
SecuriFly:

Runtime Protection and Recovery

from Web Application Vulnerabilities

Benjamin Livshits, Michael Martin, and Monica S. Lam

Technical Report

Stanford University

September 22, 2006

Abstract

This reports presents a runtime solution to a range of Web application
security vulnerabilities. The solution we proposes called SecuriFly con-
sists of instrumenting the application to precisely track the flow of data.
When a potential vulnerability is observed, the application is either termi-
nated to prevent the vulnerability from being exploited or special recovery
code is executed and the application is allowed to continue on running. We
have used SecuriFly to harden and experiment with a range of large open-
source benchmarks written in Java. Protection provided by SecuriFly was
sufficient to protect against all exploits we were able to generate.

Chapter 1

Introduction

The landscape of security vulnerabilities has changed dramatically in the last
several years. While buffer overruns and format string violations accounted
for a large fraction of all exploited vulnerabilities in the 1990s, the picture
started to change in the first decade of the new millennium. As Web-based
applications became more prominent, familiar buffer overruns are now far
outnumbered by Web application vulnerabilities such as SQL injections and
cross-site scripting attacks.

In this report, we introduce SecuriFly, which provides a comprehensive
runtime compiler-based solution to a wide range of Web application vulner-
abilities. Our approach targets large real-life Web-based Java applications.

Given a vulnerability description, specially instrumented, secured appli-
cation bytecode is produced. To make our approach both extensible and
user-friendly, vulnerability specifications are expressed in PQL, a Program
Query Language. The initial PQL vulnerability specification is provided by
the user, but most of the specification can be shared among multiple appli-
cations being analyzed. Secured executables may be deployed on a standard
application server. Furthermore, to improve application uptime, vulnerabil-
ity recovery rules may be specified. Finally, we show how static analysis can
be used to significantly reduce the instrumentation overhead.

2

1.1 Overview of

Web Application Vulnerabilities

Of all vulnerabilities identified in Web applications, problems caused by
unchecked input are recognized as being the most common [Ope04]. To
exploit unchecked input, an attacker needs to achieve two goals:

Inject malicious data into Web applications. Common methods used
include:

• Parameter tampering: pass specially crafted malicious values in
fields of HTML forms.

• URL manipulation: use specially crafted parameters to be submitted
to the Web application as part of the URL.

• Hidden field manipulation: set hidden fields of HTML forms in
Web pages to malicious values.

• HTTP header tampering: manipulate parts of HTTP requests sent
to the application.

• Cookie poisoning: place malicious data in cookies, small files sent to
Web-based applications.

Manipulate applications using malicious data. Common methods used
include:

• SQL injection: pass input containing SQL commands to a database
server for execution.

• Cross-site scripting: exploit applications that output unchecked in-
put verbatim to trick the user into executing malicious scripts.

• HTTP response splitting: exploit applications that output input
verbatim to perform Web page defacements or Web cache poisoning
attacks.

• Path traversal: exploit unchecked user input to control which files
are accessed on the server.

3

• Command injection: exploit user input to execute shell commands.

These kinds of vulnerabilities are widespread in today’s Web applications.
A recent empirical study of vulnerabilities found that parameter tampering,
SQL injection, and cross-site scripting attacks account for more than a third
of all reported Web application vulnerabilities [SS04]. While different on the
surface, all types of attacks listed above are made possible by user input that
has not been (properly) validated. This set of problems is similar to those
handled dynamically by the taint mode in Perl [WCS96], even though our
approach is considerably more extensible. We refer to this class of vulnerabil-
ities as the tainted object propagation problem. Detailed information about
these classes of vulnerabilities can be found in “The 21 Primary Classes of
Web Application Threats” [Net04a] and the “OWASP Secure Development
Guide [Ope05]”.

In this section we focus on a variety of security vulnerabilities in Web
applications that are caused by unchecked input. According to an influential
survey performed by the Open Web Application Security Project [Ope04],
unvalidated input is the number one security problem in Web applications.
Many such security vulnerabilities have recently been appearing on special-
ized vulnerability tracking sites such as SecurityFocus and were widely pub-
licized in the technical press [Net04a, Ope04]. Recent reports include SQL
injections in Oracle products [Lit03a] and cross-site scripting vulnerabilities
in Mozilla Firefox [Kra05].

1.1.1 SQL Injection Example

Let us start with a discussion of SQL injections, one of the most well-known
kinds of security vulnerabilities found in Web applications. SQL injections
are caused by unchecked user input being passed to a back-end database for
execution [Anl02a, Anl02b, Fri04, Kos04, Lit03b, Spe02b]. The hacker may
embed SQL commands into the data he sends to the application, leading to
unintended actions performed on the back-end database. When exploited, a
SQL injection may cause unauthorized access to sensitive data, updates or
deletions from the database, and even shell command execution.

Example 1.1. A simple example of a SQL injection is shown below:

HttpServletRequest request = ...;
String userName = request.getParameter("name");

4

Connection con = ...
String query = "SELECT * FROM Users " +

" WHERE name = ’" + userName + "’";
con.execute(query);

This code snippet obtains a user name (userName) by invoking method
request.getParameter("name") and uses it to construct a query to be passed
to a database for execution (via con.execute(query)). This seemingly in-
nocent piece of code may allow an attacker to gain access to unauthorized
information: if an attacker has full control of string userName obtained from
an HTTP request, he can for example set it to ’OR 1 = 1;−−. Two dashes
are used to indicate comments in the Oracle dialect of SQL, so the WHERE

clause of the query effectively becomes the tautology name = ’’ OR 1 = 1.
This allows the attacker to circumvent the name check and get access to all
user records in the database. �

SQL injection is but one of the vulnerabilities that can be formulated as
tainted object propagation problems. In this case, the input variable userName
is considered tainted. If a tainted object (the source or any other object
derived from it) is passed as a parameter to con.execute (the sink), then
there is a vulnerability. As discussed above, such an attack typically consists
of two parts: (1) injecting malicious data into the application and (2) using
the data to manipulating the application. The former corresponds to the
sources of a tainted object propagation problem and the latter to the sinks.
The rest of this section presents attack techniques and examples of how
exploits may be created in practice.

1.1.2 Injecting Malicious Data

Protecting Web applications against unchecked input vulnerabilities is diffi-
cult because applications can obtain information from the user in a variety
of different ways. One must check all sources of user-controlled data such as
form parameters, HTTP headers, and cookie values systematically. While
commonly used, client-side filtering of malicious values is not an effective
defense strategy. For example, a banking application may present the user
with a form containing a choice of only two account numbers; however, this
restriction can be easily circumvented by saving the HTML page, editing
the values in the list, and resubmitting the form. Therefore, inputs must be
filtered by the Web application on the server. Note that many attacks are

5

relatively easy to mount: an attacker needs little more than a standard Web
browser to attack Web applications in most cases.

Parameter Tampering

The most common way for a Web application to accept parameters is through
HTML forms. When a form is submitted, parameters are sent as part of an
HTTP request. An attacker can easily tamper with parameters passed to
a Web application by entering maliciously crafted values into text fields of
HTML forms.

URL Tampering

For HTML forms that are submitted using the HTTP GET method, form
parameters as well as their values appear as part of the URL that is accessed
after the form is submitted. An attacker may directly edit the URL string,
embed malicious data in it, and then access this new URL to submit malicious
data to the application.

Example 1.2. Consider a Web page at a bank site that allows an authen-
ticated user to select one of her accounts from a list and debit $100 from
the account. When the submit button is pressed in the Web browser, the
following URL is requested:

http://www.mybank.com/myaccount?accountnumber=341948&debit_amount=100

However, if no additional precautions are taken by the Web application re-
ceiving this request, accessing

http://www.mybank.com/myaccount?accountnumber=341948&debit_amount=-5000

may in fact increase the account balance. �
There are other URL parameters that an attacker can modify, including

attribute parameters and internal modules. Attribute parameters are unique
parameters that characterize the behavior of the uploading page. For ex-
ample, consider a content-sharing Web application that enables the content
creator to modify content, while other users can only view content. The Web
server checks whether the user that is accessing an entry is the author or not
(usually by cookie). An ordinary user will request the following link:

http://www.mydomain.com/myaccount?id=77492&mode=readonly

6

An attacker can modify the mode parameter to readwrite in order to gain
authoring permissions for the content.

Hidden Field Manipulation

Because HTTP is stateless, many Web applications use hidden fields to em-
ulate persistence. Hidden fields are just form fields made invisible to the
end-user. For example, consider an order form that includes a hidden field
to store the price of items in the shopping cart:

<input type="hidden" name="total_price" value="25.00">

A typical Web site using multiple forms, such as an online store will likely rely
on hidden fields to transfer state information between pages. For instance, a
single page we sampled on Amazon.com contains a total of 25 built-in hidden
fields. Unlike regular fields, hidden fields cannot be modified directly by
typing values into an HTML form. However, since the hidden field is part
of the page source, saving the HTML page, editing the hidden field value,
and reloading the page will cause the Web application to receive the newly
updated value of the hidden field. This attack technique is commonly used
to forge information being sent to the Web application and to mount SQL
injection or cross-site scripting attacks.

HTTP Header Manipulation

HTTP headers typically remain invisible to the user and are used only
by the browser and the Web server. However, some Web applications do
process these headers, and attackers can inject malicious data into applica-
tions through them. While a normal Web browser will not allow forging the
outgoing headers, multiple freely available tools allow a hacker to craft an
HTTP request leading to an exploit [Chi04].

Example 1.3. An HTTP request fragment is shown below:

Host: www.mybank.com
Accept-Language: en-us, en;q=0.50
User-Agent: Lynx/2.8.4dev.9 libwww-FM/2.14
Referer: http://www.mybank.com/login
Content-type: application/

x-www-form-urlencoded
Content-length: 100

7

Amazon.com

con.executeUpdate("UPDATE EMPLOYEES " PreparedStatement pstmt =
+ " SET SALARY = " + salary con.prepareStatement(
+ " WHERE ID = " + id); "UPDATE EMPLOYEES " +

" SET SALARY = ? " +
" WHERE ID = ?");

pstmt.setBigDecimal(1, salary);
pstmt.setInt(2, id);

(a) (b)

Figure 1.1: Two different ways to update an employee’s salary: (a) may lead to a SQL
injection and (b) safely updates the salary using a PreparedStatement.

The Accept-Language header indicates the preferred language of the user.
An internationalized Web application may take the language label from the
HTTP request and pass it to a database to look up a language-specific text
message. If the this header is sent verbatim to the database, an attacker may
inject SQL commands by modifying the header value. Likewise, if the header
value is used to build a file name with messages for the correct language, an
attacker may be able to launch a path-traversal attack [Ope05]. �

Consider, for example, the Referer field, which contains the URL indi-
cating where the request comes from. This field is commonly trusted by the
Web application, but can be easily forged by an attacker. It is possible to
manipulate the Referer field’s value used in an error page or for redirection
to mount cross-site scripting or HTTP response splitting attacks. Similarly,
the Referer field should never be used to authenticate valid clients, as this
authentication scheme may be easily circumvented [Ope05].

