachable from ei such that P(τ(s), τ(t′)) 6= P(τ(s′), τ(t′)).
Since e0 is source independent and ei is source dependent
and the first sanitizer edge, there must be some edge ej on
the path e0, . . . ei−1 such that ej is a tag edge, and all edges
ej+1, . . . , ei−1 are carry edges. Thus, at ej , the value will
be tagged with source type τ(s) (or some other source type
I such that P(τ(s), τ(t)) = P(I, τ(t))), the carry edges will
propagate this tag, and so at sanitization edge ei, the correct
sanitization will be applied.

Suppose that condition (4) does not hold. Then there is
some edge ek in path ei+1, . . . , en such that ek is a saniti-
zation edge, and ek applies sanitization to values traversing
path eo, . . . , en. Since ek is a sanitization edge, it is the ear-
liest sink-independent edge on some path from source to a
sink, and so there must be some other source node s′ that
can reach ek. Since ek is the first sink-independent edge on a
path from s′, there must be another edge leaving source(ek)
(where source(e) denotes the source node of edge e) such
that on that edge, some sink node t′ is reachable that is
not reachable from ek, and P(τ(s′), τ(t)) 6= P(τ(s′), τ(t′)).
More over, since source(ek) has multiple edges coming from
it, by assumption that the dataflow graph has no nodes with
both multiple successors and multiple predecessors, node
source(ek) has a single predecessor, edge ek−1, and so ek−1 is
also on the path from s′ to ek. Therefore, edge ek−1 must be
source dependent: since ei can reach t′, and ei is sink inde-
pendent, it means that either P(τ(s), τ(t′)) 6= P(τ(s′), τ(t′))
or P(τ(s), τ(t)) 6= P(τ(s′), τ(t)).

Now consider whether ek−1 is a carry edge. Suppose
ek−1 is a carry edge. We will show that none of the
edges on ei, ..., ek−1 can be a tag edge, and thus, a value
coming from ei cannot be tagged, and so at sanitizer ek, no
sanitization will be applied. This contradicts the assumption
that condition (4) doesn’t hold.

Note that ei is not a tag edge, as it is a sanitization edge.
Then there must be some tag edge em between ei and ek−1.
Since it is not dominated by sanitizer edges, there must be
a path from a source node s0 (such that τ(s0) 6= τ(s)) to
source(em) without a sanitization edge. Since em is an in-
trigger edge, it is source independent. That means that for
all sink types O reachable from em, and all source types I
that can reach em, we have Pem(τ(s), O) = Pem(I,O). But
any sink type O reachable from em is also reachable from
ei, and ei is sink independent. That means that for any sink
types O1 and O2 we have Pem(τ(s), O1) = Pem(τ(s), O2).
Together these imply that em is sink independent, since for
any source I that can reach em and sinks O1 and O2 that
can be reached from em we have:

Pem(I,O1) = Pem(τ(s), O1) em is source independent

= Pei(τ(s), O1) O1 is reachable from ei

= Pei(τ(s), O2) ei is sink independent,

and O2 is reachable from ei

= Pem(τ(s), O2)

= Pem(I,O2) em is source independent

But then em is the first sink-independent edge on the
path from I0 to em, and so it is a sanitization edge. This is
a contradiction, as em is a tag edge.

Suppose ek−1 is not a carry edge. Edge ek is an un-
tag edge (since it is a sanitization edge). Note that ek−1 is
not a tag edge, since it is source dependent. But since ek−1

is source dependent, and ek is the first sanitization edge on
the path from s′ to ek, then there must be a tag edge on
the path from s′ to ek without any intervening untag edges
between it and ek. Therefore ek−1 is a carry edge, which is
a contradiction.

The correctness of the edge-based placement follows triv-
ially from Lemma 1 and the fact that no edge other than a
sanitizer edge applies sanitization.

3.3.5 Optimizations

There are several opportunities for optimization in the edge-
based placement approach.

Remove un-needed sanitization edges: For simplicity
of the presentation and the proof, we have defined the
behavior of tag edges and sanitization edges treating “no
sanitization” ⊥ as if it were a sanitizer. If a sanitizer is
not preceded by a carry edge, and the policy dictates that
no sanitization should be applied, then the sanitization
edge does not perform any computation, and should not be
instrumented. Similarly, if a tag edge is tagging a value with
a source type that will never require sanitization, then the
tag edge can be removed, and the value never tagged. This
optimization is valid because a sanitization edge that may
receive tagged values will never sanitize an untagged value.

Sanitization edges preceded by carry edges: For sim-
plicity we required that any sanitization edge preceded by
a carry edge needed to check the run-time tag before ap-
plying sanitization. There are some situations (statically de-
terminable) where a sanitization edge will be preceded by a
carry edge, yet all values going through it should have the
same sanitization applied. In Figure 5 edge n11 → n13 is
an example of this: the preceding edge n8 → n11 is a carry
edge, but n11 → n13 is source independent and the first san-
itization edge on any path that goes through it. Thus, all
values traversing n11 → n13 will have sanitizer S3 applied,
so there is no need to examine the tag.

