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Abstract
Over the last 10–15 years, our industry has developed and deployed
many large-scale Internet services, from e-commerce to social net-
working sites, all facing common challenges in latency, reliability,
and scalability. Over time, a relatively small number of architec-
tural patterns have emerged to address these challenges, such as
tiering, caching, partitioning, and pre- or post-processing compute-
intensive tasks. Unfortunately, following these patterns requires de-
velopers to have a deep understanding of the trade-offs involved in
these patterns as well as an end-to-end understanding of their own
system and its expected workloads. The result is that non-expert
developers have a hard time applying these patterns in their code,
leading to low-performing, highly suboptimal applications.

In this paper, we propose FLUXO, a system that separates an
Internet service’s logical functionality from the architectural de-
cisions made to support performance, scalability, and reliability.
FLUXO achieves this separation through the use of a restricted pro-
gramming language designed 1) to limit a developer’s ability to
write programs that are incompatible with widely used Internet ser-
vice architectural patterns; and 2) to simplify the analysis needed to
identify how architectural patterns should be applied to programs.
Because architectural patterns are often highly dependent on appli-
cation performance, workloads and data distributions, our platform
captures such data as a runtime profile of the application and makes
it available for use when determining how to apply architectural
patterns. This separation makes service development accessible to
non-experts by allowing them to focus on application features and
leaving complicated architectural optimizations to experts writing
application-agnostic, profile-guided optimization tools.

To evaluate FLUXO, we show how a variety of architectural pat-
terns can be expressed as transformations applied to FLUXO pro-
grams. Even simple heuristics for automatically applying these op-
timizations can show reductions in latency ranging from 20-90%
without requiring special effort from the application developer. We
also demonstrate how a simple shared-nothing tiering and replica-
tion pattern is able to scale our test suite, a web-based IM, email,
and addressbook application.
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1. INTRODUCTION
As an industry, we have over a decade of experience build-

ing large-scale Internet services, from e-commerce to social net-
working sites, all facing common challenges in latency, reliabil-
ity, and scalability. Surveying published descriptions of these ser-
vices, we find that while there are still challenges, many patterns
have emerged as best practices for architecting well-performing
and scalable Internet services. Such practices include tiering, par-
titioning, and replication for improving reliability and scalability;
and caching, pre- and post-processing for reducing the latency of
serving requests. Unfortunately, these best practices require devel-
opers to have a deep, end-to-end understanding of their own ap-
plication, its workloads, performance characteristics and the trade-
offs involved in different architectural patterns. The result is that
many non-expert developers do not take advantage of these patterns
and build poor-performing services or none at all.

We believe that these architectural patterns represent concerns
that are orthogonal to core application functionality. Our goal is to
separate them and introduce them into the program automatically
in the same way that an optimizing compiler might improve code
efficiency or introduce array bounds checking. This way, the de-
veloper is free to focus on the application-level functionality while
allowing the compiler to take care of the rest. The challenge is that
the use of these architectural patterns is closely tied to application
characteristics and workloads. Our insight is that almost all of the
factors that inform architectural design decisions are measurable,
and that with a few simple restrictions to the programming model,
developers can be prevented from writing programs incompatible
with common distributed systems architectural patterns.

This paper presents FLUXO, a system that enables exactly this
separation of core application functionality from the architectural
patterns that help achieve performance, scalability, and reliability.
FLUXO primarily targets non-expert developers, allowing them to
focus on application functionality with FLUXO taking care of the
rest. In other words, we are trying to broaden the developer base
rather than replace the expert architect. In FLUXO, we use a re-
stricted programming model that simplifies automatic analysis and
application of architectural patterns; a data-flow based intermediate



representation for applying compiler optimizations; and an execu-
tion runtime engine that collects detailed measurements that are fed
back to an FLUXO compiler to enable profile-guided optimizations.

As an initial demonstrate of the benefits of FLUXO, we have de-
veloped a set of four optimizations, primarily focusing on service
latency and scalability. We have applied these optimizations to two
sets of benchmarks: a selection of third-party Yahoo! Pipes pro-
grams and a set of four FLUXO representative services we have
developed in a language we call FLIMP to closely mimic the func-
tionality of large-scale email, address book, and instant messen-
ger services. Our experiments show reductions in latency typically
ranging from 20–93%. FLUXO’s application of one simple tiering
and replication pattern is able to scale our test suite of applications
linearly in our experiments.

Contributions. This paper makes the following contributions:

• We propose FLUXO, an optimizing compiler and a runtime
for developing large-scale interactive Internet services. To
aid with FLUXO service development, we propose a new
language called FLIMP that enforces the necessary restricted
programming model.
• We propose a set of four performance optimizations focus-

ing on improving overall service latency and scalability. We
show how these optimizations can be applied to FLUXO pro-
grams automatically.
• Using FLIMP, we develop four services that mirror large-

scale real-life instant messaging, email, address book, and
authentication back-end services, and evaluate the efficacy
of our optimizations on these applications. In addition to
these services, we also use several hundred third-party Ya-
hoo! Pipes programs for evaluating our optimizations.
• Through our experiments, we demonstrate that separation of

functionality and architectural concerns can be achieved with
the help of a profile-driven service compiler. We also show
the effectiveness of even simple automated optimizations in
practice by describing the results of applying four optimiza-
tions in FLUXO.

The rest of the paper is organized as follows. Section 2 provides
background on building large-scale Internet services. Section 3
provides an overview of FLUXO. Section 4 gives a brief FLIMP
tutorial, while Section 5 goes into the technical details of our opti-
mizations. Section 6 summarizes our experimental results. Finally,
Section 7 describes related work, and Section 8 concludes.

2. BUILDING INTERNET SERVICES
Our motivation for FLUXO came first from an internal survey we

conducted of large-scale services at Microsoft. While the prove-
nance of these systems varies greatly — having been built by differ-
ent groups within Microsoft over more than a decade, or even being
brought into Microsoft via acquisitions — we have found that all
of these systems re-used a small number of architectural patterns.
This same observation holds true of publicly available reports of
other services’ architectures [6, 18, 32, 37].

Hamilton [17] and Henderson [19, 20] provide a catalogue of
some common patterns. For example, almost all services use some
kind of replication and data partitioning to achieve higher reliabil-
ity and scale; caching to reduce the latency caused by performance
bottlenecks; and pre- and post-processing to remove computational
overhead from the critical path of serving requests. Other common
patterns include tiering, data denormalization, retries, and others.

While common, these techniques are not simply reused “cookie-
cutter,” but must be specialized to suit a specific service’s require-
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Figure 1: FLUXO architectural diagram.

ments and workloads. Understanding the interactions among sys-
tem components, workloads, and semantic requirements, however,
is non-trivial. For instance, it has been shown before that manually
maintaining near-optimal caching policies with dynamic changes
in the input workload distribution is simply not feasible [33].

Practical experience with large-scale Internet services presents a
number of interesting lessons. The architecture used by Flickr has
been described quite extensively [18, 19, 32]. In the case of Flickr,
as the server was expanding to support more users, the architec-
ture was redesigned several times to support the growing user pool,
with server tiering and data normalization being introduced over
time. In the case of LinkedIn [6], the service went through at least
four significant architectural revisions over a period of three years.
Over time, optimizations such as partial data partitioning, post-
computation, and asynchrony were introduced. Similarly, MyS-
pace [37] has altered tiering and caching aspects of their architec-
ture. Needless to say, every single one of these changes was a time-
and resource-consuming undertaking.