Cookie Poisoning

Cookie poisoning attacks consist of modifying a cookie, which is a small file
accessible to Web applications stored on the user’s computer [Kle02b]. Many
Web applications use cookies to store information such as user login/password
pairs and user identifiers. This information is often created and stored on the
user’s computer after the initial interaction with the Web application, such as
visiting the application login page. Cookie poisoning is a variation of header
manipulation: malicious input can be passed into applications through values
stored within cookies. Because cookies are supposedly invisible to the user,
cookie poisoning is often more dangerous in practice than other forms of

8

parameter or header manipulation attacks.

Example 1.4. Consider the HTTP GET request in Figure 1.2. The URL
on host http://www.mybank.com requested by the browser transfer and the
parameter string transfer = yes indicates that the user wants to perform
a funds transfer.

The request includes a cookie that contains the following parameters:
SESSION, which is a unique identification string that associates the user
with the site and Amount, which is the transfer amount for this transaction.
Amount is validated by the Web application before being stored in a cookie.
However, an attacker can easily edit the cookie and change the Amount value
in order to circumvent account overdraw checks that are performed before
the cookie is created to transfer more money that is contained in an account.
�

As this example illustrates, cookie poisoning is typically used in a manner
similar to hidden field manipulation, i.e. to change the outcome the attacker’s
advantage. However, since programmers rely on cookies as a location for
storing parameters, all parameter attacks including SQL injection, cross-site
scripting, etc. can be performed with the help of cookie poisoning [Bar03].

Non-Web Input Sources

Malicious data can also be passed in as command-line parameters. This
problem is not as important because typically only administrators are al-
lowed to execute components of Web-based applications directly from the
command line. However, by examining our benchmarks, we discovered that
command-line utilities are often used to perform critical tasks such as ini-
tializing, cleaning, or validating a back-end database or migrating the data.
Therefore, attacks against these important utilities can still be dangerous.

GET transfer?complete=yes
HTTP/1.0 Host: www.mybank.com Accept: */*
Referrer: http://www.mybank.com/login
Cookie: SESSION=89DSSSXX89JJSYUJG; Amount=5000

Figure 1.2: An HTTP GET request containing a cookie.

9

http://www.mybank.com

1.1.3 Exploiting Unchecked Input

Once malicious data is injected into an application, an attacker may use one
of many techniques to take advantage of this data, as described below.

SQL Injections

SQL injections first described in Section 1.1.1 are caused by unchecked user
input being passed to a back-end database for execution. When exploited, a
SQL injection may cause a variety of consequences from leaking the structure
of the back-end database to adding new users, mailing passwords to the
hacker, or even executing arbitrary shell commands.

Many SQL injections can be avoided relatively easily with the use of
better APIs. J2EE provides the PreparedStatement class, that allows spec-
ifying a SQL statement template with ?’s indicating statement parameters.
Prepared SQL statements are precompiled, and expanded parameters never
become part of executable SQL. However, not using or improperly using
prepared statements still leaves plenty of room for errors.

Example 1.5. Figure 1.1 shows two ways to update the salary of an
employee, whose id is provided. The first method in Figure 1.1 (a) uses
string concatenation to construct the query and leading to potential SQL
injection attacks; the second in Figure 1.1 (b) uses PreparedStatements

and is safe from SQL injection attacks. �
Most SQL injections we have encountered can be categorized as the result

of not using PreparedStatements and constructing SQL statements directly.
However, while a good practical strategy for most purposes when program-
ming using J2EE, PreparedStamtents are not a panacea. As our practical
experience with auditing for SQL injections shows, there are some legitimate
reasons for using dynamically constructed SQL statements:

• SQL statements depend on the way the application is configured. For
instance, SQL statements are often read from configuration files that
are different depending on the back-end database being used.

• Only certain parts of SQL statements may be parameterized, for in-
stance, an online store that performs a search depending on both the
search criterion that corresponds to a database column, such as the
name or the address will likely construct the SQL query using string
concatenation.

10

• Improper use of PreparedStatements, i.e. using non-constant tem-
plate strings for constructing prepared statements defeats the purpose
of using them in the first place.

Cross-site Scripting Vulnerabilities

Cross-site scripting occurs when dynamically generated Web pages display
input that has not been properly validated [CGI, Coo03, Hu04, Kle02a,
Spe02a]. An attacker may embed malicious JavaScript code into dynami-
cally generated pages of trusted sites. When executed on the machine of a
user who views the page, these scripts may hijack the user account creden-
tials, change user settings, steal cookies, or insert unwanted content (such as
ads) into the page. At the application level, echoing the application input
back to the browser verbatim enables cross-site scripting.

Example 1.6. A cross-site scripting attack leverages the trust the user has
for a particular Web site, such as that of a financial institution, to perform
malicious activities. Suppose a bank’s online accounting system has an error
page that displays input verbatim. An attacker may trick the legitimate user
into following a benign-looking URL, which results in displaying an error page
containing a malicious script. Suppose the script looks like the following:

<script>
document.location =

’http://www.attack.org/?cookies=’ +
document.cookie

</script>

When the error page is opened, the script will redirect the user’s browser,
while submitting the user’s cookie to a malicious site in the meantime. �

HTTP Response Splitting

HTTP response splitting is a general technique that enables various new
attacks including Web cache poisoning, cross-user defacement, sensitive page
hijacking, as well as cross-site scripting [Kle04]. By supplying unexpected line
break CR and LF characters, an attacker can cause two HTTP responses to
be generated for one maliciously constructed HTTP request. The second
HTTP response may be erroneously matched with the next HTTP request.
By controlling the second response, an attacker can generate a variety of

11

issues, such as forging or poisoning Web pages on a caching proxy server.
Because the proxy cache is typically shared by many users, this makes the
effects of defacing a page or constructing a spoofed page to collect user data
even more devastating. For HTTP splitting to be possible, the application
must include unchecked input as part of the response headers sent back to
the client. For example, applications that embed unchecked data in HTTP
Location headers returned back to users are often vulnerable.

Several HTTP splitting vulnerabilities in deployed software have been
announced in recently, including two in Java applications. SecurityFocus.

com bid ids 11413 and 11180. The latter one is in snipsnap, which is one
of the benchmarks in our suite. A common coding pattern that makes Java
applications vulnerable to HTTP response splitting is redirecting to user-
defined URLs, as illustrated by this code snipped from one of our benchmark
applications, personalblog:

request.sendRedirect(request.getParameter("referer"));

Path Traversal

Path-traversal vulnerabilities allow a hacker to access or control files outside
of the intended file access path. Path-traversal attacks are normally carried
out via unchecked URL input parameters, cookies, and HTTP request head-
ers. Many Java Web applications use files to maintain an ad-hoc database
and store application resources such as visual themes, images, and so on.

If an attacker has control over the specification of these file locations,
then he may be able to read or remove files with sensitive data or mount
a denial-of-service attack by trying to write to read-only files. Using Java
security policies allows the developer to restrict access to the file system
(similar to using chroot jail in Unix). However, missing or incorrect policy
configuration still leaves room for errors. When used carelessly, IO operations
in Java may lead to path-traversal attacks.

Example 1.7. The following code snippet we found in blojsom turns out
to be not secure because permlink is under user control:

String permalinkEntry =
_blog.getBlogHome() +
category + permalink;

File blogFile = new File(permalinkEntry);

12

SecurityFocus.com
SecurityFocus.com

Changing permlink on the part of the attacker can be used to mount denial
of service attacks when accessing non-existent files. �

Command Injection

Command injection (also sometimes referred to as “Stealth Commanding”)
involves passing shell commands into the application for execution. This at-
tack technique enables a hacker to attack the server using access rights of
the application. While relatively uncommon in Web applications, especially
those written in Java, this attack technique is still possible when applica-
tions carelessly use functions that execute shell commands or load dynamic
libraries.

1.2 Advantages of the Runtime Approach

Commonly used dynamic techniques such as application firewalls [Net04b]
that rely on pattern-matching and monitor traffic flowing in and out of the
application are often a poor solution for SQL injection or cross-site scripting
attacks. Such techniques suffer from both false positives and false negatives.

In contrast, our runtime technique can detect all attacks of a particular
kind because it precisely tracks how the data flows through the application.
No false alarms are introduced because runtime instrumentation has perfect
historical information about any piece of data. Moreover, our approach can
gracefully recover from vulnerabilities before they can do any harm by sani-
tizing tainted input whenever necessary. There are some inherent advantages
summarized below that the runtime analysis approach has over the static one:

Deployment-time security. Runtime analysis can be integrated with the
server so that whenever a new Web application is added, it is instru-
mented automatically. This removes the risk associated with deploying
“unfamiliar”, potentially unsafe Web applications. This approach elim-
inates the “vulnerability window” that stems from the code changing
without the static analysis tool being immediately rerun. Moreover, re-
covery from vulnerabilities can be provided by applying user-provided
sanitization.

No need to change the development lifecycle. Unlike static tools,
runtime technology can be used at organizations that lack a well-

13

established static analysis or testing infrastructure as part of their de-
velopment process. Trying to introduce a static analysis tool into such
an organization is a difficult task, one that is likely to be met with
reluctance from the developers.

No need for the source code. Unlike a static approach, runtime analysis
does not require changes to the original program and does not need
access to the source code. While static analysis is done at the bytecode
level, reporting analysis results back to the user requires access to the
source code. Runtime analysis can be especially advantageous when
dealing with applications that rely heavily on libraries, whose source is
unavailable. In those cases, the vulnerabilities that span library code
cannot be easily reported. It can also be beneficial in an environment
where the source code is unavailable for security or intellectual property
reasons.

Avoids static analysis challenges. Finally, analyzing Web applications
statically can be challenging because of the difficulty of call graph con-
struction and reflection. Runtime analysis avoids these challenges al-
together.

1.3 Report Organization

The rest of this report is organized as follows. Chapter 2 provides an overview
of SecuriFly. Chapter 3 describes the runtime system. Chapter 4 summa-
rizes the experimental results. Chapter 5 talks about related work.

14

Chapter 2

Overview

The user of SecuriFly specifies what constitutes a vulnerability. Specifi-
cations are expressed in PQL, a Program Query Language [MLL05]. PQL
is a generic language that can be used to capture events that happen to
objects, such as specific method calls being invoked with an object passed
as a parameter or returned from a method. While PQL has been used to
express a variety of queries for purposes ranging from debugging to finding
optimization opportunities, in this report it is used to capture vulnerability
queries.

Since most portions of vulnerability specification consist of J2EE library
methods, and since the J2EE library is shared among most Java Web appli-
cations, the per-application specification effort in usually minor. Moreover,
most vulnerabilities can be found with a “generic” specification that is spe-
cific to the Web application development framework such as J2EE or Apache
Struts, which completely removes the need for user involvement. A very
simple PQL query that captures only some SQL injection vulnerabilities is
shown in Figure 2.1; more complete vulnerability queries are described be-
low. This PQL query will locate all objects param which are returned from
a call to getParameter and are passed into method executeQuery.

