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Abstract

The advent of Web 2.0 has lead to the proliferation of
client-side code that is typically written in JavaScript.
This code is often combined — or mashed-up — with
other code and content from disparate, mutually untrust-
ing parties, leading to undesirable security and reliability
consequences.

This paper proposes GATEKEEPER, a mostly static ap-
proach for soundly enforcing security and reliability poli-
cies for JavaScript programs. GATEKEEPER is a highly
extensible system with a rich, expressive policy language,
allowing the hosting site administrator to formulate their
policies as succinct Datalog queries.

The primary application of GATEKEEPER this paper ex-
plores is in reasoning about JavaScript widgets such as
those hosted by widget portals Live.com and Google/IG.
Widgets submitted to these sites can be either malicious
or just buggy and poorly written, and the hosting site has
the authority to reject the submission of widgets that do
not meet the site’s security policies.

To show the practicality of our approach, we de-
scribe nine representative security and reliability policies.
Statically checking these policies results in 1,341 verified
warnings in 684 widgets, no false negatives, due to the
soundness of our analysis, and false positives affecting
only two widgets.

1 Introduction

JavaScript is increasingly becoming the lingua franca of
the Web, used both for large monolithic applications and
small widgets that are typically combined with other code
from mutually untrusting parties. At the same time, many
programming language purists consider JavaScript to be
an atrocious language, forever spoiled by hard-to-analyze
dynamic constructs such as eval and the lack of static
typing. This perception has lead to a situation where code
instrumentation and not static program analysis has been
the weapon of choice when it comes to enforcing security

policies of JavaScript code [20, 25, 29, 35].
As a recent report from Finjan Security shows, widget-

based attacks are on the rise [17], making widget secu-
rity an increasingly important problem to address. The
report also describes well-publicised vulnerabilities in the
Vista sidebar, Live.com, and Yahoo! widgets. The pri-
mary focus of this paper is on statically enforcing secu-
rity and reliability policies for JavaScript code. These
policies include restricting widget capabilities, making
sure built-in objects are not modified, preventing code in-
jection attempts, redirect and cross-site scripting detec-
tion, preventing global namespace pollution, taint check-
ing, etc. Soundly enforcing security policies is harder
that one might think at first. For instance, if we
want to ensure a widget cannot call document.write
because this construct allows arbitrary code injection,
we need to either analyze or disallow tricky con-
structs like eval("document" + ".write(’...’)"),
or var a = document[’wri’ + ’te’]; a(’...’);
which use reflection or even

var a = document;
var b = a.write;
b.call(this, ’...’)

which uses aliasing to confuse a potential enforcement
tool. A naı̈ve unsound analysis can easily miss these
constructs. Given the availability of JavaScript obfusca-
tors [19], a malicious widget may easily masquerade its
intent. Even for this very simple policy, grep is far from
an adequate solution.

JavaScript relies on heap-based allocation for the ob-
jects it creates. Because of the problem of object alias-
ing alluded to above in the document.write example
where multiple variable names refer to the same heap
object, to be able to soundly enforce the policies men-
tioned above, GATEKEEPER needs to statically reason
about the program heap. To this end, this paper proposes
the first points-to analysis for JavaScript. The program-
ming language community has long recognized pointer
analysis to be a key building block for reasoning about
object-oriented programs. As a result, pointer analy-
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Figure 1: GATEKEEPER deployment. The three principals are: the user, the widget host, and the widget developer.

ses have been developed for commonly used languages
such as C and Java, but nothing has been proposed for
JavaScript thus far. However, a sound and precise points-
to analysis of the full JavaScript language is very hard
to construct. Therefore, we propose a pointer analysis
for JavaScriptSAFE, a realistic subset that includes proto-
types and reflective language constructs. To handle pro-
grams outside of the JavaScriptSAFE subset, GATEKEEPER
inserts runtime checks to preclude dynamic code intro-
duction. Both the pointer analysis and nine policies we
formulate on top of the points-to results are written on top
of the same expressive Datalog-based declarative analysis
framework. As a consequence, the hosting site interested
in enforcing a security policy can program their policy in
several lines of Datalog and apply it to all newly submit-
ted widgets.

In this paper we demonstrate that, in fact, JavaScript
programs are far more amenable to analysis than previ-
ously believed. To justify our design choices, we have
evaluated over 8,000 JavaScript widgets, from sources
such as Live.com, Google, and the Vista Sidebar. Unlike
some previous proposals [35], JavaScriptSAFE is entirely
pragmatic, driven by what is found in real-life JavaScript
widgets. Encouragingly, we have discovered that the use
of with, Function and other “difficult” constructs [12]
is similarly rare. In fact, eval, a reflective construct
that usually foils static analysis, is only used in 6% of
our benchmarks. However, statically unknown field ref-
erences such a[index], dangerous because these can be
used to get to eval through this[’eval’], etc., and
innerHTML assignments, dangerous because these can be
used to inject JavaScript into the DOM, are more prevalent
than previously thought. Since these features are quite
common, to prevent runtime code introduction and main-
tain the soundness of our approach, GATEKEEPER inserts
dynamic checks around statically unresolved field refer-
ences and innerHTML assignments.

This paper contains a comprehensive large-scale exper-
imental evaluation. To show the practicality of GATE-
KEEPER, we present nine representative policies for se-
curity and reliability. Our policies include restricting
widgets capabilities to prevent calls to alert and the

use of the XmlHttpRequest object, looking for global
namespace pollution, detecting browser redirects lead-
ing to cross-site scripting, preventing code injection, taint
checking, etc. We experimented on 8,379 widgets, out of
which 6,541 are analyzable by GATEKEEPER 1. Checking
our nine policies resulted in us discovering a total of 1,341
verified warnings that affect 684, with only 113 false pos-
itives affecting only two widgets.

1.1 Contributions

This paper makes the following contributions:

• We propose the first points-to analysis for JavaScript
programs. Our analysis is the first to handle a
prototype-based language such as JavaScript. We
also identify JavaScriptSAFE, a statically analyzable
subset of the JavaScript language and propose light-
weight instrumentation that restricts runtime code in-
troduction to handle many more programs outside of
the JavaScriptSAFE subset.

• On the basis of points-to information, we demon-
strate the utility of our approach by describing nine
representative security and reliability policies that
are soundly checked by GATEKEEPER, meaning no
false negatives are introduced. These policies are ex-
pressed in the form of succinct declarative Datalog
queries. The system is highly extensible and easy
to use: each policy we present is only several lines
of Datalog. Policies we describe include restricting
widget capabilities, making sure built-in objects are
not modified, preventing code injection attempts, etc.

• Our experimental evaluation involves in excess of
eight thousand publicly available JavaScript widgets
from Live.com, the Vista Sidebar, and Google. We
flag a total of 1,341 policy violations spanning 684
widgets, with 113 false positives affecting only two
widgets.