While there are a number of frameworks for easing the building
of large-scale interactive services, they are, to our knowledge, fo-
cused primarily on reuse of infrastructure rather than separating
application-level functionality from architectural decisions. For
example, while Java EE (formerly J2EE) provides core caching,
tiering, and partitioning functionality, developers must still manu-
ally decide what and how to cache, tier and partition in their sys-
tem. These choices are scattered throughout the application-level
code [39], making the code hard to understand, maintain, and re-
deploy. Platform computing services such as Amazon’s EC2 and
Azure provide elastic compute environments but do not aid or en-
force scalability and performance best practices [5, 29]. Google’s
App Engine provides a scalable platform for a narrow class of ser-
vices [14]. SEDA uses a staged event driven architecture to sep-
arate application event processing from controllers that handle re-
source allocation decisions [43]. Dryad and MapReduce achieve
many of our goals of separating application-level from scalability
and reliability concerns but are scoped to off-line and batch com-
putations instead of interactive services [13, 21].

The lessons learned from the large-scale services described
above show that a great deal of complexity is involved in building
competitive Internet services. As a result, building such a service
is currently outside the reach of non-expert developers. While we
may expect that the largest services will always be built by experts,
even small-scale services are challenged to achieve low-latency and
high-availability. The goal of FLUXO is to enable non-expert devel-
opers to build such services that have performance and reliability
characteristics approaching those of expert-designed services.

3. OVERVIEW OF FLUXO
The main goal of FLUXO is to give the programmer the illusion

of writing straight line code for handling a Web request and allow



the system to handle the complexities arising from the requirements
of scalability, high performance, and reliability. The main logic of
handling the request is initially written in FLIMP and converted to
a dataflow representation internally. FLUXO then performs a series
of program transformations that analyze and restructure the input
program, resulting finally in a program that can be deployed on a
cluster of physical machines in a data center.

Akin to a regular compiler, we envision that FLUXO contains
both platform-independent transformations that optimize the in-
put program and platform-specific transformations that map the
program components to available physical resources. In general,
FLUXO optimizations are profile-guided [16]: the FLUXO runtime
automatically instruments the program to collect runtime informa-
tion, such as workload distributions and performance profiles that
can be analyzed to direct future program optimizations. These
profile-guided transformations may be done off-line, periodically,
or continuously, depending on the nature of the transformation. To
allow FLUXO to reason about semantic correctness, FLUXO relies
on the developer to provide semantic annotations that describe at-
tributes such as consistency requirements and side-effects. Note
that a deliberate part of our design is to keep the annotation burden
relatively light. Section 4.3 addresses state annotations.

3.1 Dataflow in Fluxo
A commonly-cited benefit of dataflow programming is the abil-

ity to extract parallelism from dataflow graphs [23, 31]. This is in
part because both control and data dependencies are represented in
dataflow explicitly, whereas in most general-purpose languages de-
pendency analysis represents a significant stumbling block on the
path to automatic parallelization [12]. In a language with pointers
or references such as C, C#, or Java, the possibility of aliasing com-
plicates the problem even further as dependencies between program
variables become harder to extract automatically.

In FLUXO, we largely treat a dataflow representation as a conve-
nient intermediate representation (IR) that simplifies the refactor-
ing and optimization of progams. The majority of experiments in
this paper are on FLUXO programs implemented in FLIMP, an im-
perative language that compiles down to this intermediate dataflow
representation. As described in Section 4, we restrict FLIMP to pre-
serve many of the benefits of dataflow programs for the analysis of
control and data dependencies.

Yahoo! pipes [45] and the now defunct Popfly [30] are two ex-
amples of dataflow programming being used for the development
of Internet services. To support experimentation with a broader
base of programs, we have implemented a front end to FLUXO that
reads Yahoo! pipes programs and translates them into our inter-
mediate dataflow representation. As a result, we have been able to
successfully apply the same set of optimizations to Yahoo! pipes
programs in addition to our own FLIMP programs.

3.2 Restricted Programming Model
A FLUXO dataflow program contains nodes, which perform

computation, and edges, which represent the flow of data. Exe-
cution begins with a trigger such as a Web request or a timer. The
dataflow program specifies input availability requirements of each
of its nodes. Nodes wait until all of their inputs are available and
then perform the computation, thereby generating outputs on their
outgoing edges. Some nodes are marked as output nodes, meaning
that their data is sent back to the browser through a Web interface.

Logically, the execution model provided by the FLUXO runtime
is turn-based concurrency. At runtime, FLUXO maintains an deliv-
ery queue of inputs to be delivered to nodes. At every logical turn,
an input is picked off the queue and delivered to a node. If all re-

quired inputs have been delivered to the node then the logic of the
node is executed and one or more outputs is produced. These out-
puts are then placed on the delivery queue. For the experiments in
this paper, our implementation uses a single global delivery queue
per machine and multiple execution threads. When dequeueing in-
puts, the front of the queue is scanned to group together and deliver
inputs destined to the same node. While not reported in this paper,
we have recently begun tests with SEDA-style stages and resource
controllers for delivering inputs and executing node logic [43].

In a FLUXO input program, every request logically executes in-
dependently. The only way for a program to exchange data across
requests is by explicitly using a soft state or hard state store. How-
ever, FLUXO is free to break request isolation as long as the ser-
vice’s semantics requirements are satisfied. In fact, many of our
program transformations target cross-request optimizations such as
shared caches and batching of common computations.

Existing dataflow-based development frameworks such as Ya-
hoo! Pipes [45] have demonstrated that a wide-variety of services
can be built using a small number of standard components. To sim-
plify the development of FLUXO programs, we provide libraries
of reusable components for common tasks such as accessing Web
services and utilities for manipulating data. Developers are free to
create new libraries of FLUXO components, for example, to reuse
code from existing applications, although FLUXO provides only
inter-component optimizations.

3.3 State Semantics
For purposes of optimization, it is crucial to be able to reason

about state manipulation. Indeed, for instance, we can only reorder
two state writes if they are guaranteed not to create a write-write
conflict. The manipulation is made fully explicit in FLUXO by first
requiring a declaration of all state shared between requests, includ-
ing the kind of storage service being used (e.g., soft or persistent
storage) and the type of the shared data. State reads are expessed
as LINQ queries, enabling programmatic analysis of the query ex-
pression. State writes use a similarly analyzable API.

To ensure idempotency of our state operation primitives—
namely insert, delete and update—we require that entities must be
uniquely identified. While we do not explicitly enforce it in our
programming model, we also strongly recommend that FLIMP pro-
grams carefully design their data schemas to enable the logic that
controls their state updates to also be idempotent. For example,
consider a simple FLIMP program intended to increment a counter.
If we read the current counter value, increment it in memory, and
then update the counter in the sate service, we will have created
a dataflow program where each individual element is idempotent,
but the whole is not. We would recommend that either the pro-
gram includes as part of its input a specific version of the counter
to read; or the data schema is designed as a log-formatted / append
only schema (e.g., updating the counter means writing an “add one”
command and each write includes the unique ID of the request gen-
erating the write (multiple writes may now occur, but they can be
unambiguously merged together later ). In either case, the program
with respects to own inputs has become idempotent.

3.4 Runtime Metric Collection
The goal of FLUXO is to separate application functionality from

architectural patterns and design decisions, but effective implemen-
tation of these patterns is dependent on knowledge of application-
level factors such as component performance, workload, and data
distributions. To help make accurate architectural design decisions
while preserving this separation, FLUXO’s runtime collects an ex-
tensive set of metrics on both nodes and individual requests: (1)



performance latency for each component per turn; (2) size of data
flowing across each edge; (3) memory requirements; (4) length of
the delivery queue; (5) hash values of the key attributes of data.