Our runtime technique works by instrumenting the existing application
based on the PQL specification provided by the user to prevent vulnerabilities
at runtime. In addition to not suffering from false positives, the runtime
approach offers the following important benefits:

• Keeps vulnerabilities from doing harm. As discussed earlier, run-
time analysis may be used in situations where the user is unwilling to

15

query verySimpleSQLInjection()
returns

object String param;
uses

object HttpServletRequest req;
object Connection con;

matches {
param = req.getParameter(_);

con.execute(param);
}

Figure 2.1: A very simple PQL query for finding SQL injections.

consider the false positives. It also applies when the source code is
unavailable or cannot be changed. The runtime technique is of great
practical value in stopping existing vulnerabilities from being exploited.
For example, an application that has an output validation vulnerability
that may lead to an information leak can be terminated before the leak
actually occurs.

• Can recover from exploits. Since the right approach to fixing taint-
style vulnerabilities in Web applications involves applying a data san-
itizer, our dynamic technique automatically applies the appropriate
sanitizer on the code execution paths that lack it. The runtime ap-
proach we describe can be used in the creation of a safe application
server, which automatically secures the applications that are deployed
on it. This gives the user a notion of continuous security.

• No false positives and no false negatives. Finally, the dynamic
technique has full visibility into the runtime program behavior and
therefore does not suffer from false alarms. The runtime protection is
designed to detect and prevent any vulnerabilities matching the user-
provided specification.

As with any runtime technique, an important consideration is the runtime
overhead. Näıve instumentation generated based on the PQL specification
incurs an overhead ranging from 40% to 120%. While Web-based applica-
tions are largely interactive in nature, the overhead is still undesirable. In

16

SecuriFly, additional static information is computed to reduce the amount
of runtime instrumentation that needs to be inserted.

This approach is very effective, as it reduces the number of instrumen-
tation points by about 85%-99%. This reduces the overhead to less than
37%. For most benchmarks, the overhead is under 20%. The soundness of
the static technique allows us to remove instrumentation points deemed un-
necessary statically without jeopardizing the quality of runtime protection.
We believe that a special-purpose runtime instrumentation technique that
would just keep track of tainted strings should reduce the runtime overhead
even further.

2.1 Framework Overview

We start our discussion by focusing on the SQL injection example in Sec-
tion 1.1.1. Conceptually, a vulnerability occurs because there is uninter-
rupted flow between a tainted object (as exemplified by String userName on
line 3 in Figure ??) and a sink (execute on line 5). It is important to point
out that in Java every string is a separate object. Moreover, a String object
is immutable, meaning that once it becomes tainted, it will always remain so.
A vulnerability trace is a sequence of objects, such that every object is derived
from the previous one, leading to a sink. Notice that the objects involved in a
vulnerability trace are strings, represented in Java by standard library types
String, StringBuffer, StringBuilder, StringTokenizer, etc. declared in
package java.lang.

The overall goal of both static and runtime analyses is to locate such
traces. While the example in Section 1.1.1 is quite simple, the trace is in
fact 3 objects long:

1. The original source java.lang.String object on line 3;

2. The java.lang.StringBuffer object constructed when the
Java compiler converts string concatenation into calls to
java.lang.StringBuffer.append(...)1;

3. The java.lang.String object that is the result of calling
StringBuffer.toString() on the previous StringBuffer object.

1More recent versions of the Java starting with version 1.5 use the StringBuilder
class, which offers an interface very similar to that of StringBuffer. The advantage of
StringBuilder is that it is not synchronized, resulting in faster code.

17

Of course, large programs produce traces that are considerably longer
and traces of length 20 and above are not uncommon. The longer a trace
is, the more difficult it generally is to detect through code review or shallow
analysis. Our techniques have been developed to find all traces, independent
of their length. In the rest of this section we formalize the notions discussed
above.

2.1.1 Tainted Object Propagation Problem

In this section we formalize the tainted object propagation problem first
described in Section 1.1. We start by defining the terminology that was first
informally introduced in Example 1.

Definition 2.1.1 An access path as a sequence of field accesses, array index
operations, or method calls separated by dots. We denote the empty access
path by ε; array indexing operations are indicated by [].
For instance, the result of applying access path f.g to variable v is v.f.g.

Definition 2.1.2 A tainted object propagation problem consists of a set of
source descriptors, sink descriptors, derivation descriptors, and sanitization
descriptors, as described below:

• Source descriptors of the form 〈m, n, p〉 specify ways in which user-
provided data can enter the program. They consist of a source method
m, parameter number n and an access path p to be applied to argument
n to obtain the user-provided input. We use argument number -1 to
denote the return result of a method call.

• Sink descriptors of the form 〈m, n, p〉 specify unsafe ways in which
data may be used in the program. They consist of a sink method m,
argument number n, and an access path p applied to that argument.

• Derivation descriptors of the form 〈m, ns, ps, nd, pd〉 specify how data
propagates between objects in the program. They consist of a deriva-
tion method m, a source object given by argument number ns and
access path ps, and a destination object given by argument number nd

and access path pd. This derivation descriptor specifies that at a call
to method m, the object obtained by applying pd to argument nd is
derived from the object obtained by applying ps to argument ns.

18

• Sanitization descriptors of the form 〈m, nd, pd〉 specify sanitization
methods that stop the propagation of taint between objects in the
program. They consist of a derivation method m, a destination object
given by argument number nd and access path pd. This sanitization
descriptor specifies that at a call to method m, the object obtained by
applying pd to argument nd is not tainted.

These descriptors formally specify how source methods in the program can
generate tainted input and how sink methods can be exploited if unsafe input
is passed to them. They also specify how string data can propagate between
objects in the program by using string manipulation routines and when the
flow of taint terminates.

A tainted object propagation problem is instantiated for any particular
vulnerability type, such as SQL injections caused by parameter manipulation.
Moreover, parts of the problem are application-specific. For instance, it is
common to have application-specific sanitizers, whereas derivation routines
are typically shared among most Java applications. Fortunately, the lists of
sources and sinks are specific to the J2EE framework we use and can therefore
be shared among all applications using those APIs. The issue of specification
completeness is further discussed in Section 2.1.4.

2.1.2 Derivation and Sanitization Descriptors

While the notion of sources and sinks is intuitively clear, the subject of
derivation and sanitization descriptors requires further discussion. In the
absence of derived objects, to detect potential vulnerabilities we only need
to know if a source object is used at a sink. Derivation descriptors are
introduced to handle the semantics of strings in Java.

Because Strings are immutable Java objects, string manipulation rou-
tines such as concatenation create brand new String objects, whose contents
are based on the original String objects. Derivation descriptors are used to
specify the behavior of string manipulation routines, so that taint can be
explicitly passed among the String objects.

Unfortunately, there are numerous ways to obtain tainted objects from
string objects in Java. Data contained in a string object propagates to any
object derived from the string through string concatenation, substring extrac-
tion, and other similar routines. For instance, s.toLowerCase() is derived
from string s. Similarly, the result of s + ”; ” is derived from string s. Finally,

19

String tainted = ...;
char[] chars = tainted.getChars();
for(int i = 0; i < chars.length; i++){

char ch = chars[i];
buf.append(ch);

}
String str = buf.toString();
con.executeQuery(str);

Figure 2.2: Character-level string manipulation not captured by our model.

newStringTokenizer(s) is derived from s, because the StringTokenizer

object constructed out of a tainted string will produces potentially tainted
tokens.

Most Java programs use built-in String libraries and can share the same
set of derivation descriptors as a result. However, some Web applications use
multiple String encodings such as Unicode, UTF-8, and URL encoding. If
encoding and decoding routines propagate taint and are implemented using
native method calls or character-level string manipulation, they also need to
be specified as derivation descriptors. Sanitization routines that validate user
input are also often implemented using character-level string manipulation.

It is possible to obviate the need for manual specification of derivation and
sanitization descriptors with a static analysis that determines the relationship
between strings passed into and returned by low-level string manipulation
routines. We describe such an analysis in Section 2.1.4. However, such an
analysis must be performed not just on the Java bytecode but on all the
relevant native methods as well.

It is important to point out that the notion of derivation and sanitization
descriptors we use is restricted to methods. We are unable to capture the
creation of one string from characters of another if it does not involve a
method call, as shown in Figure 2.2.

Example 2.1. We can formulate the problem of detecting parameter
manipulation attacks that result in a SQL injection as follows: the source
descriptor for obtaining parameters from an HTTP request is:

〈HttpServletRequest.getParameter(String),−1, 〉,

where ε stands for the empty access path. A sink descriptor for SQL query

20

execution is:
〈Connection.executeQuery(String), 1, ε〉.

To allow the use of string concatenation in the construction of query strings,
we use derivation descriptors:

〈StringBuffer.append(String), 1, ε,−1, ε〉, and
〈StringBuffer.toString(), 0, ε,−1, ε〉

Finally, in this example, we leave the list of sanitization descriptors empty.
�

2.1.3 Security Violations

Below we formally define a security violation:

Definition 2.1.3 A source object for a source descriptor 〈m,n, p〉 is an
object obtained by applying access path p to argument n of a call to m.

Definition 2.1.4 A sink object for a sink descriptor 〈m,n, p〉 is an object
obtained by applying access path p to argument n of a call to method m.

Definition 2.1.5 Object o2 is derived from object o1, written derived(o1, o2),
based on a derivation descriptor 〈m, ns, ps, nd, pd〉, if o1 is obtained by apply-
ing ps to argument ns and o2 is obtained by applying pd to argument nd at
a call to method m.

Definition 2.1.6 An object is tainted if it is obtained by applying relation
derived to a source object zero or more times.

Definition 2.1.7 A security violation occurs if a sink object is tainted. A
security violation consists of a sequence of objects o1 . . . ok such that o1 is
a source object and ok is a sink object and each object is derived from the
previous one:

∀
0≤i<k

i : derived(oi, oi+1).

We refer to object pair 〈o1, ok〉 as a source-sink pair. When talking about
vulnerability counts we will actually refer to the number of source-sink pairs
our analysis detects.

21

2.1.4 Specifications Completeness

If a specification is incomplete, important errors will be missed even if we
use a sound analysis that finds all vulnerabilities matching a specification.
Therefore, the problem of obtaining a complete specification for a tainted ob-
ject propagation problem is an important one. However, it is hardly a unique
issue for program analysis, as many other projects require a specification to
be provided [AE02, HCXE02, WFBA00].

To come up with a list of source and sink descriptors for vulnerabilities
in our experiments, we used the documentation of the relevant J2EE library
APIs. Since it is relatively easy to miss relevant descriptors in the specifi-
cation, we used several techniques to make our problem specification more
complete. For example, to find some of the missing source methods, we in-
strumented the Web applications to find places where application code is
called by the application server.

We also used a static analysis to identify tainted objects that have no
other objects derived from them, and examined methods into which these
objects are passed. In our experience, some of these methods turned out to
be obscure derivation and sink methods missing from our initial specification,
which we subsequently added. However, despite our best efforts, we cannot
claim specification completeness.

An interesting feature of our analysis framework is that it is generally not
necessary to include character-level sanitization routines in the specification.
This is because the analysis will be unable to follow the flow from the pa-
rameters of such routines to their return values, achieving the desired effect.
It is, however, not acceptable to omit derivation routines, as this would miss
some legitimate data flow through the program and threaten the soundness
of our results.

2.2 Specifying Vulnerabilities in PQL

While a useful formalism, source, sink, derivation, and sanitization descrip-
tors as defined in Section 2.1.1 are not a user-friendly way to describe security
vulnerabilities. In both the static and dynamic analysis arenas, we have seen
the development of various analysis specification techniques.