Attaching tags to run-time values: We envision the run-
time taint tracking being implemented simply by attaching
tags to run-time values. This is a strategy that works well for
dynamic languages such as Java, PHP, or JavaScript. The
tags can be quite compact: we have described it above as
tagging a value with the source type that it originated from
(or a source type with equivalent sanitization requirements),
but it would suffice to use bit strings that uniquely identify
a source type. The number of sources depends on the pol-
icy, but will typically be small, meaning that a tag of 3–4
bits would suffice. There are opportunities for efficient im-
plementation of taint-tracking when the tags are this small,
such as placing the tag within the value header at run time.
With this tagging approach, instrumentation for carry edges
becomes trivial, since tags will be copied if they exist. Thus,
the only instrumentation required will be to tag values as
they traverse tag edges, untag them as they traverse untag
edges, and apply sanitization at sanitization edges.

Semi-lattice L set of source types
Top > ∅
Initial value init(n) ∅

Transfer function TF (n)

 add τ(n) to set if n is a
source

identity otherwise
Meet operator u(x, y) union x ∪ y
Direction forward

(a) Available source types.

Semi-lattice L set of sink types
Top > ∅
Initial value init(n) ∅

Transfer function TF (n)

 add τ(n) to set if n is a
sink

identity otherwise
Meet operator u(x, y) union x ∪ y
Direction backward

(b) Anticipated sink types.

Figure 6. Available source types and anticipated sink
types.

Efficient lookup for sanitization: Since the number of
possible tags that can reach a given sanitization edge is small
and known statically, we can pre-compute a lookup table
for each sanitization edge that maps the tag number to the
required sanitizer, thus minimizing run-time calculations.

Early vs. late sanitizer placement: The static node-
based placement strategy performs sanitization as late as
possible, at latest-exclusive nodes. The edge-based place-
ment performs sanitization as early as possible, at the earli-
est sink-independent edges. The reason for this difference is
that for the purely static node-based placement, it is slightly
better to perform sanitization late, as many common san-
itizers increase the size of data, and thus place additional
pressure on memory. By contrast, for edge-based placement,
early sanitization will reduce the amount of run-time taint
tracking required, and we believe the cost of any run-time
taint tracking outweighs the cost of increased size of data
from sanitization.

4. Placement Algorithms

In this section, we propose concrete algorithms for comput-
ing the sets and relations described in Section 3. At the
core of these computations, we have dataflow analysis, as
described in Aho et al. [1]. As we will see, we can often
stage our computation and break it down into a series of
two or three analyses, one after another. As Knoop et al. [20]
observe, this is often advantageous compared to a more com-
plex equation-based approach, because each analysis stage
completes quickly.

4.1 Node-based Placement

To implement the node-based placement strategy we com-
pute the set of nodes that are Si-possible and Si-exclusive
for each sanitizer Si for i ranging from 1 to k. To combine
the computation of these properties for different sanitizers
Si, we use bit vectors as our representation. Generally, a 1 at
position i for a value at node n ∈ N means that the property
(either possibility or exclusiveness) holds for Si.

First, we compute available source types and anticipated
sink types at every node using a dataflow analysis, as shown
in Figure 6. We specify dataflow analyses by giving the semi-

Semi-lattice L bit vector of length k
Top > 0̄
Initial value init(n) 0̄

Transfer function TF (n)

{
bit i = 1 if n is Si-exclusive
identity otherwise

Meet operator u(x, y) bitwise or x|y
Direction backward

Figure 7. Computes exclusive anticipated(i).

lattice of dataflow facts, the initial values of start nodes
(source nodes for forward analyses, sink nodes for backwards
analyses), the transfer function for nodes, and the direction
of the dataflow analysis. This is a complete specification of
the dataflow analyses.

We then combine the available sources and anticipated
sinks information as described in Algorithm 1, to determine
for each node which sanitizers are possible at every node.
This is done by projecting the policy table to only the
available source types and anticipated sink types. We write
Project(P, S, T) for the policy table that contains only the
rows of policy table P for sink types S, and only the columns
of P for sink types T . If at node n, sanitizer Si appears in
policy table Project(P, available(n), anticipated(n)), then
n is Si-possible.

Algorithm 1. Possible nodes.

for all n ∈ N do
for all Si ∈ Project(P, available(n), anticipated(n)) do

possible(Si) = possible(Si) ∪ {n}

The nodes that are Si-exclusive are a subset of nodes
that are Si-possible. Computing Si-exclusive nodes is a
simple matter of removing from the set of Si-possible nodes
any node that is Sj-possible, for any i 6= j, as shown in
Algorithm 2.

Algorithm 2. Exclusive nodes.

for all i ∈ [1..k] do
exclusive(Si) = possible(Si)
for all j ∈ [1..k] do

if i 6= j then
for all n ∈ possible(Si) do

if n ∈ possible(Sj) then
exclusive(Si) = exclusive(Si) \ {n}

The last step is to compute latest-exclusive nodes: Si-
exclusive nodes that for some path from a source to a
sink are the last Si-exclusive node on that path. Figure 7
describes a backward dataflow analysis that identifies, for
each Si, which nodes can reach an Si-exclusive node. We
write exclusive anticipated(Si) for the set of nodes that can
reach a Si-exclusive node. Latest-exclusive nodes are simply
the set of exclusive nodes, minus the set of anticipated-
exclusive nodes (Algorithm 3).