These metrics help profile-driven optimization in FLUXO ana-
lyze the dataflow program and focus optimizations on performance
bottlenecks and sources of unusual latency deviations, as well as
calculate expected resource usage of changes to the dataflow pro-
gram. Metrics of data sizes and the frequency of message passing
along an edge help determine the cost of distributing a program
across multiple machines. Collecting hashes of data keys as they
flow through the system allows calculation of expected cache hit
rates and to estimate the quality of data partitioning schemes.

It is worth noting that in most cases analyses based on runtime
profiles will only provide estimates of the effects of different archi-
tectural patterns. Thus, we envision a bootstrapping cycle of metric
collection and optimization with test and real workloads, followed
by periodic re-optimizations to keep up with new application fea-
tures and changes in workloads. While the process of re-deploying
an application with a different set of optimizations is necessary, it
is a problem outside the scope of this paper.

3.5 Analysis Stage
The analysis stage in FLUXO is responsible for determining how

to apply specific architectural optimizations to a program. The data
collected by the FLUXO runtime can enable different types of anal-
ysis techniques for subsequent optimizations. Depending on the
precision requirements of the optimization and the time available
to run the analysis, one can pick from several strategies:

Heuristics: Heuristics in FLUXO are attempts to capture and
generalize the rules of thumb that Internet service architects use
today. These include splitting Internet services into three-tiers,
separating persistent state from application logic, load balancing,
adding caches to performance bottlenecks, data partitioning per
user, etc. [17]. Heuristics are often the simplest to implement
and evaluate, without necessarily providing the best outcome. One
simple technique for mitigating the worst inaccuracies in heuristic-
based analyses is deploy selected optimizations and then back off if
they prove detrimental. For an example of a heuristic optimization,
see Section 5.2.3 describing a post-computation optimization.

Queuing Models: A FLUXO dataflow graph is amenable to a
queuing model analysis, which provides an approximate represen-
tation of the performance of a queuing system. The input to such a
model consists of throughput and latency statistics for components
as well as queue length information. This is all directly captured
by our metric collection machinery. We can capture the primary
performance effects of changes made to the dataflow graph.

Primary effects would include not running particular compo-
nents because of a cache, but would often not capture changes be-
cause of a different workload mix and other application-specific
behaviors. In practice, queuing models often provide accuracies
within 10% for throughput estimates and 30% for latency esti-
mates [26, 38].

Simulation: The FLUXO runtime includes a service simulator
that can replay modified traces of an application. This feature can
be used to evaluate a given optimization to determine its utility [1].
This is because in many cases, analytic models do not provide suffi-
cient precision. For instance, in simulating a caching optimization,
we are ultimately interested in the service’s end-to-end latency [33].

To simulate a cache hit during a given session, the simulator tem-
porarily adjusts the event stream for that session. Events that would
not have occurred because of the cache hit are removed from con-
sideration, and the times on all other events are adjusted to simulate
the time savings produced by the cache hit. The simulator records

service<http> HelloWorld {
handler Default( urlargs, cookies ) {

var name = urlargs["name"];

name = csharp(name) {@ name.ToUpper(); @};

return "<html><body>Hello " + name
+ "</body></html>";

}
}

Figure 2: “Hello world” service in FLIMP.

the net decrease in end-to-end latency across all sessions and re-
ports this number as the simulated caching policy’s utility. The
FLUXO runtime and the FLUXO simulator utilize the same execu-
tion runtime and cache implementation, so we believe our simula-
tions to be accurate.

The experiments reported in Section 6 are implemented as
simple heuristic analyses. We have reported on the results of
simulation-based analyses in the past [33], and while we appre-
ciate their accuracy, we find them prohibitively slow for exploring
large-state spaces without additional guidance. In the future, we
plan to investigate further the trade-offs among analysis techniques
and explore which classes of architectural optimizations are best
suited for each.

4. FLIMP: THE FLUXO LANGUAGE
While we find dataflow to be an attractive internal representa-

tion on which FLUXO can perform optimizations, experience with
dataflow graphs suggests that a developer can only reason about
graphs of a certain size before visualization becomes a challenge.
Once the program gets large enough, traditional encapsulation con-
structs such as procedures and modules become sorely necessary.
This is also bourne out by our observation that, from a sample of
several hundred Yahoo! Pipes programs hosted by Yahoo!, most
are under 20 nodes in size. This, combined with the familiarity
of imperative-style programs for our target developer audience in-
duced us to build a special-purpose imperative programming lan-
guage that would be easy to map to our internal dataflow repre-
sentation without extensive program analysis (e.g., easy to discern
control and dataflow dependencies).

In this section, we describe FLIMP, a special-purpose language
we have developed for programming FLUXO services. FLIMP is the
middle ground between the constrained environment of dataflow
and the “free-wheeling” world of languages such as C# or Java.
Because of the modular structure of FLIMP services, we are able
to create services that are several hundred dataflow nodes in size.
In the future, we are planning to explore issues of correctness and
testing of FLIMP programs in addition to the optimizations that are
the subject of this paper.

Our proof of expressiveness for FLIMP comes from the ability
to construct useful services such as email and Instant Messenger
succinctly; these services are further described in Section 6. At the
same time, once automatically translated into dataflow, FLIMP pro-
grams are fully amenable to automatic analysis and optimization.
To achieve this goal, as mentioned before, we require that all state
manipulation be made explicit in FLIMP programs.

4.1 Hello World in Flimp
Figure 2 shows a simple “Hello world” service written in FLIMP.

In this section, we examine how it is put together. HelloWorld

is an Http service, which means that the program expects to be
accessed via an HTTP interface and calling semantics. The FLUXO



literal ::= 1234.5 | "abcd" |
true | false | undefined

expr ::= id | literal | (expr) | cond |
expr.id | expr[expr]
stateRead | stateWrite | stateUpdate

stateRead ::= read( id1, . . . , idn){@...@}
stateWrite ::= insert( stateTable, expr)
stateUpdate ::= update( stateTable, expr)
cond ::= expr1 == expr2 |expr1 != expr2

stmt ::= block | varDecl | assignStmt | ifStmt |
foreachStmt | returnStmt | csharp

block ::= {stmt?}
varDecl ::= var x = expr;
assignStmt ::= x = y; | x← y;
ifStmt ::= if(cond){stmt} [else{stmt}];
foreachStmt ::= foreach(x in expr ) stmt;
returnStmt ::= return expr;
csharp ::= [var id =] csharp( id1, . . . , idn){@...@}
program ::= service id{using?; handler?}
handler ::= handler id(id1, . . . , idn){stmt}
using ::= using dotNetNamespace;
stateTable ::= state<dotNetType> persistence id;
persistence ::= soft | persistent(" . . .")

Figure 3: BNF grammar for FLIMP.

runtime provides a basic Web-based HTTP scaffolding, with fields
and links corresponding to individual handlers, etc. This is similar
to, for instance, generating a browser-based Web interface from
a Web service WSDL description [10]. This scaffolding UI can
be overridden by implementing handlers to return custom HTML
interfaces. This simple FLIMP service only has a single request
handler named Default; as Section 6 illustrates, our test services
have as many as 20 handlers acting as entry points for various kinds
of service functionality.

Handlers in FLIMP programs accept named parameters; the code
shows how handler parameter name is extracted from the urlargs
array. These are essentially the arguments that are part of an HTTP
GET request. FLIMP supports so-called csharp blocks; these act
as an opportunity for the developer to “escape” the constraints of
FLIMP and to write C# code instead. Note that parameter vari-
ables — variable name in this case — are being explicitly passed
into the csharp block from the outside. We assume that, unless
stated otherwise, csharp blocks have no observable side effects.