For example, for static analysis, questions about static program prop-
erties may be expressed as Datalog queries [WACL05] or type inference

22

rules [KA05]. Datalog exposes the program intermediate representation (IR)
as a set of relations. To determine static program properties, the user can
subsequently query these relations. While giving the user complete control,
Datalog queries expose too much of the program’s internal representation to
be practical for the casual use who does not want to learn the intricacies of
the IR. The same argument applies to requiring the user to write runtime in-
strumentation code, leading to the development of numerous aspect-oriented
systems such as AspectJ, etc. that make common tasks easier to accom-
plish [ea, KHH+01].

Our approach is to use PQL, a program query language. PQL is a general
query language capable of expressing a variety of questions about program
execution. A PQL query is a pattern describing a sequence of dynamic events
that involves variables referring to dynamic object instances. Matching ob-
ject instances are returned as the answer to the PQL query. PQL queries
can be answered either statically or dynamically. In the static case, a con-
servative approximation of the answer is used: false positive matches may be
introduced.

To make them accessible to developers, PQL queries are written in a fa-
miliar Java-like syntax. PQL serves as a layer of abstraction and, as a result,
the user is not required to become familiar with the details of static program
internal representation or the internals of an instrumentation framework.

In this report, we only use a relatively limited and stylized form of PQL
queries to formulate tainted object propagation problems; a more extensive
description of PQL is found elsewhere [MLL05]. Translation of tainted object
propagation queries from PQL into static checkers and runtime instrumen-
tation is described in more detail in Chapters ?? and 3, respectively.

2.2.1 Simple SQL Injection Query

Example 2.2. Figure 2.3 shows a PQL query for the SQL injection vul-
nerability in Example 1. It is important to point out and this is a relatively
simple query example given here for the purpose of illustration that only
addresses a small subset of all SQL injections that includes the code snippet
in Figure ??. Queries capturing a wider range of vulnerabilities are discussed
in Section 2.2.2.

Query simpleSQLInjection is described in more detail below. The uses
clause of a PQL query declares all objects used in the query. The matches

23

query simpleSQLInjection()
returns

object String param, derived;
uses

object HttpServletRequest req;
object Connection con;
object StringBuffer temp;

matches {
param = req.getParameter(_);

temp.append(param);
derived = temp.toString();

con.execute(derived);
}

Figure 2.3: The PQL query for finding simple SQL injections.

clause specifies the sequence of events that must occur for a match to be
found. Semicolons are used in PQL queries to indicate a sequence of events.
The wildcard character _ is used instead of a variable name if the identity of
the object to be matched is irrelevant. Finally, the return clause specifies
source-sink pairs 〈param, derived〉 returned by the query. The matches
clause is interpreted as follows:

1. object param must be obtained by calling
HttpServletRequest.getParameter;

2. method StringBuffer.append must be called on object temp with
param as the first argument;

3. method StringBuffer.toString must be called on temp to obtain ob-
ject derived, and

4. method execute must be called with object derived passed in as the
first parameter.

These operations must be performed in order; however, the invocations need
not be consecutive and may be scattered across different methods. Query
simpleSQLInjection matches the code in Example 1 with query variables
param and derived matching the objects in userName and query. Query
variable temp corresponds to the temporary StringBuffer created by the
Java compiler for the string concatenation operation in Example 1. �

24

query main()
returns

object Object sourceObj, sinkObj;
matches {

sourceObj := source();
sinkObj := derived*(sourceObj);
sinkObj := sink();

}

Figure 2.4: Main query for finding source-sink pairs.

2.2.2 Queries for a Taint Propagation Problem

In this section we describe how generic tainted object propagation queries are
formulated. There is a direct correspondence between source, sink, deriva-
tion, and sanitization descriptors used in the problem (definition 2.1.2) and
parts of the PQL query shown in Figure 2.4.

Generic Taint Propagation Queries

Query main shown in Figure 2.4 computes source-sink object pairs corre-
sponding to static or runtime security violations for a given tainted object
propagation problem. Intuitively, query main matches pairs of objects, such
that the first object comes from a source, the second goes into a sink, and
the second object is derived from the first one using zero or more derivation
steps. The source and sink objects are denoted in the query as sourceObj

and sinkObj, respectively. Events separated by semicolons in query main

must occur in order, but can be separated by other events (such as method
calls, etc.).

Query main uses auxiliary subqueries source, sink, and derived∗ to
constraint sourceObj and sinkObj values. Object sourceObj in main is
returned by subquery source. Object sinkObj is the result of subquery
derived? with sourceObj used as a subquery parameter and is also the result
of subquery sink. Therefore, sinkObj returned by query main matches all
tainted objects that are also sink objects.

Subquery derived∗ shown in Figure 2.5 defines a transitive derived re-
lation: object y is transitively derived from object x by applying subquery
derived zero or more times. This query takes advantage of PQL’s subquery
mechanism to define a transitive closure recursively.

25

query derived*(object Object x)
returns

object Object y;
uses

object Object temp;
matches {

!sanitizer1(x); !sanitizer2(x); ...
y := x |
temp := derived(x); y := derived*(temp);

}

Figure 2.5: Transitive derived relation derived?.

Instantiating Taint Propagation Queries

Subqueries source, sink, and derived used in main and derived? are spe-
cific to a particular tainted object propagation problem, as shown in the
example below.

Example 2.3. This example describes subqueries source, sink, and
derived shown in Figure 2.6 that can be used to match SQL injections,
such as the one described in Example 1. Usually these subqueries are struc-
tured as a series of alternatives separated by |. The wildcard character _ is
used instead of a variable name if the identity of the object to be matched
is irrelevant.

Query source is structured as an alternation: sourceObj can be re-
turned from a call to req.getParameter or req.getHeader for an object
req of type HttpServletRequest; sourceObj may also be obtained by in-
dexing into an array returned by a call to req.getParameterValues, etc.
Query sink defines sink objects used as parameters of sink methods such as
java.sql.Connection.executeQuery, etc. Query derived determines when
data propagates from object x to object y. It consists of the ways in which
Java strings can be derived from one another, including string concatenation,
substring computation, etc. �

As can be seen from this example, subqueries source, sink, and derived

map to source, sink, and derivation descriptors for the tainted object prop-
agation problem. However, instead of descriptor notation for method pa-
rameters and return values, natural Java-like method invocation syntax is
used.

26

query source()
returns

object Object sourceObj;
uses

object String[] sourceArray;
object HttpServletRequest req;

matches {
sourceObj = req.getParameter(_)

| sourceObj = req.getHeader(_)
| sourceArray = req.getParameterValues(_);
sourceObj = sourceArray[]

| ...
}

query sink() returns
object Object sinkObj;

uses
object java.sql.Statement stmt;
object java.sql.Connection con;

matches {
stmt.executeQuery(sinkObj)

| stmt.execute(sinkObj)
| con.prepareStatement(sinkObj)
| ...

}

query derived(object Object x)
returns

object Object y;
matches {

y.append(x)
| y = _.append(x)
| y = new String(x)
| y = new StringBuffer(x)
| y = x.toString()
| y = x.substring(_ ,_)
| y = x.toString(_)
| ...

}

Figure 2.6: PQL subqueries for finding SQL injections.

27

queries −→ query*

query −→ query qid ([decl [, decl]*])
[returns declList ;]
[uses declList ;]
[matches { seqStmt }]
[replaces primStmt with methodInvoc ;]*
[executes methodInvoc [, methodInvoc]* ;]*

methodInvoc −→ methodName(idList)

decl −→ object [!] typeName id |

member namePattern id
declList −→ object [!] typeName id (, id)*|

member namePattern id (, id)*

stmt −→ primStmt | ∼ primStmt |

unifyStmt | { seqStmt }
primStmt −→ fieldAccess = id |

id = fieldAccess |

id [] = id |

id = id [] |
id = methodName (idList) |

id = new typeName (idList)
unifyStmt −→ id := id

([idList]) := qid (idList)

seqStmt −→ (commaStmt ;)*

commaStmt −→ altStmt (, altStmt)*

altStmt −→ stmt ("|" stmt)*

typeName −→ id (. id)*

idList −→ [id (, id)*]

fieldAccess −→ id . id

methodName −→ typeName . id

qid −→ [A-Za-z][0-9A-Za-z_]*

qid −→ [A-Za-z][0-9A-Za-z_]*

namePattern −→ [A-Za-z*_][0-9A-Za-z*_]*

Figure 2.7: BNF grammar specification for PQL.

28

Chapter 3

Runtime Analysis in SecuriFly

3.1 Matching PQL Queries at Runtime

PQL provides generic machinery for matching queries at runtime as described
in the rest of this section. PQL queries are translated into non-deterministic
finite-state automata (NFAs). The underlying application is instrumented so
that all events relevant to the query being matched are recorded. When the
application is executed, NFAs constructed on the bases of the PQL query
run alongside the application collecting information about relevant program
events.

Whenever the NFA corresponding to the main query enters an accept
state, one of several outcomes can occur. If the replaces clause is present,
another event is substituted in place of the event being replaced. This is
especially useful for recovery, so that a safe action replaces a potentially
unsafe one, as described in Section 3.4. If the executes clause is present,
the code within the clause will be executed, which is useful for reporting
vulnerabilities or terminating the application.

Finding dynamic matches to PQL queries involves the following steps:

Query translation. Translate each subquery into an NFA which takes an
input event sequence, finds subsequences that match automaton, and
reports the values bound to all returned query variables for each match.

Program instrumentation. Instrument the target application to record
events relevant to the query being matched.

Query matching. Use a query matcher to interpret all the state ma-
chines over the execution trace collected as the program runs to find

29

all matches.

Each of these steps is described in detail in Sections 3.1.1 — 3.1.3.

3.1.1 Translation From Queries To State Machines

A state machine representing a PQL query is composed of the following
components:

• a set of states, which includes a start state, a fail state, and an accept
state;

• a set of state transitions which may or may not be predicated;

• and a set of query variables taken from the original PQL query.

A partial query match is given by a current state and a set of bindings —
mappings from variables in a PQL query to objects in the heap at runtime.
A state transition specifies the event for which a current state and current
bindings transition to the next state and a new set of bindings. Because the
same event may be interpreted in different ways by different transitions, a
state machine may non-deterministically transition to different states given
the same input.

Special Transitions

State transitions generally represent a single primitive statement correspond-
ing to a single execution event. There are three special kinds of transitions,
though:

Skip transitions. A query specifies a sub-sequence of events to match.
Unless noted otherwise with an exclusion statement, an arbitrary num-
ber of events of any kind are allowed in between consecutive matched
statements. We represent this notion with a skip transition, which con-
nects a state back to itself on any event that does not match the set
of excluded events. Note that the accept state does not have a skip
transition, so matches are reported only once.

ε transitions. An ε transition does not correspond to any event; it is taken
immediately when encountered. Any state with outgoing ε transitions
must have all outgoing transitions be ε. They may optionally carry a
predicate; the transition may only be taken if the predicate is true. If
it is not, the matcher transitions directly into the fail state.

30

Subquery invocation transitions. These behave mostly like ordinary
transitions, but correspond to the matches of entire, possibly recursive,
queries.