Algorithm 3. Latest-exclusive nodes

for all i ∈ [1..k] do
latest exclusive(Si) = exclusive(Si)
for all n ∈ exclusive anticipated(Si) do

latest exclusive(Si) = latest exclusive(Si) \ {n}

We place sanitizer Si at all nodes that are Si-latest-
exclusive. Latest-exclusive nodes may be rare, especially in
dense graphs. For the graph in Figure 1, this algorithm will
place sanitizers only at nodes n1, n13, and n9. However, this

Semi-lattice L Bool
Top > true
Initial value init(n) true

Transfer function TF (n)

 true if ∃Si. n ∈
latest exclusive(Si)

identity otherwise
Meet operator u(x, y) conjunction x ∧ y
Direction forward

Figure 8. Detect whether static placement is valid.

is clearly insufficient, because not all values traversing the
graph will be sanitized, such as values flowing from source
node n3 to sink node n20.

Figure 8 describes a dataflow analysis to detect whether
all paths from sources to sinks go through a latest-exclusive
node. Dataflow facts are booleans, indicating whether all
paths to the node have gone through a latest-exclusive
node. (By construction, a path can have at most one latest-
exclusive node, so there is no need to count the number of
latest-exclusive nodes on a path.) The static placement is
valid if and only if the dataflow analysis produces a value of
true at all sink nodes. If the static placement is valid, then it
can be used to correctly sanitize all values, with no run-time
overhead. If the placement is not valid, then the edge-based
placement can be used to ensure correct sanitization, albeit
with some run-time overhead.

4.2 Edge-based Placement

To implement the edge-based solution, we must identify
several different sets of edges, summarized in Figure 4. We
present algorithms to compute each of these sets of edges.

Source-dependent edges and sink-dependent edges:
First, we compute the available source types and anticipated
sink types for every edge, similar to the dataflow analyses
in Figure 6. However, whereas Figure 6 computes dataflow
facts for nodes, we need to compute dataflow facts for edges.

Next, for each edge e we compute edge policy Pe: policy
table P restricted to the available source types and antici-
pated sink types of edge e. We use edge policies to identify
source-dependent edges and sink-dependent edges. Edge e is
source dependent if and only if Pe has more than one unique
sanitizer in any column. Edge e is sink dependent if and only
if Pe has more than one unique sanitizer in any row.

In-trigger and out-trigger edges: Recall that in-trigger
edges are source-independent edges with a source-dependent
successor edge, and out-trigger edges are source-independent
edges with a source-dependent predecessor edge. We can
compute these edges efficiently simply by inspection of the
dataflow graph. Let in trigger denote the set of in-trigger
edges, and out trigger denote the set of out-trigger edges.

Sanitization edges: Sanitization edges are sink-indepen-
dent edges that are the earliest sink-independent edge on
some path from a source to a sink. They are the edges at
which sanitization will be performed: at sink-independent
edges the sanitization to apply to a value does not depend
on which sink the value will go to.

Figure 9 presents a dataflow algorithm for computing san-
itization edges. Note that the analysis computes dataflow
facts for edges. Dataflow facts are pairs of boolean values.
The first value is true for an edge if and only if all paths to
the edge go through a sink-independent edge. The second
boolean value is true for sanitization edges: edges that are
the first sink-independent edge on some path, which is ex-
actly the edges that are sink independent and have at least

Semi-lattice L Bool × Bool
Top > (true, true)
Initial value init(e) (false, false)

Transfer function TF (e) (f1(e), f2(e))

f1(e)(a, b) =

 true if e is sink
independent

a otherwise

f2(e)(a, b) =

 true if f1(e) =true and
a = false

false otherwise
Meet operator u(x, y) pointwise ∧
Direction forward

Figure 9. Computes sanitization(e).

Semi-lattice L Bool
Top > true
Initial value init(e) false

Transfer function TF (e)

 true if e is a
sanitization edge

identity otherwise
Meet operator u(x, y) x ∧ y
Direction forward

Figure 10. Computes dom sani(e): whether edge e is dom-
inated by sanitization edges.

one path to it that does not go through a sink-independent
edge. Note that the transfer function for edge e is given as a
pair of functions, f1(e) and f2(e), each of which is a function
from the input dataflow fact (a pair of boolean values, (a, b))
to a boolean value.

Tag and untag edges: Tag and untag edges are where
we, respectively, start and stop run-time tracking of val-
ues. The definition of both tag and untag edges relies on
identifying edges that are dominated by a sanitization edge,
for which we use the dataflow analysis in Figure 10. We
write dom sani(e) if edge e is dominated by sanitization
edges. If e is a sanitization edge, then dom sani(e) is true.

The following algorithm computes the set of tag and un-
tag edges. Tag edges are in-trigger edges that are not domi-
nated by sanitization edges. Untag edges are either sanitiza-
tion edges, or out-trigger edges that are not dominated by
sanitization edges.