As a general rule, while they provide access to useful libraries,
csharp blocks should be used sparingly, as they can limit opti-
mization opportunities. Furthermore, because they are currently
embedded without analysis or sandboxing, reliance on C# libraries
and code may introduce subtle hard-to-detect side effects.

4.2 Flimp Constructs Examined
Figure 3 shows a BNF grammar for FLIMP. In this section, we

examine some of the more unusual language constructs in turn:
var introduction: FLIMP handlers can introduce and redefine vari-
ables. These variables are untyped; we use runtime checks to make
sure that, for instance, the argument to iterate over for a foreach

statement is a set. When translating FLIMP into dataflow, we effec-
tively introduce a form of a single static assignment form [2]. For
example, in the case of an if node, we put a ConditionalGate

node at the merge point for all variables redefined within the if or
else branch; this corresponds to gated SSA ϕ-nodes in compiler
parlance [42].
Loads and stores: FLIMP supports both array and field loads (i.e.
x = y.f or x = y[i]) but not stores such as x.f = y. This means

// persistent table of users
state<AuthSQLUser> persistent(

"AuthSQLUsersDataContext",
"AuthSQLUsers",
"Data Source=A2738424\SQLEXPRESS...")

Users;

// soft-state table of conversations
state<IMConversation> soft Conversations;

Figure 4: State declarations.

that we obviate the need for generalized pointer analysis to figure
out which locations a store statement could be affecting, greatly
simplifying reasoning about code.

csharp blocks: As mentioned above, FLIMP provides facilities for
calling into C# code. Note that arguments may be passed into C#
as well. Optionally, the result of a csharp block may be assigned
to a fresh variable. This explicit form or argument passing and
return makes it easy to extract data dependencies, making standard
compiler analyses such as reaching definitions easy to construct.

foreach loops: FLIMP’s explicit dependencies make it possible to
parallelize foreach loops. The absence of pointers in FLIMP along
with explicit state manipulation makes write-write and write-read
conflict detection easy. A special append form of assignment,

set ← value

a form of list comprehension [25], allows us to compute sets for use
after the loop without introducing dependencies between iterations.

4.3 State Manipulation
State manipulation is made explicit in FLIMP. In fact, the de-

veloper is required to specify the data tables that they are using in
their service, explicitly denoting whether they are part of persistent
or soft state. Examples of state declaration and state manipulation
are shown in Figures 4 and 5. The code in Figure 4 declares both
soft and persistent SQL-backed state in FLIMP. For persistent state,
we specify the database access string as part of the declaration. In
both cases, the .NET type of the data to be stored is explicitly speci-
fied; this is so that the FLUXO runtime can instantiate the right kind
of objects and to serialize them properly.

Figure 5 demonstrates how to perform state reads (in this case,
reads from the table of users) and how to create a new user in the
table. For read operations we support LINQ queries [3], giving
FLIMP developers the full power of LINQ. Because LINQ queries
are both structured and quite explicit, they are amenable to au-
tomatic analysis. For instance, we can automatically determine
which columns of which state tables may be accessed by a given
handler. This could be useful if we try to parallelize handler exe-
cution and are interested in avoiding read-write conflicts. Note that
we only allow select LINQ expressions inside read statements.

4.4 Translating Flimp into Dataflow
As noted above, FLIMP code must be translated into one or

more dataflow graphs before it can be optimized and executed by
FLUXO. Translation begins with the instantiation of a FLIMP ser-
vice — the translator constructs a new service container, which acts
as a namespace for all of the service’s handlers and state tables,
and it examines the service’s declaration and instantiates the corre-
sponding service type. When instantiated, a service automatically
creates a Web server that listens for requests and directs them to
the correct handler. Next, the translator uses the state table dec-
larations to initialize database connections and build the service’s



// find all users by name
var presences = read(Users, presenceUser) {@

from user in Users
where string.Equals(user.Value.Username,

presenceUser)
select user

@};

// insert a new user into the Users table
var newUser = csharp(username, password, userID) {@

return new IMUser((string) username,
(string) password, (string) userID);

@};
insert(Users, newUser);

Figure 5: State manipulation.

1. handler GetPresence( urlargs, cookies ) {
2. var presenceUser = urlargs["presenceUser"];
3.
4. if (presenceUser == undefined) {
5. return "Missing parameter: presenceUser";
6. }
7.
8. var presences = read(Users, presenceUser) {@
9. from user in Users where

10. string.Equals(user.Value.Username, presenceUser)
11. select user
12. @};
13.
14. var result = csharp(presences) {@...@};
15.
16. return result;
17. }

Figure 6: GetPresence handler from Instant Messenger.

state tables. Finally, the translator reads handler declarations and
constructs their dataflow graph equivalents.

Given the FLIMP code for a handler, the handler translation pro-
cess begins by parsing the code and building an abstract syntax
tree (AST). Each statement in the FLIMP AST corresponds to a
node in the resulting dataflow graph. Edges are added between
nodes as a result of explicit data dependencies. Data dependencies
are easy to construct because FLIMP programs list uses explicitly;
for instance, a LINQ block lists the arguments it uses.

Example 1. In the example in Figure 6, the top two nodes
(argsnode and literalnode) are implicitly created to produce
handler arguments and literal values, respectively. Line 2 of
the handler in Figure 6 produces a member-lookup node called
member− 65, which looks up the presenceUser argument. The
resulting value is delivered over a dataflow edge as an input to any
other nodes that reference it (in this case, an EqualityTest on
line 4 and a LINQ state read node on line 8).

FLIMP’s csharp and state manipulation statements (such as
the LINQ state read on line 8) require extra effort to convert into
dataflow graph nodes because their actions are dependent on their
embedded C# and LINQ code. For such statements, an auxiliary
step is added to the translation process in which the embedded
code is first compiled in memory and wrapped inside of a place-
holder node. The placeholder is added to the graph, and it simply
calls into the embedded code to produce its results. Linq71 is an
example of such a node.

In addition to defining nodes and dataflow dependencies, some
FLIMP statements such as if and return alter control flow. To
prevent the unwanted execution of nodes that belong to untaken
conditionals or occur after return statements, we add additional
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Figure 8: The constant propagation transformation. P represents a
constantprop node.

input dependencies to trigger the execution of such nodes. Nodes
that are dependent on a conditional statement, like the if on line 4
of Figure 6, receive a dependency on a conditional trigger whose
value is determined by the execution of the condition. The trigger’s
output is only delivered to nodes on the side of the branch that is
taken. Nodes on the other side of the branch will never receive the
trigger, and as a result they will never execute. 2

5. OPTIMIZATIONS
Architectural optimizations described in this section play a key

role in optimizing large-scale deployed web sites such as Flickr and
MySpace. For each optimization in this section, Figure 7 shows
common pitfalls that inexperienced developers face that a particular
optimization prevents.

FLUXO views optimizations in terms of dataflow graph transfor-
mations; we feel that this gives FLUXO approach a degree of uni-
formity. In compiler terminology, applying FLUXO optimizations
can be thought of as intermediate representation (IR) rewrites. For
instance, FLUXO can optimize dataflow graphs optained from both
Yahoo! Pipes and FLIMP using the same set of transformations.
Note that the optimizations described in this section affect how the
resulting distributed system is put together. For instance, a post-
computation optimization will create a worker task that will be run
after the fact, independently of the web request that created it and
perhaps executing on a different machine.