1Because we cannot ensure soundness for the remaining 1,845 wid-
gets, we reject them without further policy checking.



1.2 Paper Organization
The rest of the paper is organized as follows. Section 2
gives an overview of our approach and summarizes the
most significant analysis challenges. Section 3 provides
a deep dive into the details of our analysis; a reader in-
terested in learning about the security policies may skip
this section on the first reading. Section 4 describes nine
static checkers we have developed for checking security
policies of JavaScript widgets. Section 5 summarizes the
experimental results. Finally, Sections 6 and 7 describe
related work and conclude.

2 Overview

As a recent report from Finjan Security shows, widget-
based attacks are on the rise [17]. Exploits such as those
in a Vista sidebar contacts widget, a Live.com RSS wid-
get, and a Yahoo! contact widget [17, 27] not only affect
unsuspecting users, they also reflect poorly on the hosting
site. In a way, widgets are like operating system drivers:
their quality directly affects the perceived quality of the
underlying OS. While driver reliability and security has
been subject of much work [7], widget security has re-
ceived relatively little attention. Just like with drivers,
however, widgets can run in the same page (analogous
to an OS process) as the rest of the hosting site. Because
widget flaws can negatively impact the rest of the site, it
is out aim to develop tools to ensure widget security and
reliability.

While our proposed static analysis techniques are much
more general and can be used for purposes as diverse as
program optimization, concrete type inference, and bug
finding, the focus of this paper is on soundly enforcing se-
curity and reliability policies of JavaScript widgets. There
are three principals that emerge in that scenario: the wid-
get hosting site such as Live.com, the developer submit-
ting a particular widget, and the user on whose computer
the widget is ultimately executed. The relationship of
these principals is shown in Figure 1. We are primarily in-
terested in helping the widget host ensure that their users
are protected.

2.1 Deployment
We envision GATEKEEPER being deployed and run by the
widget hosting provider as a mandatory checking step in
the online submission process, required before a widget
is accepted from a widget developer. Many hosts already
use captchas to ensure that the submitter is human. How-
ever, captchas say nothing about the quality and intent of
the code being submitted. Using GATEKEEPER will en-
sure that the widget being submitted complies with the
policies chosen by the host. A hosting provider has the

authority to reject some of the submitted widgets, instruct-
ing widgets authors to change their code until it passes the
policy checker, not unlike tools like the static driver veri-
fier for Windows drivers [24]. Our policy checker outputs
detailed information about why a particular widget fails,
annotated with line numbers, which allows the widget de-
veloper to fix their code and resubmit.

2.2 Designing Static Language Restrictions
To enable sound analysis, we first restrict the input to be
a subset of JavaScript as defined by the EcmaScript-262
language standard. Unlike previous proposals that sig-
nificantly hamper language expressiveness for the sake
of safety [13], our restrictions are relatively minor. In
particular, we disallow the eval construct and its close
cousin, the Function object constructor as well as func-
tions setTimeout and setInterval. All of these con-
structs take a string and execute it as JavaScript code.
The fundamental problem with these constructs is that
they introduce new code at runtime that is unseen — and
therefore cannot be reasoned about — by the static ana-
lyzer. These reflective constructs have the same expres-
sive power: allowing one of them is enough to have the
possibility of arbitrary code introduction.

We also disallow the use of with, a language feature
that allows to dynamically substitute the symbol lookup
scope, a feature that has few legitimate uses and signif-
icantly complicates static reasoning about the code. As
our treatment of prototypes shows, it is in fact possible
to handle with, but it is only used in 8% of our bench-
marks. Finally, while these restrictions might seem dra-
conian at first, they are very similar to what a recently
proposed strict mode for JavaScript enforces [14].

We do allow reflective constructs Function.call,
Function.apply, and the arguments array. Indeed,
Function.call, the construct that allows the caller of a
function to set the callee’s this parameter, is used in 99%
of Live widgets and can be analyzed statically with rela-
tive ease, so we handle this language feature. The preva-
lence of Function.call can be explained by a common
coding pattern for implementing a form of inheritance,
which is encouraged by Live.com widget documentation,
and is found pretty much verbatim in most widgets.

In other words, our analysis choices are driven by the
statistics we collect from 8,379 real-world widgets and not
hypothetical considerations. More information about the
relative prevalence of “dangerous” language features can
be found in Figure 3. The most common “unsafe” features
we have to address are .innerHTML assignments and sta-
tically unresolved field references. Because they are so
common, we cannot simply disallow them, so we check
them at runtime instead.

To implement restrictions on the allowed input, in
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Figure 2: GATEKEEPER analysis architecture.

Sidebar Windows Live Google

JavaScript Construct Affected % Affected % Affected %

Non-Const Index 1,736 38.6% 176 6.5% 192 16.4%
with 422 9.4% 2 .1% 2 .2%
arguments 175 3.9% 6 .2% 3 .3%
setTimeout 824 18.3% 49 1.8% 65 5.6%
setInterval 377 8.4% 16 .6% 13 1.1%
eval 353 7.8% 10 .4% 55 4.7%

apply 173 3.8% 29 1.1% 6 .5%
call 151 3.4% 2,687 99.0% 4 .3%
Function 142 3.2% 4 .1% 21 1.8%
document.write 102 2.3% 1 0% 108 9.2%
.innerHTML 1,535 34.1% 2,053 75.6% 288 24.6%

Figure 3: Statistics for 4,501 widgets from Sidebar and 2,714 widgets from Live, and 1,171 widgets from Google.

our JavaScript parser we flag the use of lexer tokens
eval, Function, and with, as well as setTimeout, and
setInterval. We need to disallow all of these con-
structs because letting one of them through is enough
for arbitrary code introduction. The feature we can-
not handle simply using lexer token blacklisting is
document.write. We first optimistically assume that no
calls to document.write are present and then proceed to
verify this assumption as described in Section 4.3. This
way our analysis remains sound.

We consider two subsets of the JavaScript language,
JavaScriptSAFE and JavaScriptGK. The two subsets are com-
pared in Figure 4. If the program passes the checks
above and lacks statically unresolved array accesses
and innerHTML assignments, it is declared to be in
JavaScriptSAFE. Otherwise, these dangerous accesses are
instrumented and it is declared in the JavaScriptGK lan-
guage subset. To resolve field accesses, we run a local
dataflow constant propagation analysis [1] to identify the
use of constants as field names. In other words, in the
following code snippet

var fieldName = ’f’;

a[fieldName] = 3;

the second line will be correctly converted into a.f = 3.