Algorithm 4. Tag and untag edges.

for all e ∈ E do
if e ∈ in trigger ∧ ¬dom sani(e) then

tag = tag ∪ {e}
if (e ∈ out trigger∧¬dom sani(e))∨e ∈ sanitization then

untag = untag ∪ {e}

Carry edges: Finally, carry edges are those on a path
from a tag to an untag edge that does not pass through
an untag edge. The set of carry edges can be computed
by first performing a forward dataflow analysis to com-
pute tag available—the set of edges that are reachable
from a tag edge without an intervening untag edge—and
then performing a backward dataflow analysis to compute
untag anticipated, the set of edges that can reach an untag
edge. These dataflow analyses are shown in Figure 11. Carry
edges are the non-tag, non-untag edges that are in both the

Semi-lattice L Bool
Top > false
Initial value init(e) false

Transfer function TF (e)

 true if e ∈ tag
false if e ∈ untag
identity otherwise

Meet operator u(x, y) x ∨ y
Direction forward

(a) Computes tag available: reachable from tag edge without
intervening untag edge.

Semi-lattice L Bool
Top > false
Initial value init(e) false

Transfer function TF (e)

{
true if e ∈ untag
identity otherwise

Meet operator u(x, y) x ∨ y
Direction backward

(b) Computes untag anticipated: can reach untag edge.

Figure 11. Dataflow analyses for carry edge computation.

Benchmark DLLs DLL (KB) LOC

Alias Management 3 65 10,812
Chat Application 3 543 6,783
Bicycle Club App 3 62 14,529
Software 15 118 11,941
Sporting Field Management 3 290 15,803
Commitment Management 7 369 25,602
New Hire 11 565 5,595
Expense Report Approval 4 421 78,914
Customer Support Portal 14 2,447 66,385
Relationship Management 5 3,345 1,810,585

Figure 12. Benchmark applications, sorted by code size.

tag available and untag anticipated sets, as defined in the
following algorithm.

Algorithm 5. Carry edges.

for all e ∈ E do
if e ∈ tag available ∧ e ∈ untag anticipated then

if e 6∈ tag ∧ e 6∈ untag then
carry = carry ∪ {e}

5. Experimental Evaluation

Our evaluation focuses on comparing the number of instru-
mentation points using our sanitizer placement algorithms
compared to a baseline implementation that performs dy-
namic taint tracking between all sources and sinks. Our tar-
get applications are long-running server applications. Run-
time overhead of taint tracking is typically workload specific
(e.g., [10]), so we choose not to evaluate run-time overhead
directly. Reducing the number of instrumentation points is
a valuable goal, since long-running applications with diverse
workloads have high code coverage over time, hitting increas-
ingly many instrumentation points. Section 5.1 presents the
results of applying our techniques to large C# web appli-
cations written in ASP.NET. Section 5.2 evaluates our ap-
proach against large, synthetically constructed graphs.

5.1 Large Applications

Figure 12 contains a summary of information about our
macro-benchmarks. These are relatively large business web

Graph Taint Tainted nodes Exclusive nodes Sanitization

Application nodes sources sinks forward backward both ratio all l.e. ratio coverage

Terralever 156 64 69 140 140 76 48% 122 50 32% 82%
Alias Management 59 11 12 22 21 11 18% 19 9 15% 86%
Contoso Bicycle Club 161 50 54 145 133 87 54% 94 40 24% 50%
Windows Experience Catalog 204 47 83 186 160 101 49% 120 49 24% 93%
Commitment Management 356 135 132 299 296 183 51% 221 86 24% 79%
New Hire 502 142 183 401 409 229 45% 275 110 21% 70%
Expense Report Approval 805 214 322 722 637 408 50% 389 170 21% 82%
Customer Support Portal 3,881 967 1,219 3,488 3,263 2,266 58% 1,721 770 19% —
Relationship Management 3,639 1,054 982 3,321 3,104 2,241 61% 1,565 637 17% —

Figure 13. Node-based analysis and its effectiveness.

Total Taint Tainted Dependent Triggers Edge count Instr.

Application e
d
g
e
s

s
o
u
r
c
e
s

s
in

k
s

fo
r
w
a
r
d

b
a
c
k
w
a
r
d

b
o
t
h

r
a
t
io

s
o
u
r
c
e

s
in

k

in o
u
t

s
a
n
it
iz
e
r

t
a
g

u
n
t
a
g

c
a
r
r
y

t
o
t
a
l

r
a
t
io

Terralever 142 96 89 140 137 136 95% 3 1 8 0 97 1 5 0 6 22.66
Alias Management 962 11 10 13 14 13 1% 0 0 0 0 11 0 2 0 2 6.5
Contoso Bicycle Club 182 80 70 170 174 164 90% 32 27 29 9 84 2 6 7 15 10.93
Windows Experience 430 68 162 386 364 358 83% 133 125 14 117 193 2 31 123 156 2.29
Commitment Management 461 177 188 420 409 386 83% 110 114 45 41 215 6 30 108 144 2.68
New Hire 873 258 347 680 771 652 74% 181 192 108 75 342 27 67 126 220 2.96
Expense Report Approval 1,389 367 503 1,286 1,296 1,208 86% 189 197 131 143 577 23 99 144 266 4.54
Customer Support Portal 8,985 1,505 2,167 8,534 8,469 8,069 89% 4,315 4,364 901 1,331 2,875 232 541 3,917 4,690 1.72
Relationship Management 17,732 2,376 2,594 17,227 17,358 16,888 95% 11,227 11,585 2,057 2,020 4,407 428 533 10,725 11,686 1.44

Figure 14. Edge-based analysis and its effectiveness. Reduction in number of instrumented edges is shown in last column.

applications written on top of the ASP.NET framework, con-
sisting of several separate DLLs, as shown in column 2. Not
all code contained within the application source tree is ac-
tually deployed to the Web server. Most of the time, the
number and size of deployed DLLs primarily consisting of
.NET bytecode is a good measure of the application size,
as shown in column 3. Note that in several cases, libraries
supplied in the form of DLLs without the source code con-
stitute the biggest part of an application. Finally, to provide
another measure of the application size, column 4 shows
the traditional line-of-code metric for all the code within
the application. Note that correct manual sanitization for
these applications is a challenge, as explored in the Merlin
project [23]; we therefore believe that fully automatic place-
ment is a better alternative.