We preprocess the original PQL queries to ease the translation process.
No subquery may, directly or indirectly, invoke itself without any intervening
events. So, first we eliminate such situations, a process analogous to the
elimination of left-recursion from a context-free grammar [ASU86]. Second,
excluded events are propagated forward through subquery calls and returns
so that each set of excluded events is either at the end of main or immediately
before a primitive statement.

Transitions Corresponding to Primitive Statements

We now present a syntax-directed approach to constructing the state machine
for a query. The reader is encouraged to refer to the PQL grammar in
Figure 2.7 as we describe how different primitive statements are translated.
Before we can proceed, some additional notation is required.

Associated with each statement s in the query are two states, denoted
bef (s) and aft(s), to refer to the states just before and after s is matched.
For a query with statement s in the matches clause, the start and accept
states of the query are states bef (s) and aft(s), respectively.

Definition 3.1.1 An attribute in event e with value x is unifiable with
query statement s and the current set of bindings b if

• it refers to a query variable v that is unbound in b or bound in b to
value x;

• or if the corresponding attribute in s has a literal constant value x.

Below we describe how the different PQL primitives are translated into NFAs.

Array and field operations. These are the primitive statements that
correspond to single events during the execution. For a primitive state-
ment s of type t, the transition from bef (s) to aft(s) is predicated by
getting an input event e also of type t and that the attributes in e must
be unifiable with those in statement s and the current bindings. If the
attribute refers to an unbound variable v, the pair (v, x) is added to
the set of known bindings.

31

Exclusion. For an excluded primitive statement of the form ∼ s′, bef (s) =
aft(s). The default skip transition is modified to be predicated upon
not matching s′.

Sequencing. If s = s1; s2, then bef (s) = bef (s1), aft(s) = aft(s2), and
aft(s1) = bef (s2).

Alternation. If s = s1|s2, then bef (s) provides ε transitions to bef (s1)
and bef (s2); similarly, aft(s1) and aft(s2) each have an ε transition to
aft(s).

Method invocation and creation points. If s is a method invocation
statement, we must match the call and return events for that method,
as well as all events between them. To do this, we create a fresh state
t and a new event variable v. We create a transition from bef (s) to t
that matches the call, and bind v to the ID of the event. We create
another transition from t to aft(s) that matches a return with ID v.
The skip transition from t back to itself is modified to exclude the
match of the return event. Calls and returns are unified in a manner
analogous to array and field operations. Object creation is handled in
Java by invoking the method “<init>”, and is translated into NFAs
like any other method invocation.

Unification statements. A unification statement denoted by unifyStmt
in Figure 2.7 is represented by a predicated ε transition that requires
that the two variables on the left and right have the same value. If one
is unbound, it will acquire the value of the other.

3.1.2 Instrumenting the Program

The system instruments all instructions in the target application that match
any primitive event or any exclusion event in the query. At an instrumenta-
tion point, the pending event and all relevant objects are sent to the query
matcher. The matcher updates the state of all pending matches and then
returns control to the application. For instance, the NFA that corresponds
to a PQL query that concerns calls to method StringBuffer.toString()
will be notified each time this method is invoked. Moreover, the value of the
this parameter will be passed to the NFA also.

32

The matcher does not interfere with the behavior of the application except
via completed matches. Therefore, any instrumentation point that can be
statically proven to not contribute to any match need not be instrumented.

3.1.3 The Runtime Query Matcher

The matcher begins with a single partial match at the beginning of the
main query, with no values for any variables. It receives events from the
instrumented application and updates all currently active partial matches.
For each partial match, each transition from its current state that can unify
with the currently processed event produces a new possible partial match
where that transition is taken.

Handling Non-Determinism

A single event may be unifiable with multiple transitions from a state, so
multiple new partial matches are possible. If a skip transition is present and
its predicates pass, the match will persist unchanged. If the skip transition is
present but a predicate fails the match transitions to the fail state. If the skip
transition is present but a predicate’s value is unknown because the variables
it refers to as are of yet unbound, then the variable is bound to a value
representing “any object that does not violate the predicate.” Predicates
accumulate if two such objects are unified; unification with any object that
satisfies all such predicates replaces the predicates with that object. If the
new state has ε transitions, they are processed immediately.

Handling Subqueries

If a transition representing a subquery call is available from the new state, a
new partial match based on the subquery’s state machine is generated. This
partial match begins in the subquery’s start state and has initial bindings
corresponding to the arguments the subquery was invoked with.

A unique subquery ID is generated for the subquery call and associated
with the subquery caller’s partial match, with the subquery callee’s partial
match, and with any partial match that results from taking transitions within
the subquery callee.

33

S
source derived*

* ~{sanitizer1, sanitizer2, ...}

sink

Figure 3.1: State machine that corresponds to the main PQL query.

Handling Accept States

Once a partial match transitions into an accept state, it begins to wait for
events named in replaces clauses. When a targeted event is encountered,
the instruction is skipped and the substituted method is run instead. An
executes clause runs immediately once the accept state is reached.

When a subquery invocation completes, the subquery ID is used to locate
the transition that triggered the subquery invocation. The variables assigned
by the query invocation are then unified with the return values, and the
subquery invocation transition is completed. The original calling partial
match remains active to accept any additional subquery matches that may
occur later.

3.2 Translating Vulnerability Queries

The previous section presented a generic procedure for translating from PQL
queries to NFAs. This section discusses the state machines that are created
for the specific vulnerability queries shown in Figures 2.4 — 2.6. For all the
NFAs discussed in this section, S marks the start state and thick-edged graph
nodes are accept states. For edges, ∗ marks an edge that can be taken on
any input. Exclusion notation ∼ e1, e2, . . . on graph edges marks an edge
that can be taken on any input events except e1, e2,

Query main. The NFA in Figure 3.1 for the main PQL query consists of in-
vocations of subqueries source, sink, and derived∗. This corresponds
to a piece of data that is read from a source, derived from using zero or
more steps, and then falls into a sink. This exactly matches the notion
of a tainted object propagation problem in Section 2.1.1.

34

S

*

ge
tPa

ram
et
erV

alu
es

getParameter

getHeader

...

[]

S

~ {sanitizer1, sanitizer2, ...}

println

executeQuery

...

S

*

ge
tPa

ram
et
erV

alu
es

getParameter

getHeader

...

[]

S

~ {sanitizer1, sanitizer2, ...}

println

executeQuery

...

(a) (b)

Figure 3.2: State machines corresponding to the (a) source and (b) sink PQL queries.

It is important to point out that the transition on the sink edge lead-
ing to the accepting node is only allowed when no sanitizer calls are
encountered (sanitizers are denoted by sanitizer1, sanitizer2, etc.).
This is important since it is possible for derived∗ query to complete
without encountering a sanitizer. Once the derived∗ step finishes, a
sanitizer could be applied to the same object as the one passed into a
sink.

Query source. The source NFA shown in Figure 3.2(a) accepts on meth-
ods calls to source methods such as getParameter, etc. One complica-
tion is the treatment of return values of a call to getParameterValues.
It is required that the returned array be indexed, as represented by the
edge marked with “[]” for the state machine to accept. A similar tech-
nique is used to make values of a map returned from getParameterMap

tainted, except that several possibilities exist: method get needs to be
called on the map returned from the call; alternatively, an iterator could
be constructed over the map values by calling values().iterator() and
then method next() could be called on the iterator.

Queries sink and derived. Queries sink and derived consist of an alter-
nation of methods that correspond to sink and derivation descriptors,
respectively. Notice that the sink and derived NFAs in shown in
Figures 3.2(b) and 3.3(a) only accepts if no sanitizer is encountered.

Query derived∗. The NFA in Figure 3.3(b) is self-recursive and corre-
sponds to zero or more invocations of subquery derived. When the
temp node is reached, a new state machine is created to interpret the
recursive invocation of derived∗. Eventually, the top branch from the
start node will be taken, thus completing the subquery match.

35

S

*

ge
tPa

ram
et
erV

alu
es

getParameter

getHeader

...

[]

S

~ {sanitizer1, sanitizer2, ...}

println

executeQuery

...

S

~ {sanitizer1, sanitizer2, ...}

new String()

append

...

S

y=x

temp
derived(temp, x) derived*(y, temp)

(a) (b)

Figure 3.3: State machines corresponding to the (a) derived and (b) derived∗ PQL
queries.

3.3 Reducing Instrumentation Overhead

Instrumentation code is inserted only at those program points that might
generate an event of interest for the specific query. To reduce the number of
instrumentation points, a simple type analysis excludes operations on types
not related to objects in the query. However, this is often not enough. For
example, in the case of query derived, most String and StringBuffer

operations would have to be instrumented. Since there are many such method
calls, this results in a high overhead.

In order to reduce the overhead further, we use the results of our static
analysis, further described in Martin et al. [MLL05], to reduce the instru-
mentation by excluding statements that cannot refer to objects involved in
any match of the query. For queries capturing the tainted object problem, we
only need to instrument calls on a path from a source to a sink, which account
for a small portion of all string-related method calls. Also, as described in
Martin et al. , instead of collecting full execution traces and post-processing
them, our system tracks all the partial matches as the program executes and
takes action immediately upon recognizing a match.

While the overhead reduction achieved with static analysis is very signif-
icant, we believe that even greater improvements can be made with special-
purpose instrumentation that tracks the flow of taint in a way that is con-
ceptually similar to runtime tainting in Perl [WCS96]. While not as flexible
as our PQL-based approach, a lookup table kept on the side at runtime that
records the taint status of every String, StringBuffer, and StringBuilder

object would go a long way towards improving Web application security.
However, at the same time, this simple representation would make the no-

36

query main()
returns

object Object sourceObj, sinkObj;
matches {

sourceObj := source();
sinkObj := derived*(sourceObj);
sinkObj := sink();

}
replaces java.sql.PreparedStatement.prepareStatement(sink)

with SQL.SafePrepare(sourceObj, sinkObj);
replaces java.sql.Statement.executeQuery(sink)

with SQL.SafeExecute(sourceObj, sinkObj);
...

Figure 3.4: Augmented main query for recovering from exploits at runtime.

tion of a map, whose values are tainted hard to model.

3.4 Dynamic Recovery from Vulnerabilities

Figure 3.4 presents an augmented version of query main that has recovery
capabilities. As can be seen from the augmented query, each operation that
can unsafely use tainted data receives a replaces clause in the augmented
main query.

When a possibly relevant sink is reached, any matches that have com-
pleted and which are consistent with the event being replaced are gathered,
and if such matches are present, the replacing method is executed instead.
Since every argument to the replaces clause except sourceObj appears in
the replaced event, sourceObj is the only variable that may have multiple
values. The replacement method provides a safe alternative for each of the
sinks in the query. In general, the replacement method sanitizes tainted val-
ues. The kind of sanitization applied is different depending on the type of
vulnerability and also the method that is being replaced.

3.4.1 Built-in Sanitization

While it is generally up to the user to provide the proper sanitization routines,
in the case of SQL and HTML, PQL provides a library of simple and generic

37

sanitization functions that can be used if application-specific sanitizers are
unknown.