2.3 Analysis Stages

The analysis process is summarized in Figure 2. If the
program is outside of JavaScriptGK, we reject it right away.
Otherwise, we first traverse the program representation
and output a database of facts, expressed in Datalog nota-
tion. This is basically a declarative database representing
what we need to know about the input JavaScript pro-
gram. We next combine these facts with a representa-
tion of the native environment of the browser discussed
in Section 3.4 and the points-to analysis rules. All three
are represented in Datalog and can be easily combined.
We pass the result to bddbddb, an off-the-shelf declara-
tive solver [33], to produce policy violations. This pro-
vides for a very agile experience, as changing the policy
usually only involves editing several lines of Datalog.

2.4 Analyzing the JavaScriptSAFE Subset

For a JavaScriptSAFE program, we normalize each function
to a set of statements shown in Figure 5. Note that the
JavaScriptSAFE language, which we shall extend in Sec-
tion 3 is very much Java-like and is therefore amenable to
inclusion-based points-to analysis [33]. What is not made
explicit by the syntax is that JavaScriptSAFE is a prototype-
based language, not a class-based one. This means that
objects do not belong to explicitly declared classes. In-
stead, a object creation can be based on a function, which
becomes that object’s prototype. Furthermore, we support
a restricted form of reflection including Function.call,



Feature JavaScriptSAFE JavaScriptGK

UNCONTROLLED CODE INJECTION

Unrestricted eval 7 7

Function constructor 7 7

setTimeout, setInterval 7 7

with 7 7

document.write 7 7

Stores to code-injecting fields
innerHTML, onclick, etc.

7 7

CONTROLLED REFLECTION

Function.call X X
Function.apply X X
arguments array X X

INSTRUMENTATION POINTS

Non-static field stores 7 X
innerHTML assignments 7 X

Figure 4: Support for different dynamic EcmaScript-262 language features in JavaScriptSAFE and JavaScriptGK language subsets.

s ::=
ε | [EMPTY]
s; s | [SEQUENCE]
v1 = v2 | [ASSIGNMENT]
v = ⊥ | [PRIMASSIGNMENT]
return v; | [RETURN]
v = new v0(v1, ..., vn); | [CONSTRUCTOR]
v = v0(vthis , v1, v2, . . . , vn); | [CALL]

v1 = v2.f ; | [LOAD]
v1.f = v2; | [STORE]

v = function(v1, ..., vn) {s; }; [FUNCTIONDECL]

Figure 5: JavaScriptSAFE statement syntax in BNF.

Function.apply, and the arguments array. The details
of pointer analysis are shown in the Datalog rules Figure 8
and discussed in detail in Section 3.

One key distinction of our approach with Java is that
there is basically no distinction of heap-allocation objects
and function closures in the way the analysis treats them.
In other words, at a call site, if the base of a call “points
to” an allocation site that corresponds to a function decla-
ration, we statically conclude that that function might be
called. While it may be possible to recover portions of the
call graph through local analysis, we interleave call graph
and points-to analysis in our approach.

We are primarily concerned with analyzing objects or
references to them in the JavaScript heap and not primi-
tive values such as integers and strings. We therefore do
not attempt to faithfully model primitive value manipu-

CALLS(i : I, h : H) indicates when call site i in-
vokes method h

FORMAL(h : H, z : Z, v : V ) records formal arguments of a
function

METHODRET(h : H, v : V ) records the return value of a
method

ACTUAL(i : I, z : Z, v : V ) records actual arguments of a
function call

CALLRET(i : I, v : V ) records the return value for a
call site

ASSIGN(v1 : V, v2 : V ) records variable assignments

LOAD(v1 : V, v2 : V, f : F ) represents field loads

STORE(v1 : V, f : F, v2 : V ) represents field stores

PTSTO(v : V, h : H) represents a points-to relation
for variables

HEAPPTSTO(h1 : H, f : F, h2 : H) represents a points-to relations
for heap objects

PROTOTYPE(h1 : H, h2 : H) records object prototypes

Figure 6: Datalog relations used for program representation.

lation, lumping primitive values into PRIMASSIGNMENT
statements.

2.5 Analysis Soundness

The core static analysis implemented by GATEKEEPER is
sound, meaning that we statically provide a conservative
approximation of the runtime program behavior. Achiev-
ing this for JavaScript with all its dynamic features is far
from easy. As a consequence, we extend our soundness
guarantees to programs utilizing a smaller subset of the
language. For programs within JavaScriptSAFE, our analy-



v1 = v2 ASSIGN(v1, v2). [ASSIGNMENT]
v = ⊥ [BOTASSIGNMENT]
return v CALLRET(v). [RETURN]

v = new v0(v1, v2, ..., vn) PTSTO(v, dfresh).
PROTOTYPE(dfresh , h) : – PTSTO(v0,m),

HEAPPTSTO(m,"prototype", h).
for z ∈ {1..n}, generate ACTUAL(i, z, vz).
CALLRET(i, v).

[CONSTRUCTOR]

v = v0(vthis , v1, v2, . . . , vn) for z ∈ {1..n, this}, generate ACTUAL(i, z, vz).
CALLRET(i, v).

[CALL]

v1 = v2.f LOAD(v1, v2, f). [LOAD]
v1.f = v2 STORE(v1, f, v2). [STORE]

v = function(v1, ..., vn) {s} PTSTO(v, dfresh).
HEAPPTSTO(dfresh ,"prototype", pfresh).
FUNCDECL(dfresh). PROTOTYPE(pfresh , hFP ).
for z ∈ {1..n}, generate FORMAL(dfresh , z, vz).
METHODRET(dfresh , v).

[FUNCTIONDECL]

Figure 7: Datalog facts generated for each JavaScriptSAFE statement.

sis is sound. For programs within GATEKEEPER, our
analysis is sound as long as no code introduction is de-
tected with the runtime instrumentation we inject. This is
very similar to saying that, for instance, a Java program
is not going to access outside the boundaries of an array
as long as no ArrayOutOfBoundsException is thrown.
Details of runtime instrumentation are presented in Sec-
tion 3.2. The implications of soundness is that GATE-
KEEPER is guaranteed to flag all policy violations, at the
cost of potential false positives.

We should also point out that the GATEKEEPER analy-
sis is inherently a whole-program analysis, not a modu-
lar one. The need to statically have access to the entire
program is why we work so hard to limit language fea-
tures that allow dynamic code loading or injection. We
also generally model the runtime — or native — envi-
ronment in which the JavaScript code executes. Our ap-
proach is sound, assuming that our native environment
model is conservative. This last claim is similar to as-
serting that a static analysis for Java is sound, as long
as native functions and libraries are modeled conserv-
atively, a commonly used assumption. We also assume
that the runtime instrumentation we insert is able to han-
dle the relevant corner cases a deliberately malicious wid-
get might try to exploit, admittedly a challenging task, as
further explained in Section 3.2.