5.1 Optimizations as Graph Transformations
The transformation process consists of two phases: graph anal-

ysis and graph rewriting. Given an initial set of input graphs, a
transformer uses the analysis phase to determine where the input
graphs should be rewritten to implement the optimization. Depend-
ing on the nature of the optimization, such determinations could be
based on manually-created specifications or an automated analy-
sis of the information contained in the input graph structure, input
FLIMP code, or recorded runtime statistics. As part of the analysis
process, a transformer must ensure that its determinations are valid
according to any constraints that are imposed by the dataflow graph
semantics. Caches, for example, should not contain nodes that have
non-deterministic outputs; failing to consider this constraint may
lead to an unsound optimization.

After completing the analysis phase, a transformer transitions to
the rewriting phase, in which it focuses on how it should modify the
input graphs to apply the optimization. During the rewriting phase,
a transformer modifies the input graphs by adding and removing
nodes and edges. In the rest of this section we consider different
types of optimization we have implemented in FLUXO. Section 5.2
focuses on latency-reducing optimizations. Section 5.3 focuses on
optimizations that improve service scalability.



Optimization Pitfall

Constant propagation Precomputation is a critical aspect of building a low-latency service. Some application frameworks [14] even limit the amount
of time or the number of data store or other API calls one can make while handling a web request. In order not to exceed these
bounds, developers are forced to figure out ways to precompute common queries [15, 22]. However, they have to manually
decide which queries need to be precomputed and how, and often must rewrite code to execute as a precomputation in a
different context.

Caching A common mistake that trips inexperienced developers when invalidating caches is not invalidating computations that are
currently “in flight” and are based upon out-of-date data. An optimization designer will need to take care of this possibility,
but getting it right once is better that relegating this responsibility to the developer [18, 37].

Post-computation Many time-consuming tasks can be done after the fact, offline or using a map-reduce job. For instance, thumbnailing an
image submitted to an application like Facebook does not need to be done until later: the request can be returned to the user
immediately [27]. The decision of what to post-compute, by when it must be computed is left to the developer.

Scale-out Shared-nothing scale-out architectures rely on separating persistent state from stateless computation. A common mistake for
non-experts is the accidental introduction of state by using local disk or static in-memory variables. More complicated scale-
out patterns that involve data and workload partitioning provide additional difficulties for non-experts as they must reason
about user workloads, data distributions, query workloads, and the performance of the backend database or storage system.

Figure 7: Optimizations described in this section and their effect in practice.

5.2 Latency Optimizations
End-user responsiveness is often cited as a characteristic respon-

sible for success of a particular Internet application of site [7, 8, 36].
Our first set of optimizations focuses on approaches that reduce the
end-to-end request latency.

5.2.1 Constant Propagation
The first optimization we consider is a special form of constant

propagation, a commonly-used compiler optimization. Our opti-
mization separates a dataflow graph’s nodes into two types: those
that are dependent on user input and those that are not. Using meth-
ods that are analogous to compiler constant propagation [2, 9], this
optimization performs graph transformations to improve execution
latency. For example, our experience with Yahoo! Pipes suggests
that many Pipes graphs consist of two independent branches. One
branch is responsible for fetching data feeds with statically known
URLs and applying operators to their output. The second branch
prompts the user to enter a parameter, which is used as a filter or
search term. Eventually, the two branches are merged, producing
the final output. Figure 8 depicts such an example, in which we
consider the first branch to be constant because it can be executed
without requiring any user interaction. The insight behind this opti-
mization is that any such constant subsections of the dataflow graph
can be safely computed before the arrival of any user queries, sub-
ject to freshness requirements, just like a typical optimizing com-
piler would statically perform and eliminate computations that only
rely on constants.

To perform this optimization, the graph transformer begins
by annotating each node in the graph with a boolean indicating
whether or not the node or any of its predecessors vary their be-
havior as a result of user inputs. We annotate nodes using a depth-
first search, running it backward from the final output node. As
the search progresses, it marks every constant node that has only
input-dependent children. Any such marked node exists at the bor-
der between a constant sub-graph and the original graph. Note that
the same analysis can be also performed using a standard dataflow
formulation as described in Aho et. al. [2].

For each of the marked border nodes, the graph transformer
creates a new constantprop node that will represent the entire
sub-graph rooted at the marked node. The transformer gives the
constantprop node a reference to the constant sub-graph and then
rewrites the original graph to contain the constantprop node in
place of the constant sub-graph that it represents.

Each constantprop node is executed immediately. During the
first execution, a constantprop node executes its sub-graph and
stores the final result. It also starts a timer that will periodically re-
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Figure 9: The caching transformation. Nodes L, U, and I represent
lookup, update, and invalidate nodes.

schedule execution of the sub-graph to ensure that stored versions
of external data sources (such as RSS feeds) do not become stale.

Upon receiving a user request, execution of the original
graph immediately retrieves the stored result for each of its
constantprop nodes. Thus, user-perceived computation time is
reduced as a result of constant sub-graph pre-computation.

5.2.2 Caching
Our next optimization, caching, seeks to reduce latency and im-

prove overall throughput by eliminating redundant computation.
The caching optimization operates over a sub-graph of the origi-
nal, unoptimized graph. For a candidate sub-graph, we define N to
be the set of nodes contained in that sub-graph.

We also define I to be the subset of N that receive inputs from
nodes that are outside of N and O to be the subset of N that send
outputs to nodes that are outside of N , as displayed in Figure 9.
Note that we have to be careful when considering what can be a
valid cache: for instance, we need to ensure there is no way to get
to an internal node within a cache without visiting one of the inputs.
We can use dominance and post-dominance from graph theory [2]
to encode the necessary conditions:

1. ∀n ∈ N : I dom n;
2. ∀n ∈ N : O pdom n;
3. ∀n ∈ N , n is deterministic and side-effect free.

Our implementation currently supports two forms of analysis for
placing caches. The first method uses manually-created specifica-
tion files to indicate which subsections of a graph should be cached.
The second form of analysis uses simple heuristics to automatically
place caches around expensive regions of a graph.

As shown in Figure 9, given a tuple of node sets 〈N, I,O〉 that
is suitable to cache, the cache transformer’s rewriting phase begins
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Figure 10: The post-computation transformation. P represents a
postcompute node.

by inserting a lookup node in front of I’s incoming edges. Next,
it inserts a update node behind O’s outgoing edges. Finally, the
transformer adds an edge from the lookup node to each of O’s
outgoing edge destinations. The lookup and update nodes share
a common in-memory dictionary for storing cached values.

This configuration ensures that all inputs to the cached sub-graph
are first sent to the lookup node, which may find the sub-graph’s
result to be in one of three states:

1. Available: The result is already stored in the cache. The
lookup module outputs the stored value, bypassing execution
of the sub-graph.

2. Unavailable: The result is not stored in the cache, and it
must be produced by executing the sub-graph. The lookup
module passes its inputs through to the sub-graph, which ex-
ecutes normally. The result of the execution is captured by
the update module, which stores the result in the cache.

3. In production: The result is not yet stored in the cache, but
another request has already triggered its production. Rather
than executing the sub-graph a second time, the request will
yield until the value becomes available in the cache.

The first validity constraint ensures that, after the rewriting phase,
every node in N receives inputs only from the lookup node or
other nodes in N . Likewise, the second constraint guarantees that
all nodes in N deliver outputs only to the update node or other
nodes in N . Together, these conditions prevent the cached sub-
graph from directly interacting with the rest of the original graph.
Finally, the third validity constraint precludes the caching of nodes
that might indirectly cause side-effects.