Policy: There are applications ranging from tens of thou-
sands of lines of code to over a million in the case of the
Relationship Management application.

normal file �

normal S1 S2 ⊥
resource S3 S4 ⊥
� ⊥ ⊥ ⊥

We classified sources
and sinks into the
three categories: nor-
mal, file, resource, based
on their functionality
(i.e., TextWriter.Write
is a file-related sink).
We used the policy shown in the table in this paragraph
for these applications. Finally, we completely disregarded
existing sanitizers, fully automating sanitizer placement.

5.1.1 Node-based Placement

Figure 13 contains the results of applying the node-based
placement strategy. Applications are represented as graphs,
some nodes of which are marked as sources or sinks.
Dataflow graphs are computed by the Cat.Net tool [26],
and are fairly sparse. Nodes of the graph are parameters
and return results of individual methods in the application

or its libraries. Edges represent data flow as inferred by
Cat.Net. A different static analysis tool could also be used
to construct these graphs; the precision and soundness of
Cat.Net results is orthogonal to our approach. The num-
ber of nodes (column 2) as well as sources and sinks (3–4)
ranges from dozens to lower thousands.

Columns 5–8 summarize information about tainted nodes
in the graph. Column 5 is forward-tainted nodes (i.e., nodes
that can be reached from a source node). Column 6 is
backward-tainted nodes (i.e., nodes that can reach a target
node). Column 7 is both forward- and backward-tainted
nodes (i.e., nodes that are on a path from a source node
to a sink node) and column 8 is the fraction of these nodes
compared to all nodes in the graph. We can see that for a
well-connected graph, the percentage of such nodes can be
quite high, going higher than 60%. The implication is that
a very high fraction of nodes needs to be instrumented to
propagate the taint forward at run time.

Columns 9–11 capture our exclusive node computation.
Column 9 is the number of exclusive nodes and column 10
is the number of latest exclusive nodes. Column 11 is the
fraction of latest exclusive nodes within the nodes of the
graph. Finally, column 12 shows the coverage, which is the
fraction of all source-sink paths that are properly sanitized
with latest exclusive nodes.3 Two key take-aways from this
table are as follows:

• the näıve approach of taint-tracking on all nodes on a
path from a source to a sink is very expensive, with as
many as 60+% of nodes needing to be instrumented; and
• while instrumenting just the latest exclusive nodes re-

quires less instrumentation, the obtained coverage is sig-

3Coverage numbers are not available for the largest two ap-
plication; the large number of paths in the dataflow graph cannot
be enumerated in reasonable time.

nificantly less than 100%, so the static node-based ap-
proach is generally unacceptable for sanitizer placement.

5.1.2 Edge-based Placement

Figure 14 shows the results of applying the edge-based
placement strategy. Column 2 shows the number of edges
in the graph. Columns 3–4 show the number of sources
and sinks, respectively; note that we use a slightly different
policy for which nodes as marked as sources and sinks
compared to Figure 13. Columns 5–7 show the number of
forward and backward-tainted edges and edges tainted in
both directions. Column 8 shows the percentage of edges
tainted in both directions as a fraction of the number of
edges in the graph.

Columns 9–10 show the number of source-dependent
edges and sink-dependent edges. Columns 11–13 show the
number of in-trigger edges, out-trigger edges, and sanitizer
edges. Columns 14–16 show the counts for the other kinds
of edges computed by the edge-based formulation. Finally,
columns 17 and 18 show the number of edges needing instru-
mentation and the savings compared to the näıve approach
of instrumenting edges that are both forward- and backward-
tainted. We highlight particularly noticeable savings in bold.
(As described in Section 3.3.5, we do not count unneeded
sanitization edges when counting edges that require instru-
mentation.) Three key take-aways from this table are:

• We see that for most applications, the percentage of
edges that are forward- and backward-tainted is quite
high, indicating that the underlying dataflow analysis of
Cat.Net is quite imprecise, leading to a great deal of
connectivity within the dataflow graph.
• Savings in terms of the number of instrumentation points

in the last column of Figure 14 are 6.19× on average.
• In general, our analysis is not as effective at reducing the

number of instrumentation points for densely-connected
graphs (the last several rows) as it is for the sparser
graphs (the first several rows).

5.2 Synthetic Graphs

Finally, we evaluate our (edge-based) algorithm on some
synthetically constructed graphs. To build such graphs, we
start with 100 sources, 100 sinks, and 1,000 regular nodes.
We randomize the type of the sources with equal probability
between �,�,©, �, and4, and the type of sinks between
�,•,�, andN, using the policy in Figure 2 for proper san-
itizer placement. We connect sources to sinks by performing
a random walk of length 10 starting at a random source and
ending at a random sink through the graph, creating edges
as we pass from node to node. We use a density parame-
ter d to vary how many such walks we perform, affecting
the number of edges.