3 Analysis Details

This section is organized as follows. Section 3.1 talks
about pointer analysis in detail2. Section 3.2 discusses the
runtime instrumentation inserted by GATEKEEPER. Sec-
tion 3.3 talks about how we normalize JavaScript AST to
fit into our intermediate representation. Section 3.4 talks
about how we model the native JavaScript environment.

3.1 Pointer Analysis
In this paper, we describe how to implement a form
of inclusion-based Andersen-style flow- and context-
sensitive analysis [3] for JavaScript. It remains to be
seen whether flow and context sensitivity significantly im-
prove analysis precision; our experience with the policies
in Section 4 has not shown that to be the case. We use al-
location sites to approximate runtime heap objects. A key
distinction of our approach in the lack of a call graph to
start with: our technique allows call graph inference and
points-to analysis to be interleaved. As advocated else-
where [21], the analysis itself is expressed declaratively:
we convert the program into a set of facts, to which we

2We refer the interested reader to a companion technical report [22]
that discusses handling of reflective constructs Function.call,
Function.apply, and arguments.



% Basic rules
PTSTO(v, h) : – ALLOC(v, h).
PTSTO(v, h) : – FUNCDECL(v, h).
PTSTO(v1, h) : – PTSTO(v2, h), ASSIGN(v1, v2).

DIRECTHEAPSTORESTO(h1, f, h2) : – STORE(v1, f, v2), PTSTO(v1, h1), PTSTO(v2, h2).
DIRECTHEAPPOINTSTO(h1, f, h2) : – DIRECTHEAPSTORESTO(h1, f, h2).
PTSTO(v2, h2) : – LOAD(v2, v1, f), PTSTO(v1, h1), HEAPPTSTO(h1, f, h2).
HEAPPTSTO(h1, f, h2) : – DIRECTHEAPPOINTSTO(h1, f, h2).

% Call graph
CALLS(i, m) : – ACTUAL(i, 0, c), PTSTO(c, m).

% Interprocedural assignments
ASSIGN(v1, v2) : – CALLS(i, m), FORMAL(m, z, v1), ACTUAL(i, z, v2), z > 0.
ASSIGN(v2, v1) : – CALLS(i, m), METHODRET(m, v1), CALLRET(i, v2).

% Prototype handling
HEAPPTSTO(h1, f, h2) : – PROTOTYPE(h1, h), HEAPPTSTO(h, f, h2).

Figure 8: Pointer analysis inference rules for JavaScriptSAFE expressed in Datalog.

apply inference rules to arrive at the final call graph and
points-to information.

Program representation. We define the following do-
mains for the points-to analysis GATEKEEPER performs:
heap-allocated objects and functions H , program vari-
ables V , call sites I , fields F , and integers Z. The analysis
operates on a number of relations of fixed arity and type,
as summarized in Figure 6.

Analysis stages. Starting with a set of initial input re-
lation, the analysis follows inference rules, updating in-
termediate relation values until a fixed point is reached.
Details of the declarative analysis and BDD-based repre-
sentation can be found in [32]. The analysis proceeds in
stages. In the first analysis stage, we traverse the nor-
malized representation for JavaScriptSAFE shown in Fig-
ure 5. The basic facts that are produced for every state-
ment in the JavaScriptSAFE program are summarized in
Figure 7. As part of this traversal, we fill in relations
ASSIGN, FORMAL, ACTUAL, METHODRET, CALLRET, etc. This
is a relatively standard way to represent information about
the program in the form of a database of facts. The sec-
ond stage applies Datalog inference rules to the initial set
of facts. The analysis rules are summarized in Figure 8.
In the rest of this section, we discuss different aspects of
the pointer analysis.

3.1.1 Call Graph Construction

As we mentioned earlier, call graph construction in
JavaScript presents a number of challenges. First, unlike
a language with function pointers like C, or a language
with a fixed class hierarchy like Java, JavaScript does not

have any initial call graph to start with. Aside from lo-
cal analysis, the only conservative default we have to fall
back to when doing static analysis is “any call site calls
every declared function,” which is too imprecise.

Instead, we chose to combine points-to and call graph
constraints into a single Datalog constraint system and re-
solve them at once. Informally, intraprocedural data flow
constraints lead to new edges in the call graph. These in
turn lead to new data flow edges when we introduce con-
straints between newly discovered arguments and return
values. In a sense, function declarations and object allo-
cation sites are treated very much the same in our analysis.
If a variable v ∈ V may point to function declaration f ,
this implies that call v() may invoke function f . Alloca-
tion sites and function declarations flow into the points-to
relation PTSTO through relations ALLOC and FUNCDECL.

3.1.2 Prototype Treatment

The JavaScript language defines two lookup chains. The
first is the lexical (or static) lookup chain common to
all closure-based languages. The second is the prototype
chain. To resolve o.f, we follow o’s prototype, o’s proto-
type’s prototype, etc. to locate the first object associated
with field f.

Note that the object prototype (sometimes denoted as
[[Prototype]] in the ECMA standard) is different from
the prototype field available on any object. We model
[[Prototype]] through the PROTOTYPE relation in our sta-
tic analysis. When PROTOTYPE(h1, h2) holds, h1’s internal
[[Prototype]] may be h2

3.

3We follow the EcmaScript-262 standard; Firefox makes



Two rules in Figure 7 are particularly relevant for proto-
type handling: [CONSTRUCTOR] and [FUNCTIONDECL]. In
the case of a constructor call, we allocate a new heap vari-
able dfresh and make the return result of the call v point to
it. For (every) function m the constructor call invokes,
we make sure that m’s prototype field is connected
with dfresh through the PROTOTYPE relation. We also set up
ACTUAL and CALLRET values appropriately, for z ∈ {1..n}.
In the regular [CALL] case, we also treat the this para-
meter as an extra actual parameter.

In the case of a [FUNCTIONDECL], we create two
fresh allocation site, dfresh for the function and pfresh

for the newly create prototype field for that func-
tion. We use shorthand notion hFP to denote object
Function.prototype and create a PROTOTYPE relation
between pfresh and hFP . We also set up HEAPPTSTO re-
lation between dfresh and pfresh objects. Finally, we set
up relations FORMAL and METHODRET, for z ∈ {1..n}.

Example 1. The example in Figure 9 illustrates the in-
tricacies of prototype manipulation. Allocation site a1 is
created on line 2. Every declaration creates a declaration
object and a prototype object, such as dT and pT . Rules
in Figure 10 are output as this code is processed, anno-
tated with the line number they come from. To resolve the
call on line 4, we need to determine what t.bar points to.
Given PTSTO(t, a1) on line 2, this resolves to the following
Datalog query:

HEAPPTSTO(a1,"bar", X)?