For example, sanitization methods SafePrepare and SafeExecute work
by finding all substrings within string sinkObj that match any of the possible
values for string sourceObj. A new SQL query string is constructed with all
SQL metacharacters in any such substring quoted. This new query is then
passed to prepareStatement or executeQuery, respectively.

Example 3.1. Consider a sourceObj that refers to string ′O′Brian′. Sup-
pose sinkObj refers to string

SELECT * FROM Users WHERE name = ’O’Brian’

The result of applying SafePrepare will be

SELECT * FROM Users WHERE name = ’O’’Brian’

which escapes the string within the quotation marks. In the MySQL dialect
of SQL, this escaping is achieved by doubling quotation marks. �

Using this relatively simple escaping technique we were able to defend
against two SQL injections in two of our benchmark programs, webgoat and
two more in road2hibernate for which we had derived effective attacks.

3.4.2 Shortcomings of Built-in Sanitizers

However, in general, this escaping mechanism is quite simplistic and may not
always result in the desirable output. For example, if sinkObj uses the upper-
case version of sourceObj, it will not be matched. Similarly, the hibernate

object persistence library performs heavy processing on user input, but fails
to actually quote the dangerous components of it verbatim. The following
input

bob’ or 1=1

will be converted by hibernate into

bob’ or ’1’=’1’

38

Because of this existing quoting mechanism, which actually does nothing
to protect against SQL injections, it was necessary to modify the query to
perform the substitution step at the interface between road2hibernate and
hibernate, an open-source object-persistence library, rather than between
the hibernate and the database itself.

This illustrates a more general point about applying sanitization: where
it needs to be placed is often open for discussion. While our approach of
applying it right before the sink works in most cases, it is not necessarily
most efficient. In many cases, the proper place to insert sanitization — both
in the code and at runtime — is between abstraction boundaries or before a
piece of data is places into a data structure, etc.

39

Chapter 4

Experimental Results

Our first test of the runtime system consisted of running exploits that we
created based on statically found vulnerabilities in SecuriBench applications.
Our exploits focused on SQL injection and cross-site scripting attacks, as
these are the easiest to mount and the results are most apparent. All of these
exploits were detected and thwarted when runtime recovery was enabled.

The dynamic checker for the SQL injection query will match whenever
a user controlled string flows in some way to a suspected sink, regardless of
whether a user input is harmful in a particular execution. It will then react
to replace the potentially dangerous string with a safe one. The PQL query
is implemented as five separate state machines, one for each query. The
effect of the instrumentation is to track all Strings that either are directly
user-controlled or that are derived from it, and to report a match if such a
user-controlled string falls unsafely into Java’s SQL interface.

Note that even if a given user input is harmless in a particular execution,
the data will still flow the same way, and thus will still be matched. The
query does no direct checking of the value that has been provided by the
user, so if harmless data is passed along a feasible injection vector, it will
still trigger a match to the query. As a result of this, drastic responses such as
aborting the application may not be suitable outside of a debugging context.
Implementing a second level of checking that actually considers the values
or just logging potentially malicious input as well as the injection paths may
be appropriate. The rest of this section focuses on performance overhead
incurred with different versions of our runtime instrumentation.

40

In
st

ru
m

e
n
ta

ti
o
n

p
o
in

ts
R

u
n
ti
m

e
O

v
e
rh

e
a
d

B
e
n
ch

m
a
rk

U
O

U
n
in

st
ru

m
e
n
te

d
U

O
U

O

w
e
b
g
o
a
t

60
4

69
.0

24
.0

54
.0

33
12

5%
37

%

p
e
r
s
o
n
a
l
b
l
o
g

3,
20

9
36

.0
40

.0
69

.0
49

72
%

22
%

r
o
a
d
2
h
i
b
e
r
n
a
t
e

4,
14

6
77

9
2.

22
4

2.
44

3
2.

36
2

9%
3%

s
n
i
p
s
n
a
p

3,
30

5
54

2
.0

73
.0

96
.0

80
31

%
9%

r
o
l
l
e
r

2,
96

0
96

.0
08

.0
12

.0
08

50
%

<
1%

F
ig

u
re

4.
1:

Su
m

m
ar

y
of

th
e

nu
m

be
r

of
in

st
ru

m
en

ta
ti

on
po

in
ts

,
ru

nn
in

g
ti

m
es

,
dy

na
m

ic
ov

er
he

ad
,

bo
th

w
it

h
an

d
w

it
ho

ut
op

ti
m

iz
at

io
ns

.
“U

”
an

d
“O

”
st

an
d

fo
r

un
op

ti
m

iz
ed

an
d

op
ti
m

iz
ed

ru
nt

im
e

in
st

ru
m

en
ta

ti
on

s,
re

sp
ec

ti
ve

ly
.

A
ll

ti
m

es
ar

e
gi

ve
n

in
se

co
nd

s.

41

0%

20%

40%

60%

80%

100%

120%

140%

webgoat personalblog road2hibernate snipsnap roller

O
ve

rh
ea

d
(%

)

Unoptimized Optimized

Figure 4.2: Runtime analysis overhead comparison.

4.1 Performance Summary

Figure 4.1 summarized the runtime analysis overhead. Results are presented
for both the unoptimized (“U”) and the optimized (“O”) runtime analysis
versions. Several SecuriBench applications are missing from the table, as we
were unable to install them for runtime analysis due to complex configuration
and database dependency issues. Columns 2 and 3 show the number of
instrumentation points that were inserted by the runtime instrumentation
described in Chapter 3.

42

Columns 4 — 6 summarize the running times measured in seconds. Mea-
suring Web application running times presents a number of unique challenges
not present in command-line applications. The times we report for the Web
applications reflect the average amount of time required to serve a single
page in response to a single HTTP request, as measured by the standard
profiling tool JMeter [Fou]. The only exception is road2hibernate, which
is a command-line program and its time is a simple start-to-finish timing.
Finally, columns 7 and 8 summarize the overhead with the unoptimized and
optimized versions of the analysis.

Overall, our performance numbers indicate that our approach on real
applications is quite efficient. Unoptimized dynamic overhead is generally
noticeable, but not crippling; after optimization it often becomes no longer
measurable, though may still be as high as 37% in heavily instrumented
code. Likewise, our static analysis times are in line with expectations for a
context-sensitive pointer analysis over tens of thousands of classes.

4.2 Importance of Static Optimization

Without static optimization, many program locations need to be instru-
mented. This is because routines that cause one String to be derived from
another are very common. Heavily processed user inputs that do not ever
reach the database would also be carefully tracked at runtime, introducing
significant overhead to the analysis.

Fortunately, the static optimizer effectively removes instrumentation on
calls to string processing routines that are provably not present on any path
from user input to database access. Exploiting static information dramati-
cally reduces both the number of instrumentation points and the overhead of
the system, as shown in Figure 4.1. Figure 4.2 presents a graphical summary
of runtime overhead results.

The reduction in the number of instrumentation points due to static op-
timization can be as high as 97% in roller and 99% in personalblog.
Reductions in the number of instrumentation points result in dramatically
smaller overheads. For instance, in webgoat, the overhead was cut almost in
half in the optimized version.

43

Chapter 5

Related Work

This section gives an overview of dynamic analysis techniques that address
memory safety vulnerabilities prevalent in C and C++ programs as well as
runtime techniques pertaining to Web application vulnerabilities.

5.1 Vulnerabilities in Type-Unsafe Lan-

guages

A range of compiler extensions discussed below has been used to protect
against memory-based attacks prevalent in C programs such as format string
violations and buffer overruns. A good overview of these techniques is given
in Kc et al. [KEKK02].

FormatGuard, a compiler modification, injects code to dynamically check
and reject all printf-like function calls where the number of arguments does
not match the number of “%” specifiers in the format string [CBB+01]. Of
course, only applications that are re-compiled using FormatGuard will benefit
from its protection. Also, one technical shortcoming of FormatGuard is that
it does not protect user-defined wrappers for the printf family of routines.
An unfortunate consequence of the design choices of FormatGuard is that
programs with format string vulnerabilities remain vulnerable to denial of
service attacks.

A wide range of approaches focuses on runtime buffer overrun protec-
tion. Products such as StackGuard [CPM+98], StackShielf [Ano02] and the
/GS switch implemented in the later version of the Microsoft Visual Studio
compilers [Cor05] all use similar techniques to provide protection against

44

stack smashing exploits. StackGuard works by placing a “canary” word
next to the return address on the stack. If the canary word has been al-
tered when the function returns, then a stack smashing attack has been
attempted while within the function. The StackGuard-protection program
responds by emitting an intruder alert and then halting the program. Un-
fortunately, while generally effective, this sort of stack protection can still be
circumvented with more sophisticated attack techniques such as spoofing the
canary, etc. [Ric02, BK00].

PointGuard focuses on heap-based buffer overrun exploits [CBJW03].
PointGuard-protected programs encrypts all pointers while they reside in
memory and decrypts them only before they are loaded to a CPU register.
Similarly to FormatGuard and StackGuard, PointGuard is implemented as
an extension to the GCC compiler, which injects the necessary instructions
at compilation time, allowing a pure-software implementation of the scheme.
The overhead incurred with PointGuard may, however, be prohibitively ex-
pensive [TCV04].

Kiriansky et al. propose program shepherding, a policy-driven mecha-
nism for closely monitoring and dynamically controlling the flow of program
execution [KBA02]. The advantage of program shepherding is that the orig-
inal program does not need to be recompiled. They define different default
and customizable security policies for code based on the nature of its origin,
whether it was loaded from the local file system, generated by the running
program itself, or if it self-mutated. Their system is integrated into an in-
terpreter, which enables the sandboxed checking of running applications and
monitoring of their control-flow. While the functionality of this approach is
attractive, the fact that it is interpreted makes for significant overhead.

5.2 Runtime Analysis for WebApp Security

Scott et al. present a structuring technique which helps designers abstract
security policies from large Web applications [SS02]. Their system consists of
a specialized Security Policy Description Language which is used to program
an application-level firewall. Security policies are written and compiled for
execution on the security gateway. The security gateway dynamically analy-
ses and transforms HTTP requests and responses to enforce the specialized
policy. To the best of our knowledge, this system has not been applied to
large Web applications.

45

5.2.1 Protection from SQL Injections

Several techniques focus on SQL injections exclusively. Buehrer et al. propose
a technique that is based on comparing, at execution time, the parse tree of
the SQL statement before inclusion of user input with that resulting after
the inclusion of user-provided input [BWS05]. SQLRand used SQL keyword
randomization in order to create SQL language keywords that are not easily
guessable by the attacker, thus foiling most SQL injection techniques that
involve adding extra SQL commands [BK04].

AMNESIA is a model-based approach that detects illegal queries before
they are executed on the database [HO05a, HO05b, HO06, HVO06]. In its
static part, the technique uses program analysis to automatically build a
model of the legitimate queries that could be generated by the application.
In its dynamic part, this technique uses runtime monitoring to inspect the
dynamically-generated queries and check them against the statically-built
model. Depending on the quality of the statically-derived model, their tech-
nique may suffer from both false positives and false negatives. Moreover, it
is unclear how their static analysis would scale to large programs, as it has
only been evaluated with relatively small benchmarks.