Figure 15 shows the improvements with edge-based in-
strumentation compared to näıve, taint-based instrumenta-
tion as the number of edges grows. We can see that for sparse
graphs, the improvements are most noticeable, peaking at
over 27×, gradually becoming less pronounced (only 48%
improvement for 550 edges).

The improvements obtained with our strategy depends on
the quality of the underlying dataflow graph. Results in Fig-
ure 15 suggest that our strategy performs better with sparser
dataflow graphs, and performs worse when the dataflow
graph is more highly connected. Since more precise anal-
yses produce sparser dataflow graphs (since there are fewer
conservative over-approximations of dataflow), investment

27.50

12.22

16.50

10.00

2.31

2.44
2.06 1.60 1.93

1.48

0

5

10

15

20

25

30

55 110 165 220 275 330 385 440 495 550

In
st

ru
m

e
n

ta
ti

o
n

 s
av

in
gs

Edges in graph

Figure 15. Synthetic graph results.

in precise static dataflow graph construction may improve
the results of sanitization placement. This conclusion res-
onates with the experience of a number of projects that use
static analysis to reduce the number of run-time instrumen-
tation points: if static analysis is imprecise, the effect of this
reduction is not very significant.

6. Related Work

The most closely-related work is that of King et al. [19],
which considers the problem of resolving type errors in
security-typed programs [36] by automatically placing me-
diation statements in a program (which explicitly declassify
information or authorize the possibly dangerous information
flow). They construct a graph representation of information
flow in a program, such that source nodes are high-security
inputs, and sink nodes are low-security outputs. A min-cut
in this graph corresponds to a minimal set of program points
such that insertion of mediation statements at these program
points would allow the program to type check.

Their problem is similar to ours, in that every path
from a source to a sink must have a mediation statement.
However, their problem is simpler than ours, because all
paths require the same kind of mediation statement. By
contrast, our policies allow different source-sink pairs to
require different sanitization. As such, we are unable to
use a min-cut approach to identify sanitization program
points. Also, in our setting, it is important to prevent over-
sanitization: values should have the appropriate sanitization
applied exactly once. By contrast, it is permissible (though
perhaps undesirable) for a path from a source to a sink to
have multiple mediation statements.

Samuel et al. [38] share our goal of automatic sanitization,
but the details are very different. Our approach is designed
to work on large legacy applications written in languages
such as Java or C#, whereas they focus on much smaller
programs in Google Closure. Their technique is based on
constraint satisfaction using a custom solver, and has poten-
tial for scalability issues, whereas our approach uses dataflow
analysis with well-understood scalability properties.

Graph-based analysis for information security: Sev-
eral researchers have used program dependence graphs for
analyzing information security of programs [12, 14, 40]. Pro-
gram dependence graphs include both data dependencies
and control dependencies, unlike the dataflow graphs we
use in this work, which typically contain just data depen-
dencies. Hammer et al. [13] consider enforcement of declas-
sification [37] using program dependence graphs. However,
Hammer et al. require certain nodes in a program depen-
dence to be annotated as declassifiers, whereas we seek to
infer where to insert declassifiers and sanitizers.

Software security analysis of web applications: Pro-
gram analysis has a long history of being used for finding
security bugs in web applications. Static analysis has been
advocated for PHP, Java, and other languages [17, 18, 22,
47]. Multiple run-time analysis systems for information flow
tracking have also been proposed [11, 25, 29, 31].

Automating placement: Most recently, we have seen in-
creased interest in automating security-critical decisions for
the developer [38, 46]. The use of a security type system
for enforcing correctness is another case of cooperating with
the developer to achieve better code quality and correctness
guarantees [33].

Sanitizer correctness: Balzarotti et al. [3] show that cus-
tom sanitizer routines are often incorrectly implemented.
Our concerns in this paper are complimentary to sanitizer
correctness. The Cross-Site Scripting Cheat Sheet shows
over two hundred examples of strings that exercise com-
mon corner cases of web sanitizers [34]. The Bek project
proposes a systematic domain-specific languages for writing
and checking sanitizers [15, 45].

Specification inference: Livshits et al. [23] propose an ap-
proach to inferring information flow specifications (sources,
sanitizers, and sinks) using factor graphs. Kremenek et al.
[21] propose belief inference as a way to infer specifications
for static analysis checkers. Vaughan and Chong [44] propose
policy inference to discover correct declassification policies.

Graph algorithms: LCM and PRE: A range of graph-
theoretical algorithms from compiler literature is relevant for
our work. In particular, Knoop et al. [20] describe lazy code
motion. Rüthing et al. describe a variant of it called sparse
code motion [35]. Partial redundancy elimination of PRE is
described by Hosking et al. [16] and Briggs and Cooper [5].

7. Future Work

The design of our placement strategies is motivated by real-
world concerns (for example, in the edge-based strategy,
we perform sanitization as early as possible to reduce the
amount of run-time taint-tracking). However, we do not of-
fer a formal notion of optimality of our algorithms. This is in
part because it is unclear what we should aim to optimize.
Possible candidates include reducing the number of instru-
mentation points or run-time overhead for the worst-case or
average-case workloads. Exploring these different notions of
optimality in order to decide which is best requires building
a more complete prototype.