Since there is nothing dT points to directly by follow-
ing the bar field, the PROTOTYPE relation is consulted.
PROTOTYPE(a1, pT ) comes from line 2. Because we have
HEAPPTSTO(pT ,"bar", dbar) on line 3, we resolve X to
be dbar. As a result, the call on line 4 may correctly in-
voke function bar. Note that our rules do not try to keep
track of the order of objects in the prototype chain. �

3.2 Programs Outside JavaScriptSAFE

The focus of this section is on runtime instrumenta-
tion for programs outside JavaScriptSAFE, but within the
JavaScriptGK JavaScript subset that is designed to prevent
runtime code introduction.

3.2.1 Rewriting .innerHTML Assignments

innerHTML assignments are a common dangerous lan-
guage feature that may prevent GATEKEEPER from stati-
cally seeing all the code. We disallow it in JavaScriptSAFE,
but because it is so common, we still allow it in the
JavaScriptGK language subset. While in many cases the
right-hand side of .innerHTML assignments is a constant,

[[Prototype]] accessible through a non-standard field proto .

there is an unfortunate coding pattern encouraged by Live
widgets that makes static analysis difficult, as shown in
Figure 11. The url value, which is the result concatenat-
ing of a constant URL and widgetURL is being used on
the right-hand side and could be used for code injection.
An assignment v1.innerHTML = v2 is rewritten as

if (__IsUnsafe(v2)) {

alert("Disguised eval attempt at <file>:<line>");

} else {

v1.innerHTML = v2;

}

where IsUnsafe disallows all but very simple HTML.
Currently, IsUnsafe is implemented as follows:

function __IsUnsafe(data)) {

return (toStaticHTML(data)===data);

}

toStaticHTML, a built-in function supported in newer
versions of Internet Explorer, removes attempts to intro-
duce script from a piece of HTML. An alternative is to
provide a parser that allows a subset of HTML, an ap-
proach that is used in WebSandbox [25]. The call to
alert is optional — it is only needed if we want to warn
the user. Otherwise, we may just omit the statement in
question.

3.2.2 Rewriting Unresolved Heap Loads and Stores

That syntax for JavaScriptGK supported by GATEKEEPER
has an extra variant of LOAD and STORE rules for associa-
tive arrays, which introduce Datalog facts shown below:

v1 = v2[∗] LOAD(v1, v2,_) [ARRAYLOAD]
v1[∗] = v2 STORE(v1,_, v2) [ARRAYSTORE]

When the indices of an associative array operation cannot
be determined statically, we have to be conservative. This
means that any field that may be reached can be accessed.
This also means that to be conservative, we must consider
the possibility that any field may be affected as well: the
field parameter is unconstrained, as indicated by an _ in
the Datalog rules above.

Example 2. Consider the following motivating example:

1. var a = {

2. ’f’ : function(){...},

3. ’g’ : function(){...}, ...};

5. a[x + y] = function(){...};

6. a.f();

If we cannot statically decide which field of object a is be-
ing written to on line 5, we have to conservatively assume



1. function T(){ this.foo = function(){ return 0}}; dT , pT

2. var t = new T(); a1

3. T.prototype.bar = function(){ return 1; }; dbar, pbar
4. t.bar(); // return 1

Figure 9: Prototype manipulation example.

1. PTSTO(T, dT ). HEAPPTSTO(dT ,"prototype", pT ). PROTOTYPE(pT , hFP).
2. PTSTO(t, a1). PROTOTYPE(a1, pT ).
3. HEAPPTSTO(pT ,"bar", dbar). HEAPPTSTO(dbar,"prototype", pbar). PROTOTYPE(pbar, hFP).

Figure 10: Rules created for the prototype manipulation example in Figure 9.

that the assignment could be to field f. This can affect
which function is called on line 6. �

Moreover, any statically unresolved store may intro-
duce additional code through writing to the innerHTML
field that will be never seen by static analysis. We rewrite
statically unsafe stores v1[i] = v2 by blacklisting fields
that may lead to code introduction:

if (i==="onclick" || i==="onkeypress" || ...) {

alert("Disguised eval attempt at <file>:<line>");

} else

if(i==="innerHTML" && __IsUnsafe(v2)){

alert("Unsafe innerHTML at <file>:<line>");

} else {

v1[i] = v2;

}

Note that we use === instead of == because the lat-
ter form will try to coarse i to a string, which is not our
intention. Also note that it’s impossible to introduce a
TOCTOU vulnerability of having v2 change “underneath
us” after the safety check because of the single-threaded
nature of JavaScript.

Similarly, statically unsafe loads of the form v1 = v2[i]
can be restricted as follows:

if (i==="eval" || i==="setInterval" ||

i==="setTimeout" || i==="Function" ||...)

{

alert("Disguised eval attempt at <file>:<line>");

} else {

v1 = v2[i];

}

Note that we have to check for unsafe functions such as
eval, setInterval, etc. While we reject them as tokens
for JavaScriptSAFE, they may still creep in through stati-
cally unresolved array accesses. Note that to preserve the
soundness of our analysis, care must be taken to keep the
blacklist comprehensive.

While we currently use a blacklist and do our best to
keep it as complete as we can, ideally blacklist design and
browser runtime design would go hand-in-hand. We re-
ally could benefit from a browser-specified form of run-
time safety, as illustrated by the use strict pragma [14].
A conceptually safer, albeit more restrictive, approach is
to resort to a whitelist of allowed fields.

3.3 Normalization Details

In this section we discuss several aspects of normalizing
the JavaScript AST. Note that certain tricky control flow
and reflective constructs like for...in are omitted here be-
cause our analysis is flow-insensitive.

Handling the global object. We treat the global object
explicitly by introducing a variable global and then as-
signing to its fields. One interesting detail is that global
variable reads and writes become loads and stores to fields
of the global object, respectively.

Handling of this argument in function calls. One
curious feature of JavaScript is its treatment of the
this keyword, which is described in section 10.2 of
the EcmaScript-262 standard. For calls of the form
f(x, y, ...), the this value is set by the runtime to the
global object. This is a pretty surprising design choice, so
we translate syntactic forms f(x, y, ...) and o.f(x, y, ...)
differently, passing the global object in place of this in
the former case.

3.4 Native Environment

The browser embedding of the JavaScript engine has
a large number of pre-defined objects. In addition to
Array, Date, String, and other objects defined by the
EcmaScript-262 standard, the browser defines objects
such as Window and Document.