It should be noted that, when a cached sub-graph includes a read
from a state table, writes to that table may need to invalidate cached
results. To ensure correct results, the cache transformer may in-
sert invalidate nodes after such writes to remove stored values
from a cache. In many cases, such writes exist in other graphs al-
together. Note that caches may become stale, which is why we
support a time-to-live annotation. Entries in the cache are automat-
ically flushed once their time-to-live is exceeded.

5.2.3 Post-computation
The goal of the post-computation transformer is to reduce user-

perceived latency by delaying the execution of non-critical nodes
until after the user has received a response from a service. Intu-
itively, the transformer seeks to shorten the critical path by defer-
ring the execution of nodes that do not return results to the user.
One common example of post-computation is sending email. Typ-
ically upon sending an email, a user’s web-based mail client will
immediately inform the user that the message has been sent, de-
spite the fact that it may be several seconds or even minutes before

the message is transmitted via SMTP to the recipient’s mail server.
In this example, the mail client is post-computing delivery of the
email to eliminate the delivery delay from the user’s critical path
latency.

The validity constraint for post-computation dictates that post-
computed nodes do not affect the results that are returned to the
user. The analysis phase of our post-computation transformer is
fully automated. Given an input dataflow graph, it begins by deter-
mining which nodes in the graph influence the user’s result. To per-
form this analysis, the transformer searches the graph backwards,
starting from each return node. All of the nodes that it encounters
in the search are marked, indicating that they have an output path
that reaches a return node. Any nodes that are not marked after the
search is complete are known to have no output path that reaches a
return node. Such nodes are suitable for post-computation.

Having determined the set of nodes to be post-computed,
the transformer’s rewriting phase begins by adding a single
postcompute node to the graph as depicted in Figure 10. The
postcompute node receives incoming edges from all of the graph’s
return nodes. Next, the transformer adds an edge from the
postcompute node to each of the nodes that were unmarked af-
ter the analysis phase.

In this implementation of post-computation, the introduction
of the postcompute node and its edges creates a new chain of
dataflow dependencies — the unmarked nodes cannot execute until
they receive an input from the postcompute node, which in turn
cannot execute until a return node has executed. One alternative im-
plementation is to use a persistent queuing mechanism to send the
task to a background worker node to be computed later. In either
implementation, the nodes that are suitable for post-computation
have been removed from the user’s critical path.

It is important to note that the post-computation transformer does
not change the semantics of FLUXO’s execution model. Any node
in the model can execute as soon as its inputs become available.
Even without the post-computation optimization applied, nodes
may still execute after the execution of a return node when the re-
turn node becomes runnable first. The post-computation transfor-
mation simply guarantees that return nodes will execute first with
respect to nodes that do not produce user-visible results.

State write nodes are common candidates for post-computation.
In some situations, however, it may be necessary to ensure that a
write to state has completed before returning a result to the user.
To satisfy this scenario, all state writing nodes produce a value that
can be read by other nodes in order to create the data dependencies
necessary to restrict post-computation.

5.3 Scale-Out Optimizations
The final optimization we present is a transformer that applies

a simple, shared-nothing replication pattern to scale up an Internet
service. This shared-nothing pattern implements a two-tiered ar-
chitecture, where all stateful components are placed in a back-end
storage tier, and all other components are placed in a front-end tier.
None of the front-end nodes communicate with each other, so this
tier of the system can be scaled up simply by adding additional ma-
chines. Our tiering algorithm relies solely on information derived
from the static dataflow graph to separate stateless from stateful
components. The performance profiling information we gather at
runtime can be analyzed using simple queuing models to determine
an appropriate replication factor [38].

Other commonly implemented patterns for scaling out a ser-
vice architecture include more complex multi-tiered architectures
and also tree-based aggregation structures to handle processing of
larger scale data. While the FLIMP implementations of these scale-



Average Median StdDev Min Max

Nodes 11.3 8 10.0 2 103
Edges 12.4 8 13.3 1 136

Figure 11: Sizes of dataflow graphs produced from Yahoo! Pipes.

Lines Hand- Number of State
Service of code lers nodes edges tables reads writes

Auth 116 4 62 168 1 4 2

InstantMessenger 481 20 268 692 3 12 10
AddressBook 380 9 209 606 2 12 8
Mail 188 4 93 273 2 5 3

Figure 12: Static service statistics

out techniques, as well as optimizations for improving reliability,
such as the addition of explicit retry operators, remain future work,
we believe that each is implementable using FLIMP’s basic abstrac-
tions, though in some cases, such as the dependence of tree-based
architecture on homomorphic functions, the optimization may re-
quire additional semantic annotations.

6. EXPERIMENTAL EVALUATION
This section is organized as follows. Section 6.1 talks about our

experimental methodology, benchmark selection, and choosing ap-
propriate workloads. Section 6.2 describes the effect of latency
optimizations. Section 6.3 talks about scalability optimizations.

6.1 Experimental Methodology
To evaluate the effectiveness of FLUXO on a broad range of sce-

narios, the current FLUXO implementation supports two set-ups.
The first one is for executing FLIMP services, the second one is for
executing Yahoo! Pipes programs. FLUXO uses the same optimiza-
tion and runtime layer for both set-ups with different frontends and
component libraries. Our FLIMP component library includes, for
example, the components that implement FLIMP’s primitive con-
ditionals and comparisons, while our Yahoo! Pipes component li-
brary includes Pipes’ higher-level components such as FetchFeed
or YahooSearch modules to fetch data from an arbitrary RSS feed
or obtain data by performing a Yahoo! search. In total, the FLIMP
library contains 15 components and the library for Yahoo! Pipes
contains 26 components. This is in addition to generic modules,
such as the ones use for caching, that are are shared by both types of
programs to make it possible for optimizations to work uniformly.

6.1.1 Yahoo! Pipes Programs
Yahoo! Pipes is a tool for composing mash-ups of Web content.

A user creates a pipe by connecting small, single-purpose modules
using a graphical Web-based editor. Modules are classified into
several categories such as data sources (e.g., Fetching from RSS
feeds, Flickr, or Yahoo Search), user inputs, operators (e.g., Loop,
Sort, Union, etc.), and data manipulation modules for dealing with
items like URLs and dates. Similar to the notion of pipes in a Unix
shell, the idea behind Yahoo! Pipes is that powerful results can be
achieved by connecting many simple pieces. Users can choose to
“publish" the pipes they create, making them publicly accessible.
Anyone can “clone" a published pipe to modify its behavior or use
it as a sub-component in a new pipe. More than 50,000 pipes have
been published to date.

Such Pipes programs are interesting for our evaluation of FLUXO
because they demonstrate user-created, desirable functionality al-
ready expressed in a dataflow language. However, while Yahoo!
Pipes use a combination of client-side and server side execution,

our pipes execution engine does all the work on the server, without
relying on client-side JavaScript. To experiment with FLUXO, we
have downloaded a set of 998 pipes programs from the set hosted at
pipes.yahoo.com. Most of these are implemented as a stand-alone
pipes, written in a JSON format, many also depend on sub-pipes
that we downloaded as separate JSON files. As mentioned earlier,
we developed a JSON parser mapping the input into a dataflow
representation in FLUXO. Our reason for choosing Yahoo! Pipes
for the purposes of experimentation was to run our experiments
on unmodified third-party programs. While we based some of our
experiments on Pipes, as can be seen from Figure 11, most Ya-
hoo! Pipes programs are relatively small with a median size of
only 8 nodes. Beyond the size and complexity limitations found in
these programs, two other issues present an obstacle to easy exper-
imentation.