5.2.2 Dynamic Taint Propagation

Dynamic taint propagation described in Haldar et al. borrows much from our
runtime technique [HCF05]. In contrast to our technique, they use heuris-
tics similar to those use in the Perl taint mode [WCS96] to determine which
Strings need to be untained at runtime. I.e. matching against regular
expressions is assumed to be an untainting operation. However, unlike Se-
curiFly, their approach is unable to provide recovery from vulnerabilities.

Pietraszek et al. propose CSSE, a system that modifies the PHP inter-
preter to tag strings to distinguish those that are developer-supplied from
those that are provided as input. Since CSSE tracks where the different
segments of a string originate, it is able to provide user string escaping or
recovery in a manner similar to that of our runtime technique. Su et al. de-
scribe SqlCheck, a similar system for SQL injection detection that works
on both Java and PHP code [SW06]. SqlCheck has been shown effective
at preventing SQL injections in a range of medium-sized Web applications.

PHPrevent is a project that focuses on securing PHP applica-
tions [NTGG+05]. While similar in spirit to our runtime protection described

46

in Chapter 3, PHPrevent uses a modified PHP interpreter to precisely track
taint at runtime. Unlike our approach, however, the granularity of taint
tracking is greater: tainting is recorded and propagated at the level of indi-
vidual characters. Their approach to untainting is to escape parts of the input
contained in the output. However, their notion of white-listing the allowed
input is somewhat arbitrary and will not necessarily work for applications
such bulletin boards that require some of the HTML tags to pass through.
This is not unlike our notion of built-in sanitizers discussed in Sections 3.4.1
and 3.4.2.

5.3 PQL and Runtime Matching Formalisms

In addition to PQL, other formalisms have been developed to talk about
events that occur during program execution. We briefly summarize some of
that work here.

5.3.1 Aspect-Oriented Formalisms

PQL attaches user-specified actions to subquery matches; this capability puts
PQL in the class of aspect-oriented programming languages [KHH+01, OL01].
Maya [BH02] and AspectJ [KHH+01] attach actions based on syntactic prop-
erties of individual statements in the source code. The DJ system defines
aspects as traversals over a graph representing the program structure [OL01].

PQL system may be considered as an aspect-oriented system that de-
fines its aspects with respect to the dynamic history of sets of objects. An
extension of AspectJ to include “dataflow pointcuts” has been proposed to
represent a statement that receives a value from a specific source. PQL can
represent these with a two-statement query, and permits much more complex
concepts of data flow [MK03]. Walker and Veggers introduce the concept of
declarative event patterns, in which regular expressions of traditional point-
cuts are used to specify when advice should run [Wal00]. Allan et al. extend
this further by permitting PQL-like free variables in the patterns [AAC+05].
PQL differs from these systems in that its matching machinery can recognize
non-regular languages, and in exploiting advanced pointer analysis to prove
points irrelevant to eventual matches.

47

5.3.2 Other Program Query Languages

Systems like ASTLOG [Cre97] and JQuery [JdV03] permit patterns to be
matched against source code; Liu et al. [LRY+04] extend this concept to
include parametric pattern matching [Bak95]. These systems, however, gen-
erally check only for source-level patterns and cannot match against widely-
spaced events. A key contribution of PQL is a pattern matcher that combines
object-based parametric matching across widely-spaced events. Lencevicius
et al. developed an interactive debugger based on queries over the heap struc-
ture [LHS97]. This analysis approach is orthogonal both to the previous
systems named in this section as well as to PQL; however, like PQL, its
query language is explicitly designed to resemble code in the language being
debugged.

The Partiqle system [GOA05] uses a SQL-like syntax to extract individual
elements of an execution stream. It does not directly combine complex events
out of smaller ones, instead placing boolean constraints between primitive
events to select them as sets directly. Variables of primitive types are handled
easily by this paradigm, and nearly arbitrary constraints can be placed on
them easily, but strict ordering constraints require many clauses to express.

This reliance on individual predicates makes their language easy to ex-
tend with unusual primitives; in particular, the Partiqle system is capable
of trapping events characterized by the amount of absolute time that has
passed, a capability not present in the other systems discussed. However,
like most other systems, it can still only quantify over a finite number of
variables. PQL’s recursive subquery mechanism makes it possible to specify
arbitrarily long chains of data relations.

5.3.3 Analysis Generators

PQL follows in a tradition of powerful tools that take small specifications
and use them to automatically generate analyses. Metal [HCXE02] and
SLIC [BR02] both define state machines with respect to variables. These
machines are used to configure a static analysis that searches the program
for situations where error transitions can occur. Metal restricts itself to fi-
nite state machines, but has more flexible event definitions and can handle
pointers (albeit in an unsound manner).

The Rhodium language [LMRC05] uses definitions of dataflow facts com-
bined with temporal logic operators to permit the definition of analyses whose

48

correctness may be readily automatically verified. As such, its focus is signif-
icantly different from the other systems, as its intent is to make it easier to
directly implement correct compiler passes than to determine properties of or
find bugs in existing applications. Likewise, though it is primarily intended
as a vehicle for predefined analyses, Valgrind [NS03] also presents a general
technique for dynamic analyses on binaries.

49

Bibliography

[AAC+05] Chris Allan, Pavel Augustinov, Aske Simon Christensen, Lau-
rie Hendren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding trace matching with free variables to AspectJ. In Pro-
ceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 345 – 364, Octo-
ber 2005.

[AE02] Ken Ashcraft and Dawson Engler. Using programmer-written
compiler extensions to catch security holes. In Proceedings of
the Symposium on Security and Privacy, May 2002.

[Anl02a] Chris Anley. Advanced SQL injection in SQL Server appli-
cations. http://www.nextgenss.com/papers/advanced sql

injection.pdf, 2002.

[Anl02b] Chris Anley. (more) advanced SQL injection. http://www.

nextgenss.com/papers/more advanced sql injection.pdf,
2002.

[Ano02] Anonymous. StackShield. http://www.angelfire.com/sk/

stackshield, 2002.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

[Bak95] Brenda S. Baker. Parameterized pattern matching by Boyer-
Moore type algorithms. In Proceedings of the Symposium on
Discrete Algorithms, pages 541–550, January 1995.

50

http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
http://www.angelfire.com/sk/stackshield
http://www.angelfire.com/sk/stackshield

[Bar03] Darrin Barrall. Automated cookie analysis. http://www.

spidynamics.com/support/whitepapers/SPIcookies.pdf,
2003.

[BH02] Jason Baker and Wilson Hsieh. Runtime aspect weaving
through metaprogramming. In Proceedings of the International
Conference on Aspect-Oriented Software Development, pages 86
– 95, March 2002.

[BK00] Bulba and Kil3r. Bypassing StackGuard and StackShield.
Phrack Magazine, 0xa(0x38), May 2000.

[BK04] Stephen Boyd and Angelos D. Keromytis. SQLrand: preventing
SQL injection attacks. In Proceedings of the Applied Cryptog-
raphy and Network Security Conference, pages 292–304, June
2004.

[BR02] Thomas Ball and Sriram Rajamani. SLIC: a specification lan-
guage for interface checking (of C). Technical Report MSR-TR-
2001-21, Microsoft Research, January 2002.

[BWS05] Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti.
Using parse tree validation to prevent SQL injection attacks. In
Proceedings of the International Workshop on Software Engi-
neering and Middleware, pages 106–113, September 2005.

[CBB+01] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-
Hartman, Mike Frantzen, and Jamie Lokier. FormatGuard: au-
tomatic protection from printf format string vulnerabilities. In
Proceedings of the Usenix Security Symposium, pages 191–200,
August 2001.

[CBJW03] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wa-
gle. PointGuardTM: protecting pointers from buffer overflow
vulnerabilities. In Proceedings of the Usenix Security Sympo-
sium, August 2003.

[CGI] CGI Security. The cross-site scripting FAQ. http://www.

cgisecurity.net/articles/xss-faq.shtml.

51

http://www.spidynamics.com/support/whitepapers/SPIcookies.pdf
http://www.spidynamics.com/support/whitepapers/SPIcookies.pdf
http://www.cgisecurity.net/articles/xss-faq.shtml
http://www.cgisecurity.net/articles/xss-faq.shtml

[Chi04] Chinotec Technologies. Paros—a tool for Web application se-
curity assessment. http://www.parosproxy.org, 2004.

[Coo03] Steven Cook. A Web developers guide to cross-site script-
ing. http://www.giac.org/practical/GSEC/Steve Cook

GSEC.pdf, 2003.

[Cor05] Microsoft Corporation. Microsoft minimizes threat of
buffer overruns, builds trustworthy applications. http:

//download.microsoft.com/documents/customerevidence/

12374 Microsoft GS Switch CS final.doc, 2005.

[CPM+98] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian
Zhang, and Heather Hinton. StackGuard: automatic adaptive
detection and prevention of buffer-overflow attacks. In Proceed-
ings of the Usenix Security Conference, pages 63–78, January
1998.

[Cre97] Roger F. Crew. ASTLOG: a language for examining abstract
syntax trees. In Proceedings of the Usenix Conference on
Domain-Specific Languages, pages 229–242, 1997 1997.

[ea] Bill Burke et. al. JBoss AOP. http://labs.jboss.com/

portal/jbossaop/index.html.

[Fou] Apache Foundation. Apache JMeter. http://jakarta.

apache.org/jmeter/.

[Fri04] Steve Friedl. SQL injection attacks by example. http://www.

unixwiz.net/techtips/sql-injection.html, 2004.

[GOA05] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Rela-
tional queries over program traces. In Proceedings of the Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 385–402, October 2005.

[HCF05] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic
taint propagation for Java. In Proceedings of the 21st Annual
Computer Security Applications Conference, pages 303–311, De-
cember 2005.

52

http://www.parosproxy.org
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC.pdf
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC.pdf
http://download.microsoft.com/documents/customerevidence/12374_Microsoft_GS_Switch_CS_final.doc
http://download.microsoft.com/documents/customerevidence/12374_Microsoft_GS_Switch_CS_final.doc
http://download.microsoft.com/documents/customerevidence/12374_Microsoft_GS_Switch_CS_final.doc
http://labs.jboss.com/portal/jbossaop/index.html
http://labs.jboss.com/portal/jbossaop/index.html
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://www.unixwiz.net/techtips/sql-injection.html
http://www.unixwiz.net/techtips/sql-injection.html

[HCXE02] Seth Hallem, Ben Chelf, Yichen Xie, and Dawson Engler. A
system and language for building system-specific, static analy-
ses. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 69–82, June 2002.

[HO05a] William G. J. Halfond and Alessandro Orso. AMNESIA: an-
alysis and Monitoring for NEutralizing SQL-Injection Attacks.
In Proceedings of the International Conference on Automated
Software Engineering, pages 174–183, November 2005.

[HO05b] William G. J. Halfond and Alessandro Orso. Combining Sta-
tic Analysis and Runtime Monitoring to Counter SQL-Injection
Attacks. In Proceedings of the International ICSE Workshop on
Dynamic Analysis, pages 22–28, May 2005.

[HO06] William G. J. Halfond and Alessandro Orso. Preventing SQL
Injection Attacks Using AMNESIA. In Proceedings of the In-
ternational Conference on Software Engineering (formal demo
track), May 2006.