Native environment construction. Because we are do-
ing whole-program analysis, we need to create stubs for



this.writeWidget = function(widgetURL) {
var url = "http://widgets.clearspring.com/csproduct/web/show/flash?

opt=-MAX/1/-PUR/http%253A%252F%252Fwww.microsoft.com&url="+widgetURL;

var myFrame = document.createElement("div");
myFrame.innerHTML = ’<iframe id="widgetIFrame" scrolling="no"

frameborder="0" style="width:100%;height:100%;border:0px" src="’+
url+’"></iframe>’;

...
}

Figure 11: innerHTML assignment example

the native environment so that calls to built-in methods re-
solve to actual functions. We recursively traverse the na-
tive embedding. For every function we encounter, we pro-
vide a default stub function(){return undefined; }.
The resulting set of declarations looks as follows:

var global = new Object();
// this references in the global namespace refer to global
var this = global;
global.Array = new Object();
global.Array.constructor = new function(){return undefined;}
global.Array.join = new function(){return undefined;}
...

Note that we use an explicit global object to host a
namespace for our declarations instead of the implicit
this object that JavaScript uses. In most browser im-
plementations, the global this object is aliased with
the window object, leading to the following declaration:
global.window = global;.

Soundness. However, as it turns out, creation of a sound
native environment is more difficult than that. Indeed, the
approach above assumes that the built-in functions return
objects that are never aliased. This fallacy is most obvi-
ously demonstrated by the following code:

var parent_div = document.getElementById(’header’);
var child_div = document.createElement(’div’);
parent_div.appendChild(child_div);
var child_div2 = parent_div.childNodes[0];

In this case, child div and child div2 are aliases for
the same DIV element. if we pretend they are not, we
will miss an existing alias. We therefore model operations
such as appendChild, etc. in JavaScript code, effectively
creating mock-ups instead of native browser-provided im-
plementations.

In our implementation, we have done our best to ensure
the soundness of the environment we produce by starting
with an automatically generated collection of stubs and
augmenting them by hand to match what we believe the
proper browser semantics to be. This is similar to mod-
eling memcpy in a static analysis of C code or native
methods in a static analysis for Java. However, as with
two instance of foreign function interface (FFI) model-
ing above, this form of manual involvement is often error-

prone. It many also unfortunately compromise the sound-
ness of the overall approach, both because of implemen-
tation mistakes and because of browser incompatibilities.
A potential alternative to our current approach and part
of our future work is to consider a standards-compliant
browser that that implements some of its library code in
JavaScript, such as Chrome. With such an approach, be-
cause libraries become amenable to analysis, the need for
manually constructed stubs would be diminished.

When modeling the native environment, when in doubt,
we tried to err on the side of caution. For instance, we do
not attempt to model the DOM very precisely, assuming
initially that any DOM-manipulating method may return
any DOM node (effectively all DOM nodes are statically
modeled as a single allocation site). Since our policies in
Section 4 do not focus on the DOM, this imprecise, but
sound modeling does not result in false positives.

4 Security and Reliability Policies

This section is organized as follows. Sections 4.1–4.4 talk
about six policies that apply to widgets from all widgets
hosts we use in this paper (Live, Sidebar, and Google).
Section 4.5 talks about host-specific policies, where we
present two policies specific to Live and one specific to
Sidebar widgets. Along with each policy, we present the
Datalog query that is designed to find policy violations.
We have run these queries on our set of 8,379 benchmark
widgets. A detailed discussion of our experimental find-
ings can be found in Section 5.

4.1 Restricting Widget Capabilities
Perhaps the most common requirement for a system that
reasons about widgets is the ability to restrict code capa-
bilities, such as disallowing calling a particular function,
using a particular object or namespace, etc. The Live
Widget Developer Checklist provides many such exam-
ples [34]. This is also what systems like Caja and Web-
Sandbox aim to accomplish [25, 29]. We can achieve the
same goal statically.

Pop-up boxes represent a major annoyance when using



web sites. Widgets that bring up popup boxes, achieved
by calling function alert in JavaScript, can be used for
denial-of-service against the user. In fact, the alert box
prevention example below comes from a widget sample
that asynchronously spawns new alert boxes; this wid-
get is distributed with WebSandbox [26]. The following
query ensures that the alert routine is never called:

Query output: AlertCalls(i : I )

GlobalSym(m, h) : – PTSTO("global", g),
HEAPPTSTO(g, m, h).

AlertCalls(i) : – GlobalSym("alert", h),
CALLS(i, h).

To define AlertCalls , we first define an auxiliary query
GlobalSym : F ×H used for looking up global functions
such as alert. On the right-hand side, g ∈ H is the
explicitly represented global object pointed to by vari-
able global. Following field m takes us to the heap ob-
ject h of interest. AlertCalls instantiates this query for
field alert. Note that there are several references to it in
the default browser environment such as window.alert
and document.alert. Since they all are aliases for the
same function, the query above will spot all calls, inde-
pendently of the the reference being used.

4.2 Detecting Writes to Frozen Objects
We disallow changing properties of built-in objects such
as Boolean, Array, Date, Function, Math, Document,
Window, etc. to prevent environment pollution at-
tacks such as prototype hijacking [9]. This is simi-
lar to frozen objects proposed in EcmaScript 4. The
query in Figure 12 looks for attempts to add or up-
date properties of JavaScript built-in objects specified by
the auxiliary query BuiltInObject , including attempts to
change their prototypes: The rules above handle the case
of assigning to properties of these built-in objects di-
rectly. Often, however, a widget might attempt to as-
sign properties of the prototype of an object as in
Function.prototype.apply = function(){...}. We
can prevent this by first defining a recursive heap reacha-
bility relation Reaches:

Reaches(h1, h2) : – HEAPPTSTO(h1,_, h2).
Reaches(h1, h2) : – HEAPPTSTO(h1,_, h′),

Reaches(h′, h2).

and then adding to the FrozenViolation definition:

FrozenViolation(v) : – STORE(v,_,_),
PTSTO(v, h′),
BuiltInObject(h),
Reaches(h, h′).

An example of a typical policy violation from our exper-
iments is shown below:

Array.prototype.feed = function(o, s){

if(!s){s=o;o={};}

var k,p=s.split(":");

while(typeof(k=p.shift())!="undefined")

o[k]=this.shift();

return o;

}

4.3 Detecting Code Injection
As discussed above, document.write is a routine that
allows the developer to output arbitrary HTML, thus al-
lowing code injection through the use of <script> tags.
While verbatim calls to document.write can be found
using grep, it is easy to disguise them through the use of
aliasing:

var x = document;

var y = x.write;

y("<script>alert(’hi’);</script>");

The query below showcases the power of points-to analy-
sis. In addition to finding the direct calls, the query be-
low will correctly determine that the call to y invokes
document.write.

Query output: DocumentWrite(i : I )

DocumentWrite(i) : – GlobalSym("document", d),
HEAPPTSTO(d,"write", m),
CALLS(i, h).