First, Yahoo! Pipes often require user input to run, which
makes automation and repeatable timing measurements difficult to
achieve. In many cases, we need to decide what the proper work-
load mix might be for a particular user input. For instance, when en-
tering a search query term, what distribution should we use? How
about entering a zip code? The second issue that often presents
a challenge with Pipes programs is their reliance on external in-
put. Modules such as FetchFeed and Flickr are routinely used
to fetch external data. However, many Pipes rely on feeds that are
no longer valid, complicating running these programs.

6.1.2 FLIMP Benchmarks
To address both the issues of scale and the challenges of work-

load generation and replayability, we have designed and exper-
imented with services written in FLIMP, in addition to Yahoo!
Pipes. These FLIMP services are a cooperative set of four ser-
vices whose aim is to demonstrate the construction and optimiza-
tion opportunities of larger, more realistic Web services in FLUXO.
A summary of information about these services in shown in Fig-
ure 12. Column 2 shows the size of each service in terms of the
number of lines of FLIMP code. As can be seen from the table,
we are able to express complex services succinctly, in only several
hundred lines of code. Column 3 lists the number of handlers that
constitute entry points into each service. Finally, columns 4 and 5
list the sizes of the dataflow graphs that are produced from these
services. Columns 6–8 show information about the amount of state
used by each service. These four services have several state tables
and about a dozen read and write statements each.

The Auth service supplies basic authentication functionality and
acts as the foundation for the other three services. Users interact
with the authentication service by registering/deleting persistent ac-
counts and by logging in to the service to obtain account credentials
for identifying themselves to other services. The authentication ser-
vice also supplies the other services with a procedure for obtaining
user account information.

The next service provides users with instant messaging (IM)
functionality. On the backend, it is a relatively simple service that
keeps only soft state to store tables consisting of active users, ac-
tive conversations, and pending messages. It defines handlers for
setting/retrieving user status information, initiating conversations,
sending/receiving messages, and retrieving an HTML user inter-
face (described below).

The third service supports the others by supplying users with
an address book for recording contacts. The address book service
is designed to provide functionality similar to that of Microsoft’s
Address Book Clearing House (ABCH) service [41]. The address
book keeps limited persistent state in the form of tables that record
contact entries and contact groups. The address book service de-



fines handlers for creating, retrieving, manipulating, and deleting
contacts and contact groups.

The final service adds support for offline messaging that is simi-
lar to email. The service consists of two persistent tables for storing
message contents and message deliveries. It defines handlers for
sending, retrieving, and deleting messages.

Users interact with the services though a Web-based interface
that is provided by the instant messaging service. A user starts this
Web-based interface by executing the IM service’s GetInterface
handler, which responds with the Web application user interface,
implemented in HTML and JavaScript code. Initially, the interface
requires the user to connect to the authentication service to obtain
account credentials. After successfully authenticating, the interface
uses the obtained credentials to retrieve the user’s contacts from the
address book service. The contacts are presented as a “buddy list”,
from which the user can select message recipients. User actions
performed on the web application can send requests to the instant
messaging service, the offline messaging service, or the address
book service. In the background, the web interface automatically
polls the IM service and offline messaging service for new conver-
sations or messages and notifies the user.

6.1.3 Workload Generator for FLIMP Services
To properly exercise these test FLIMP services we have devel-

oped, we implemented a workload generation engine. The genera-
tor drives execution of our services by simulating a specified num-
ber of concurrent client sessions. A simulated client periodically
chooses and executes a handler chosen from one of three services:
InstantMessenger, AddressBook, and Mail. An invariant we pre-
serve is that a client maintains at most one outstanding request for
each service. As part of our experimental setup, every request’s
end-to-end execution latency is measured. Upon completing a re-
quest, a client will allow a short “cooldown” time to pass before
executing the next request to that service.

The choice of which action a client should perform next for a
given service is determined by the client’s current state and the
simulator’s workload mix distribution. The client state is used to
determine the set of actions that are currently available, which pre-
vents a client from choosing to execute an impossible action such
as removing a contact when its contact list is currently empty.

The workload mix specifies the relative weights associated with
each action. The generator reads its workload mix from a simple
specification file. Once a client has verified its set of available ac-
tions, it generates a random value between zero and the sum of the
available action weights. The random value is then mapped to its
corresponding action, which is selected for the next request to be
issued by the client.

We have based workload mixes we have used for experiments
on real usage data from Windows Messenger and Hotmail. The
workload produced by this specification contains a total of 92,379
requests calling one of 20 FLIMP handlers. This workload leads
to a total of 12,8581 state operations. Of these 83,818 or 65% are
reads, and the other 44,763 are writes.

6.2 Latency Optimization Experiments
User-perceived latency is an important metric in determining the

success of an Internet service [7, 8, 36]. Several of FLUXO’s auto-
matically applied optimizations serve to improve the latency of user
requests. This section demonstrates that FLUXO positively impacts
user request latency by experimentally quantifying application la-
tency reductions over a varying input workload. Overall, we see an
order-of-magnitude decrease in latency for constant propagation,
caching, pre- and post-computation optimizations.

6.2.1 Constant Propagation
We have applied constant propagation to almost 1,000 Pipes pro-

grams. We have discovered that for over 500 of these programs at
least one node, typically a FetchFeed, can benefit from constant
propagation. For some programs, this can be as many as 10 to 15
nodes. Figure 13 shows the outcome of applying constant propaga-
tion to several representative Yahoo! Pipes programs on end-to-end
program latency. For this experiment, we have chosen several Pipes
programs that require no user input that needs to be typed in and
can benefit from the constant propagation optimization. The num-
ber of nodes that constant propagation applies to ranges from 1–4,
as shown in column 2. In all cases, these programs relied on either
a FetchFeed or a FetchSite node to fetch data from an external
server such as a blog or a news feed. Because these sites often do
not change very rapidly, applying constant propagation has obvi-
ous benefits. To simulate multiple users using these programs, we
run each program a total of 20 times. In these experiments, the
value computed for the optimized subgraph is saved away and is
refreshed at a rate of every 2 minutes.

Columns 4–6 of figure Figure 13 show the average latency before
and after constant propagation, as well as the reduction in latency.
The reduction is latency is quite significant, exceeding 90% for 3
out of 5 Pipes programs. A 93% reduction for the “Parenting 24/7”
Pipe means savings as significant about 7 seconds on average. As it
turns out, this particular pipe fetches data on parenting-related top-
ics from 10 different news and medical information sites, resulting
in both high overall latency and also high latency variance.

6.2.2 Caching
Figure 14 displays the results of caching transformations applied

to selected handlers from the FLIMP example services described
in Section 6.1.2. The input to this optimization is a caching pol-
icy specification that identifies the subgraphs around which a cache
needs to be inserted, the cache size, the eviction policy, and a stal-
eness parameter indicating the maximum time entries stay in the
cache before being evicted. The caching policy can either be pro-
vided manually or can be generated by a prior automatic analysis.

For this experiment, we identified a favorable caching policy as
follows. First, we ran with a default caching policy that inserts a
cache around all LINQ blocks that access the backend database.
This heuristic is justified by the fact that the access to the database
is the latency bottleneck in our experiments. Using the cache-hit
rate statistics and the resulting latency improvements obtained dur-
ing this run, we generated a caching policy that inserts caches only
at those LINQ blocks that result in a net-positive latency improve-
ments.

The table in Figure 14 shows the end-to-end server-side latency
improvements achieved with this caching policy over the base pol-
icy that adds no caches. The table shows both the mean and the 95th
percentile latency observed over four independent runs of the work-
load described in Section 6.1.3. The simple cache-policy described
above provides up to 50% latency savings on some handlers, while
the overhead of caching reduces the latency by 8% on some other
handlers.