Our matrix-based policy specification allows different
sanitizers to be specified for all source-sink pairs. However,
this may not be sufficiently expressive in all cases. For exam-
ple, how do we properly sanitize the result of concatenating
string data from two different kinds of sources? We see at
least two possible solutions to this lack of expressiveness.
One is to treat as sinks computations that combine two or
more source types, effectively forcing proper sanitization to
take place on values before computation occurs. An alter-
native that works for some compositional operations (e.g.,
string concatenation) is to perform finer-grained byte-level
tagging, so that the appropriate sanitizer can be applied to
the appropriate bytes of the value.

Another shortcoming of our matrix-based policy speci-
fication is that we collapse a sequence of sanitizers into a
single one. This might prove to be a disadvantage in some
settings, where keeping them separate would create interest-
ing optimization opportunities.

We have described our approach as working on dataflow
graphs that describe data dependencies. We believe our
approach could be extended to work on graphs that also
record control dependencies. However, it may be difficult to
ensure that sanitizer and declassifiers correctly account for
potentially dangerous control dependencies.

We also believe that the approach outlined here can apply
to settings other than security. Consider the challenge of
manually placing catch blocks in a program written in Java
or C#. This problem has a similar structure to the sanitizer
placement problem: instead of the dataflow graph we have
the call graph of the program; for source nodes, we have
statements that can throw exceptions; instead of sanitizers
we have catch blocks. Finally, there is only one sink, the
top-most main function, by the exit of which we generally
need to catch all run-time-catchable exceptions.

8. Conclusions

Traditionally, developers have been responsible for properly
dealing with the possibility of injection attacks and informa-
tion leaks in their code, leading to numerous bugs, especially
in large, complex code bases. The algorithms presented in
this paper pave the way for completely automatic placement
of sanitizers and declassifiers.

We proposed two strategies for automatic sanitizer place-
ment. The first is a node-based entirely static approach that
has no run-time overhead, but in many settings will not
correctly sanitize all values. The second strategy is an edge-
based approach that attempts to place sanitizers statically,
but uses run-time taint-tracking when necessary to deter-
mine the appropriate sanitization to apply to values. The
edge-based placement strategy will always sanitize values
correctly, and reduces the number of nodes that require in-
strumentation, sometimes by as much as 27×, compared to
näıve taint-tracking of values between sources and sinks.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments. We appreciate the helpful comments of Trent Jaeger
and Somesh Jha. This research is supported in part by the
National Science Foundation under Grant No. 1054172.

References
[1] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 2007.

[2] D. Avots, M. Dalton, B. Livshits, and M. S. Lam. Improving
software security with a C pointer analysis. In Proceedings of the
International Conference on Software Engineering, May 2005.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing Static and Dy-
namic Analysis to Validate Sanitization in Web Applications. In
Proceedings of the IEEE Symposium on Security and Privacy,
May 2008.

[4] D. Bates, A. Barth, and C. Jackson. Regular expressions con-
sidered harmful in client-side XSS filters. In Proceedings of the
International World Wide Web Conference, 2010.

[5] P. Briggs and K. D. Cooper. Effective partial redundancy elimi-
nation. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation, 1994.

[6] B. Chess and J. West. Dynamic taint propagation: Finding vul-
nerabilities without attacking. Information Security Technical
Reports, 13, January 2008.

[7] E. Chin and D. Wagner. Efficient character-level taint tracking
for Java. In Proceedings of the Workshop on Secure Web
Services, 2009.

[8] S. Chong, K. Vikram, and A. C. Myers. Sif: enforcing confi-
dentiality and integrity in Web applications. In Proceedings of
Usenix Security Symposium, 2007.

[9] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detect-
ing privacy leaks in iOS applications. In Proceedings of the
Annual Network and Distributed System Security Symposium,
Feb. 2011.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. TaintDroid: an information-flow track-
ing system for realtime privacy monitoring on smartphones. In
Proceedings of the Usenix Conference on Operating Systems
Design and Implementation, 2010.

[11] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propaga-
tion for Java. In Proceedings of the Annual Computer Security
Applications Conference, Dec. 2005.

[12] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive,
and object-sensitive information flow control based on program
dependence graphs. International Journal of Information Se-
curity, 8(6):399–422, Dec. 2009.

[13] C. Hammer, J. Krinke, and F. Nodes. Intransitive noninterference
in dependence graphs. In 2nd International Symposium on
Leveraging Application of Formal Methods, Verification and
Validation, Nov. 2006.

[14] C. Hammer, J. Krinke, and G. Snelting. Information flow con-
trol for java based on path conditions in dependence graphs. In
IEEE International Symposium on Secure Software Engineer-
ing, Mar. 2006.

[15] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes.
Fast and precise sanitizer analysis with BEK. In Proceedings of
the Usenix Security Symposium, Aug. 2011.

[16] A. L. Hosking, N. Nystrom, D. Whitlock, Q. Cutts, and A. Di-
wan. Partial redundancy elimination for access path expressions.
Software Practice and Experience, 31, May 2001.

[17] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo. Securing Web application code by static analysis and run-
time protection. In Proceedings of the International Conference
on World Wide Web, 2004.