DocumentWrite(i) : – GlobalSym("document", d),
HEAPPTSTO(d,"writeln", m),
CALLS(i, h).

4.4 Redirecting the Browser
JavaScript in the browser has write access to the current
page’s location, which may be used to redirect the user
to a malicious site. Google widget Google Calculator
performing such redirection is shown below:

window.location =

"http://e-r.se/google-calculator/index.htm"

Allowing such redirect not only opens the door to phish-
ing widgets luring users to malicious sites, redirects
within an iframe also open the possibility of running
code that has not been adequately checked by the host-
ing site, potentially circumventing policy checking en-
tirely. Another concern is cross-site scripting attacks
that involve stealing cookies: a cross-site scripting at-
tack may be mounted by assigning a location of the form
"http : //www.evil.com/" + document.cookie. Of



Query output: FrozenViolation(v : V )

BuiltInObject(h) : – GlobalSym("Boolean", h). BuiltInObject(h) : – GlobalSym("Array", h).
BuiltInObject(h) : – GlobalSym("Date", h). BuiltInObject(h) : – GlobalSym("Function", h).
BuiltInObject(h) : – GlobalSym("Math", h). BuiltInObject(h) : – GlobalSym("Document", h).
BuiltInObject(h) : – GlobalSym("Window", h).

FrozenViolation(v) : – STORE(v,_,_), PTSTO(v, h),BuiltInObject(h).

Figure 12: FrozenViolations query

course, grep is not an adequate tool for spotting redi-
rects, both because of the aliasing issue described above
and because read access to window.location is in fact
allowed. Moreover, redirects can take many forms, which
we capture through the queries below. Direct location
assignment are found by the following query:

Query output: LocationAssign(v : V )

LocationAssign(v) : – GlobalSym("window", h),
PTSTO(v, h),
STORE(_,"location", v).

LocationAssign(v) : – GlobalSym("document", h),
PTSTO(v, h),
STORE(_,"location", v).

LocationAssign(v) : – PTSTO("global", h),
PTSTO(v, h),
STORE(_,"location", v).

Storing to location object’s properties are found by the
following query:

LocationAssign(v) : – GlobalSym(h,"location"),
PTSTO(v, h),
STORE(v,_,_).

Calling methods on the location object are found by the
following query:

Query output: LocationChange(i : I )

LocationChange(i) : – LocationObject(h),
HEAPPTSTO(h,"assign", h′),
CALLS(i, h′).

LocationChange(i) : – LocationObject(h),
HEAPPTSTO(h,"reload", h′),
CALLS(i, h′).

LocationChange(i) : – LocationObject(h),
HEAPPTSTO(h,"replace", h′),
CALLS(i, h′).

var SearchTag = new String ("Home");
var SearchTagStr = new String(

"meta%3ASearch.tag%28%22beginTag+" +
SearchTag +"endTag%22%29");

var QnaURL = new String(
SearchHostPath /*+ SearchQstateStr */+
SearchTagStr +"&format=rss") ;

// define the constructor for your Gadget
Microsoft.LiveQnA.RssGadget =

function(p_elSource, p_args, p_namespace) { ... }

Figure 13: Example of a global namespace pollution violation
(Section 4.5.2) in a Live widget.

Function window.open is another form of redirects, as the
following query shows:

Query output: WindowOpen(i : I )

WindowOpen(i) : – WindowObject(h),
HEAPPTSTO(h,"open", h′),
CALLS(i, h′).

4.5 Host-specific Policies

The policies we have discussed thus far have been rela-
tively generic. In this section, we give examples of poli-
cies that are specific to the host site they reside on.

4.5.1 No XMLHttpRequest Use in Live Widgets

The first policy of this sort comes directly from the Live
Web Widget Developer Checklist [34]. Among other
rules, they disallow the use of XMLHttpRequest object
in favor of function Web.Network.createRequest. The
latter makes sure that the network requests are properly
proxied so they can work cross-domain:

Query output: XMLHttpRequest(i : I )

XMLHttpRequest(i) : –GlobalSym("XMLHttpRequest", h),
CALLS(i, h).



Query output: ActiveXExecute(i : I )

ActiveXObjectCalls(i) : – GlobalSym("ActiveXObject", h′), CALLS(i, h′).

ShellExecuteCalls(i) : – PTSTO("global", h1), HEAPPTSTO(h1,"System", h2),
HEAPPTSTO(h2,"Shell", h3), HEAPPTSTO(h3,"execute", h4), CALLS(i, h4).

ActiveXExecute(i) : – ActiveXObjectCalls(i), CALLRET(i, v), PTSTO(v, h),
HEAPPTSTO(h,_, m), CALLS(i?, m), CALLRET(i?, r), PTSTO(r, h?),
ShellExecuteCalls(i′), ACTUAL(i′,_, v′), PTSTO(v′, h?).

Figure 14: Query for finding information flow violations in Vista Sidebar widgets.

4.5.2 Global Namespace Pollution in Live Widgets

Because web widgets can be deployed on a page with
other widgets running within the same JavaScript inter-
preter, polluting the global namespace, leading to name
clashes and unpredictable behavior. This is why hosting
providers such as Facebook, Yahoo!, Live, etc. strongly
discourage pollution of the global namespace, favoring a
module or a namespace approach instead [11] that avoids
name collision. We can easily prevent stores to the global
scope:

Query output: GlobalStore(h : H )

GlobalStore(h) : – PTSTO("global", g),
HEAPPTSTO(g,_, h).

An example of a violation of this policy from a
Live.com widget is shown in Figure 13. Because the
same widget can be deployed twice within the same in-
terpreter scope with different values of SearchTag, this
can lead to a data race on the globally declared variable
SearchTagStr.

Note that our analysis approach is radically different
from proposals that advocate language restrictions such
as AdSafe or Cajita [12, 13, 29] to protect access to the
global object. The difficulty those techniques have to
overcome is that the this identifier in the global scope
will point to the global object. However, disallowing
this completely makes object-oriented programming dif-
ficult. With the whole-program analysis GATEKEEPER
implements, we do not have this problem. We are able
to distinguish references to this that point to the global
object (aliased with the global variable) from a local ref-
erence to this within a function.

4.5.3 Tainting Data in Sidebar Widgets

This policy ensures that data from ActiveX controls that
may be instantiated by a Sidebar widget does not get
passed into System.Shell.execute for direct execution on
the user’s machine. This is because it is common for Ac-
tiveX controls to retrieve unsanitized network data, which

is how a published RSS Sidebar exploit operates [27].
There, data obtained from an ActiveX-based RSS control
was assigned directly to the innerHTML field withing a
widget, allowing a cross-site scripting exploit. What we
are looking for is demonstrated by the pattern:

var o = new ActiveXObject();
var x = o.m();
System.Shell.Execute(x);

The Datalog query in Figure 14 looks for instances where
the tainted result of a call to method m on an ActiveX ob-
ject is directly passed as an argument to the “sink” func-
tion System.Shell.Execute.