6.2.3 Post-computation
Figure 14 also describes the latency improvements obtained by

the post-computation optimization. For this optimization, we au-
tomatically inferred computation that can be deferred based on the
technique described in Section 5.2.3. We performed a two-step ex-
periment as in the caching experiments above. In the first run, we
performed the optimization on all the handlers indicated by our au-
tomatic analysis. In subsequent runs, we applied the transformation



Constprop node statistics Average latency Latency StdDev Latency 95 Percentile

Name of the pipe # Node types Before After Savings Before After Increase Before After Savings

The Joy of Tech 3 FetchFeeed, Rename, Regex 81 78 4% 200 198 -1% 94 78 17%
Metafilter Current Posts 4 FetchFeeed, Sort, Rename, Regex 4,811 1,642 66% 431 1,286 198% 5,684 1,642 71%
zeropunctuation feed 2 FetchFeed, Filter 676 61 91% 457 266 -42% 1,655 61 96%
Parenting 24/7 2 FetchSiteFeed, Filter 7,562 506 93% 418 1,787 327% 8,443 507 94%
Del.icio.us Popular 1 FetchFeed 3,904 337 91% 353 791 124% 4,103 337 92%

Figure 13: Effect of constant propagation on latency optimizations. Latency numbers are shown in ms.

Base Caching Post-computation
Service::Handler Mean 95% Mean Savings 95% Savings Mean Savings 95% Savings
AddressBook::AddContact 107 279 72 32% 498 -79% 127 -19% 374 -34%
AddressBook::AddGroup 48 164 24 49% 264 -61% 55 -15% 231 -41%
AddressBook::GetContacts 51 271 41 20% 261 4% 51 0% 247 9%
AddressBook::GetGroups 36 128 37 -2% 262 -104% 37 -3% 233 -81%
AddressBook::RemoveContact 84 277 76 9% 403 -46% 52 38% 240 13%
AddressBook::RemoveGroup 78 241 74 5% 228 5% 69 12% 231 4%
AddressBook::UpdateContact 46 164 45 1% 249 -52% 40 13% 234 -43%
AddressBook::UpdateGroup 54 197 52 4% 288 -47% 50 7% 237 -21%
Auth::GetUserID 73 270 42 42% 276 -2% 77 -6% 320 -18%
Auth::RegisterAccount 9 7 9 0% 15 -112% 9 2% 6 14%
Auth::VerifyAccount 19 24 17 13% 36 -52% 15 22% 23 2%
InstantMessenger::Connect 5 11 5 0% 16 -49% 6 -29% 64 -482%
InstantMessenger::Disconnect 1 2 1 0% 7 -219% 1 5% 7 -223%
InstantMessenger::GetMessages 77 350 64 17% 286 18% 63 19% 285 19%
InstantMessenger::GetPresence 49 220 47 3% 261 -19% 39 21% 220 0%
InstantMessenger::GetUpdates 65 318 45 30% 261 18% 50 24% 257 19%
InstantMessenger::SendInvite 62 213 31 50% 322 -51% 65 -5% 233 -9%
InstantMessenger::SendMessage 108 379 73 33% 260 31% 65 40% 232 39%
InstantMessenger::SetPresence 76 263 76 0% 326 -24% 54 29% 245 7%
Mail::DeleteMessage 47 252 38 20% 211 16% 35 25% 174 31%
Mail::GetMessage 245 387 265 -8% 536 -39% 246 0% 438 -13%
Mail::GetMessageList 317 550 322 -2% 549 0% 331 -4% 545 1%
Mail::SendMessage 94 327 84 11% 283 14% 76 19% 284 13%

Figure 14: Savings with the caching and post-computation optimizations.

only on those handlers for which the optimization was beneficial in
the first run. The table shows that post-computation provides as
much as 40% improvement in latency.

6.3 Scalability
Another critical aspect of large systems is the way in which

they scale when run on large, parallel clusters. As with latency,
FLUXO’s transformations automatically improve service scalabil-
ity by replicating state and distributing execution across multiple
machines. Figure 15 confirms that our application of the simple
automated application of the shared-nothing pattern of tiering and
replicating a service scales our test suite. In these experiments, we
measure the number of requests that can be processed per second
as the size of the execution cluster increases. The results show that
scaling from a single-machine configuration to a 4-node configura-
tion provides almost linear improvement at its peak performance.

7. RELATED WORK
Previous work [24] has introduced FLUXO’s high-level architec-

ture and described several classes of optimizations. Many pro-
gramming languages that are widely deployed in enterprise en-
vironments provide frameworks to simplify the development of
scalable system architectures. Examples of such systems include
J2EE [39], SCALA [35], and Ruby-on-rails [34], which provide
APIs and infrastructure that facilitate distribution, communication,
and management for large, Web-based services. These systems
focus on component re-use rather than enabling the separation of
functionality from architectural performance and scalability. De-
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Figure 15: Throughput as a function of the number of users.

velopers must still manually determine how to best use the provided
infrastructure, which complicates application-level code and ham-
pers attempts to re-achitecture the service in response to changing
deployment conditions.

MapReduce [13], Dryad [21], and Hadoop [40] are systems that
ease the development of large, data-intensive parallel computa-
tions. Similar to FLUXO, these systems automatically distribute
and replicate data for parallel execution. However, they primarily
focus on bulk processing tasks in which throughput, rather than la-
tency, is the primary performance metric. In other words, end-users
do not generally interact with such systems. In contrast, FLUXO



optimizations presented in this paper primarily focus on reducing
the end-to-end latency of user requests.

MapReduce Online [11] modifies Hadoop to pipeline data be-
tween operators. The modifications allows users to receive “early
returns" as Hadoop computes aggregate results. The system also
supports continuous queries for monitoring and stream processing.
The staged event driven architecture (SEDA) [43] separates appli-
cation event processing from controllers that dynamically handle
resource allocation decisions.

P2 [28] is a system in which developers specify overlay networks
using a declarative language. Like FLUXO, P2 compiles its high-
level language into an optimized dataflow graph for execution. P2
primarily differs from FLUXO by targeting overlays and by apply-
ing optimizations that more closely resemble database query opti-
mizations. More recent efforts [4] focus on applying P2’s declara-
tive language to simplify the construction of a Hadoop-compatible
MapReduce implementation.

The Hilda [46] project provides developers with a declarative
high-level language for developing data-driven web applications.
Hilda provides a compiler that translates Hilda programs into Java
Servlet code. The Scalable Games Language (SGL) [44] pro-
poses utilizing data management techniques to improve the AI in
computer games. The language consists of SQL statements, let-
statements, and conditionals, which are translated into relational
algebra and optimized using standard database optimizations.

8. CONCLUSIONS
FLUXO is a system to enable non-expert developers to build per-

formant and scalable distributed Internet services. FLUXO broad-
ens Internet service development by allowing developers to focus
on application functionality, with architectural issues being handled
by profile-driven optimizers written by experts. At its core, FLUXO
is an optimizing compiler that uses a restricted programming model
and runtime profiling to create a logical separation between the core
functionality of the service and its architectural patterns. This sep-
aration allows a wide class of programmers to build scalable and
reliable web services.

To demonstrate the viability of separating architectural decisions
from application logic, this paper presents four optimizations that
we have applied to two classes of Internet services, existing third-
party Yahoo! Pipes programs and a test suite of four realistic ser-
vices. Our experiments show these application-agnostic optimiza-
tions reducing latency from 20–90% without requiring the devel-
oper’s assistance or awareness. Similarly, FLUXO’s application of
one simple tiering and replication pattern is able to scale our test
suite of applications.
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