[Hu04] Deyu Hu. Preventing cross-site scripting vulnerability. http:

//www.giac.org/practical/GSEC/Deyu Hu GSEC.pdf, 2004.

[HVO06] William G. J. Halfond, Jeremy Viegas, and Alessandro Orso. A
classification of SQL-injection attacks and countermeasures. In
Proceedings of the International Symposium on Secure Software
Engineering, March 2006.

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai,
Der-Tsai Lee, and Sy-Yen Kuo. Securing Web application code
by static analysis and runtime protection. In Proceedings of the
Conference on World Wide Web, pages 40–52, May 2004.

[JdV03] Doug Janzen and Kris de Volder. Navigating and querying
code without getting lost. In Proceedings of the Conference on
Aspect-Oriented Software Development, pages 178–187, March
2003.

[KA05] John Kodumal and Alex Aiken. Banshee: a scalable constraint-
based analysis toolkit. In Proceedings of the International Static
Analysis Symposium, September 2005.

53

http://www.giac.org/practical/GSEC/Deyu_Hu_GSEC.pdf
http://www.giac.org/practical/GSEC/Deyu_Hu_GSEC.pdf

[KBA02] Vladimir Kiriansky, Derek Bruening, and Saman P. Amaras-
inghe. Secure execution via program shepherding. In Proceed-
ings of the Usenix Security Symposium, pages 191–206, August
2002.

[KEKK02] Gaurav S. Kc, Stephen A. Edwards, Gail E. Kaiser, and Angelos
Keromytis. CASPER: compiler-assisted securing of programs at
runtime. Technical Report CUCS-025-02, Columbia University,
2002.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G. Griswold. An overview of AspectJ.
Lecture Notes in Computer Science, 2072:327–355, 2001.

[Kle02a] Amit Klein. Cross site scripting explained. http://crypto.

stanford.edu/cs155/CSS.pdf, June 2002.

[Kle02b] Amit Klein. Hacking Web applications using cookie
poisoning. http://www.cgisecurity.com/lib/

CookiePoisoningByline.pdf, 2002.

[Kle04] Amit Klein. Divide and conquer: HTTP response split-
ting, Web cache poisoning attacks, and related topics.
http://www.packetstormsecurity.org/papers/general/

whitepaper httpresponse.pdf, 2004.

[Kos04] Stephen Kost. An introduction to SQL injection attacks
for Oracle developers. http://www.net-security.org/dl/

articles/IntegrigyIntrotoSQLInjectionAttacks.pdf,
2004.

[Kra05] Michael Krax. Mozilla foundation security advisory
2005-38. http://www.mozilla.org/security/announce/

mfsa2005-38.html, 2005.

[LHS97] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh.
Query-based debugging of object-oriented programs. In Pro-
ceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 304–317, October
1997.

54

http://crypto.stanford.edu/cs155/CSS.pdf
http://crypto.stanford.edu/cs155/CSS.pdf
http://www.cgisecurity.com/lib/CookiePoisoningByline.pdf
http://www.cgisecurity.com/lib/CookiePoisoningByline.pdf
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf
http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
http://www.mozilla.org/security/announce/mfsa2005-38.html
http://www.mozilla.org/security/announce/mfsa2005-38.html

[Lit03a] David Litchfield. Oracle multiple PL/SQL injection vulnerabil-
ities. http://www.securityfocus.com/archive/1/385333/

2004-12-20/2004-12-26/0, 2003.

[Lit03b] David Litchfield. SQL Server Security. McGraw-Hill Osborne
Media, 2003.

[LMRC05] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers.
Automated soundness proofs for dataflow analyses and trans-
formations via local rules. In Proceedings of the Symposium on
Principles of Programming Languages, pages 364–377, January
2005.

[LRY+04] Yanhong A. Liu, Tom Rothamel, Fuxiang Yu, Scott D. Stoller,
and Nanjun Hu. Parametric regular path queries. In Proceed-
ings of the Conference on Programming Language Design and
Implementation, pages 219–230, June 2004.

[MK03] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut
in aspect-oriented programming. In Proceedings of the Asian
Symposium on Programming Languages and Systems, pages
105–121, November 2003.

[MLL05] Michael Martin, Benjamin Livshits, and Monica S. Lam. Find-
ing application errors using PQL: a program query language.
In Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, October 2005.

[Net04a] NetContinuum, Inc. The 21 primary classes of Web application
threats. https://www.netcontinuum.com/securityCentral/

TopThreatTypes/index.cfm, 2004.

[Net04b] Netcontinuum, Inc. Web application firewall: how Net-
Continuum stops the 21 classes of Web application threats.
http://www.netcontinuum.com/products/whitePapers/

getPDF.cfm?n=NC WhitePaper WebFirewall.pdf, 2004.

[NS03] Nicholas Nethercote and Julian Seward. Valgrind: a program
supervision framework. Electronic Notes in Theoretical Com-
puter Science, 89, 2003.

55

http://www.securityfocus.com/archive/1/385333/2004-12-20/2004-12-26/0
http://www.securityfocus.com/archive/1/385333/2004-12-20/2004-12-26/0
https://www.netcontinuum.com/securityCentral/TopThreatTypes/index.cfm
https://www.netcontinuum.com/securityCentral/TopThreatTypes/index.cfm
http://www.netcontinuum.com/products/whitePapers/getPDF.cfm?n=NC_WhitePaper_WebFirewall.pdf
http://www.netcontinuum.com/products/whitePapers/getPDF.cfm?n=NC_WhitePaper_WebFirewall.pdf

[NTGG+05] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff
Shirley, and David Evans. Automatically hardening Web ap-
plications using precise tainting. In Proceedings of the IFIP
International Information Security Conference, June 2005.

[OL01] Doug Orleans and Karl Lieberherr. DJ: dynamic adaptive pro-
gramming in Java. In Proceedings of Meta-level Architectures
and Separation of Crosscutting Concerns, Kyoto, Japan, Sep-
tember 2001. Springer Verlag. 8 pages.

[Oll04] Gunter Ollmann. Second-order code injection attacks. http:

//www.nextgenss.com/papers/SecondOrderCodeInjection.

pdf, 2004.

[Ope04] Open Web Application Security Project. The ten
most critical Web application security vulnerabilities.
http://umn.dl.sourceforge.net/sourceforge/owasp/

OWASPTopTen2004.pdf, 2004.

[Ope05] Open Web Application Security Project. A guide to building
secure Web applications. http://easynews.dl.sourceforge.
net/sourceforge/owasp/OWASPGuide2.0.1.pdf, 2005.

[Ric02] Gerardo Richarte. Bypassing the StackShield and Stack-
Guard protection. http://www.coresecurity.com/files/

files/11/StackguardPaper.pdf, April 2002.

[Spe02a] Kevin Spett. Cross-site scripting: are your Web appli-
cations vulnerable. http://www.spidynamics.com/support/

whitepapers/SPIcross-sitescripting.pdf, 2002.

[Spe02b] Kevin Spett. SQL injection: are your Web applications vul-
nerable? http://downloads.securityfocus.com/library/

SQLInjectionWhitePaper.pdf, 2002.

[SS02] David Scott and Richard Sharp. Abstracting application-level
Web security. In Proceedings of International World Wide Web
Conference, May 2002.

[SS04] Moran Surf and Amichai Shulman. How safe is it out there?
http://www.imperva.com/download.asp?id=23, 2004.

56

http://www.nextgenss.com/papers/SecondOrderCodeInjection.pdf
http://www.nextgenss.com/papers/SecondOrderCodeInjection.pdf
http://www.nextgenss.com/papers/SecondOrderCodeInjection.pdf
http://umn.dl.sourceforge.net/sourceforge/owasp/OWASPTopTen2004.pdf
http://umn.dl.sourceforge.net/sourceforge/owasp/OWASPTopTen2004.pdf
http://easynews.dl.sourceforge.net/sourceforge/owasp/OWASPGuide2.0.1.pdf
http://easynews.dl.sourceforge.net/sourceforge/owasp/OWASPGuide2.0.1.pdf
http://www.coresecurity.com/files/files/11/StackguardPaper.pdf
http://www.coresecurity.com/files/files/11/StackguardPaper.pdf
http://www.spidynamics.com/support/whitepapers/SPIcross-sitescripting.pdf
http://www.spidynamics.com/support/whitepapers/SPIcross-sitescripting.pdf
http://downloads.securityfocus.com/library/SQLInjectionWhitePaper.pdf
http://downloads.securityfocus.com/library/SQLInjectionWhitePaper.pdf
http://www.imperva.com/download.asp?id=23

[SW06] Zhendong Su and Gary Wassermann. The essence of command
injection attacks in Web applications. ACM SIGPLAN Notes,
41(1):372–382, 2006.

[TCV04] Nathan Tuck, Brad Calder, and George Varghese. Hardware
and binary modification support for code pointer protection
from buffer overflow. In Proceedings of the International Sym-
posium on Microarchitecture, December 2004.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S.
Lam. Using Datalog and binary decision diagrams for program
analysis. In Proceedings of the Asian Symposium on Program-
ming Languages and Systems, November 2005.

[Wag05] Stefan Wagner. Towards software quality economics for defect-
detection techniques. In Proceedings of the Annual IEEE/NASA
Software Engineering Workshop, April 2005.

[Wal00] David Walker. A type system for expressive security policies.
In Proceedings of the Symposium on Principles of Programming
Languages, pages 254–267, January 2000.

[WCS96] Larry Wall, Tom Christiansen, and Randal Schwartz. Program-
ming Perl. O’Reilly and Associates, Sebastopol, CA, 1996.

[WFBA00] David Wagner, Jeff Foster, Eric Brewer, and Alex Aiken. A
first step towards automated detection of buffer overrun vul-
nerabilities. In Proceedings of Network and Distributed Systems
Security Symposium, pages 3–17, February 2000.

[XA06] Yichen Xie and Alex Aiken. Static detection of security vul-
nerabilities in scripting languages. In Proceedings of the Usenix
Security Symposium, pages 271–286, August 2006.

57

	Introduction
	Overview of Web Application Vulnerabilities
	SQL Injection Example
	Injecting Malicious Data
	Exploiting Unchecked Input

	Advantages of the Runtime Approach
	Report Organization

	Overview
	Framework Overview
	Tainted Object Propagation Problem
	Derivation and Sanitization Descriptors
	Security Violations
	Specifications Completeness

	Specifying Vulnerabilities in PQL
	Simple SQL Injection Query
	Queries for a Taint Propagation Problem

	Runtime Analysis in SecuriFly
	Matching PQL Queries at Runtime
	Translation From Queries To State Machines
	Instrumenting the Program
	The Runtime Query Matcher

	Translating Vulnerability Queries
	Reducing Instrumentation Overhead
	Dynamic Recovery from Vulnerabilities
	Built-in Sanitization
	Shortcomings of Built-in Sanitizers

	Experimental Results
	Performance Summary
	Importance of Static Optimization

	Related Work
	Vulnerabilities in Type-Unsafe Languages
	Runtime Analysis for WebApp Security
	Protection from SQL Injections
	Dynamic Taint Propagation

	PQL and Runtime Matching Formalisms
	Aspect-Oriented Formalisms
	Other Program Query Languages
	Analysis Generators