[18] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis
tool for detecting Web application vulnerabilities (short paper).
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, 2006.

[19] D. King, S. Jha, D. Muthukumaran, T. Jaeger, S. Jha, and S. A.
Seshia. Automating security mediation placement. In Proceed-
ings of the European Symposium on Programming, 2010.

[20] J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion.
SIGPLAN Notes, 39:460–472, April 2004.

[21] T. Kremenek, P. Twohey, G. Back, A. Y. Ng, and D. R. Engler.
From uncertainty to belief: Inferring the specification within. In
Symposium on Operating Systems Design and Implementation,
Nov. 2006.

[22] B. Livshits and M. S. Lam. Finding security errors in Java
programs with static analysis. In Proceedings of the Usenix
Security Symposium, 2005.

[23] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin:
Specification inference for explicit information flow problems.
In Proceedings of the Conference on Programming Language
Design and Implementation, June 2009.

[24] M. Martin, B. Livshits, and M. S. Lam. Finding application er-
rors and security flaws using PQL: a program query language.
In Proceedings of the Conference on Object Oriented Pro-
gramming Systems Languages and Applications, pages 365–383,
2005.

[25] M. Martin, B. Livshits, and M. S. Lam. SecuriFly: runtime
vulnerability protection for Web applications. Technical report,
Stanford University, 2006.

[26] Microsoft Corporation. Microsoft Code Analysis Tool
.NET (CAT.NET). http://www.microsoft.com/en-us/download/
details.aspx?id=19968, 3 2009.

[27] Microsoft Corporation. Microsoft web protection library. http:
//wpl.codeplex.com/, 2012.

[28] N. Mitchell, G. Sevitsky, and H. Srinivasan. The diary of a da-
tum: an approach to modeling runtime complexity in framework-
based applications. In Proceedings of the European Confer-

ence on Object-Oriented Programming, Systems, Languages,
and Applications, 2005.

[29] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening Web applications using pre-
cise tainting. In Proceedings of the IFIP International Infor-
mation Security Conference, 2005.

[30] OWASP. OWASP-Java-HTML-sanitizer. http://code.google.
com/p/owasp-java-html-sanitizer/, 2011.

[31] T. Pietraszek and C. V. Berghe. Defending against injection at-
tacks through context-sensitive string evaluation. In Proceedings
of the Recent Advances in Intrusion Detection, Sept. 2005.

[32] W. Robertson and G. Vigna. Static enforcement of web appli-
cation integrity through strong typing. In Proceedings of the
Usenix Security Symposium, 2009.

[33] W. Robertson and G. Vigna. Static enforcement of web appli-
cation integrity through strong typing. In Proceedings of the
Usenix Security Symposium, Aug. 2009.

[34] RSnake. XSS cheat sheet for filter evasion. http://ha.ckers.org/
xss.html.

[35] O. Rüthing, J. Knoop, and B. Steffen. Sparse code motion. In
Proceedings of the Symposium on Principles of Programming
Languages, 2000.

[36] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications,
21(1):5–19, Jan. 2003.

[37] A. Sabelfeld and D. Sands. Dimensions and principles of declas-
sification. In Proceedings of the 18th IEEE Computer Security
Foundations Workshop, pages 255–269. IEEE Computer Society,
June 2005.

[38] M. Samuel, P. Saxena, and D. Song. Context-sensitive auto-
sanitization in web templating languages using type qualifiers.
In Proceedings of the Conference on Computer and Communi-
cations Security, Oct. 2011.

[39] P. Saxena, D. Molnar, and B. Livshits. ScriptGard: Automatic
context-sensitive sanitization for large-scale legacy web applica-
tions. In Proceedings of the Conference on Computer and Com-
munications Security, Oct. 2011.

[40] B. Scholz, C. Zhang, and C. Cifuentes. User-input dependence
analysis via graph reachability. Technical Report 2008-171, Sun
Microsystems Labs, 2008.

[41] V. Srivastava, M. D. Bond, K. S. McKinley, and V. Shmatikov.
A security policy oracle: detecting security holes using multiple
API implementations. In Proceedings of the Conference on
Programming Language Design and Implementation, 2011.

[42] Z. Su and G. Wassermann. The essence of command injection
attacks in Web applications. In Proceedings of the Symposium
on Principles of Programming Languages, 2006.

[43] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman.
TAJ: effective taint analysis of web applications. In Proceed-
ings of the Conference on Programming Language Design and
Implementation, 2009.

[44] J. Vaughan and S. Chong. Inference of expressive declassification
policies. In Proceedings of IEEE Symposium on Security and
Privacy, May 2011.

[45] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner.
Symbolic finite state transducers: Algorithms and applications.
In Proceedings of the Sympolisium on Principles of Program-
ming Languages, Jan. 2012.

[46] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin,
and D. Song. A systematic analysis of XSS sanitization in
web application frameworks. In Proceedings of the European
Symposium on Research in Computer Security, Sept. 2011.

[47] Y. Xie and A. Aiken. Static detection of security vulnerabilities
in scripting languages. In Proceedings of the Usenix Security
Symposium, 2006.

[48] E. Z. Yang. HTML purifier. http://code.google.com/p/
owasp-java-html-sanitizer/, 2011.