Auxiliary queries ActiveXObjectCalls and
ShellExecuteCalls look for source and sink calls
and ShellExecuteCalls ties all the constraints together,
effectively matching the call pattern described above.
As previously shown for the case of Java information
flow [23], similar queries may be used to find information
flow violations that involve cookie stealing and location
resetting, as described in Chugh et al. [10].

5 Experimental Results
For our experiments, we have downloaded a large num-
ber of widgets from widget hosting sites’ widget galleries.
As mentioned before, we have experimented with widgets
from Live.com, the Vista Sidebar, and Google. We auto-
mated the download process to save widgets locally for
analysis. Once downloaded, we parsed through each wid-
get’s manifesto to determine where the relevant JavaScript
code resides. This process was slightly different across
the widget hosts. In particular, Google widgets tended to
embed their JavaScript in HTML, which required us to
develop a limited-purpose HTML parser. In the Sidebar
case, we had to extract the relevant JavaScript code out of
an archive. At the end of this process, we ended up with a
total of 8,379 JavaScript files to analyze.

Figure 15 provides aggregate statistics for the wid-
gets we used as benchmarks. For each widget source,



Avg. Widget counts
Widget Source LOC Count JavaScriptGK JavaScriptSAFE

Live.com 105 2,707 2,643 97% 643 23%
Vista sidebar 261 4,501 2,946 65% 1,767 39%
Google.com/ig 137 1,171 962 82% 768 65%

Figure 15: Aggregate statistics for widgets from Live por-
tal, Windows Sidebar, and Google portal widget repositories
(columns 2–3). Information about widget distribution for dif-
ferent JavaScript language subsets (columns 4–7).
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Figure 17: Histogram showing GATEKEEPER processing times.

we specify the total number of widgets we managed
to obtain in column 2. Column 3 shows the average
lines-of-code count for every widget. In general, Side-
bar widgets tend to be longer and more involved than
their Web counterparts, as reflected in the average line
of code metric. Note that in addition to every widget’s
code, at the time of policy checking, we also prepend
the native environment constructed as described in Sec-
tion 3.4. The native environment constitutes 270 lines of
non-comment JavaScript code (127 for specifying the the
browser embedding and 143 for specifying built-in ob-
jects such as Array and Date).

5.1 Result Summary

A summary of our experimental results in presented in
Figure 16. For each policy described in Section 4, we
show the the total number of violations across 8,379
benchmarks, and the number of violating benchmarks.
The latter two may be different because there could be
several violations of a particular query per widget. We
also show the percentage of benchmarks for which we find
policy violations. As can be seen from the table, overall,
policy violations are quite uncommon, with only several
percent of widgets affected in each case. Overall, a total
of 1,341 policy violations are reported.

As explained in Section 4.5, we only ran those policies
on the appropriate subset of widgets, leaving other table

function MM_preloadImages() {

var d=m_Doc;

if(d.images){

if(!d.MM_p) d.MM_p=new Array();

var i,j=d.MM_p.length,

a=MM_preloadImages.arguments;

for(i=0; i<a.length; i++)

if (a[i].indexOf("#")!=0){

d.MM_p[j]=new Image;

d.MM_p[j++].src=a[i];

}

}

}

Figure 18: False positives in common.js from JustMusic.FM.

cells blank. To validate the precision of our analysis, we
have examined all violations reported by our policies. For
examination, GATEKEEPER output was cross-referenced
with widget sources. Luckily for us, most of our query re-
sults were easy to spot-check by looking at one or two
lines of corresponding source code, which made result
checking a relatively quick task. Encouragingly, for most
inputs, GATEKEEPER was quite precise.

5.2 False Positives
We should point out that a conservative analysis such as
GATEKEEPER is inherently imprecise. Two main sources
of false positives in our formulation are prototype han-
dling and arrays. Only two widgets out of over 6,000 ana-
lyzed files in the JavaScriptGK subset lead to false positives
in our experiments. Almost all false positive reports come
from the Sidebar widget, JustMusic.FM, file common.js.
Because of our handling of arrays, the analysis conserv-
atively concludes that certain heap-allocated objects can
reach many others by following any element of array a,
as shown in Figure 18. In fact, this example is contains a
number of features that are difficult to analyze statically:
array aliasing, the use of arguments array, as well as ar-
ray element loads and stores, so it is not entirely surprising
that their combination leads to imprecision.

It is common for a single imprecision within static
analysis to create numerous “cascading” false positive
reports. This is the case here as well. Luckily, it is
possible to group cascading reports together in order to
avoid overwhelming the user with false positives caused
by a single imprecision. This imprecision in turn affects
FrozenViolation and LocationAssign queries leading to
many very similar reports. A total of 113 false positives
are reported, but luckily they affect only two widgets.

5.3 Analysis Running Times
Our implementation uses a publicly available declarative
analysis engine provided by bddbddb [32]. This is a



LIVE WIDGETS VISTA SIDEBAR GOOGLE WIDGETS

Query Section Viol. Affected % FP Affected Viol. Affected % FP Affected Viol. Affected % FP Affected

AlertCalls(i : I) 4.1 54 29 1.1 0 0 161 84 2.9 0 0 57 35 3.6 0 0

FrozenViolation(v : V ) 4.2 3 3 0.1 0 0 143 52 1.5 94 1 1 1 0.1 0 0

DocumentWrite(i : I) 4.3 5 1 0.0 0 0 175 75 1.7 0 0 158 88 8.1 0 0

LocationAssign(v : V ) 4.4 3 3 0.1 2 1 157 109 3.8 15 1 9 9 0.7 0 0

LocationChange(i : I) 4.4 3 3 0.1 0 0 21 20 0.7 1 1 3 3 0.3 0 0

WindowOpen(i : I) 4.4 50 22 0.9 0 0 182 87 3.0 1 1 19 14 1.5 0 0

XMLHttpRequest(i : I) 4.5 1 1 0.0 0 0 — — — — — — — — — —

GlobalStore(v : V ) 4.5 136 45 1.7 0 0 — — — — — — — — — —

ActiveXExecute(i : I) 4.5 — — — — — 0 0 0 0 0 — — — — —

Figure 16: Experimental result summary for nine policies described in Section 4. Because some policies are host-specific, we only
run them on a subset of widgets. “—” indicates experiments that are not applicable.

Live Sidebar Google

Number of instrumented files 2,000 1,179 194

Instrumentation points per file 1.74 8.86 5.63

Estimated overhead 40% 65% 73%

Figure 19: Instrumentation statistics.

highly optimized BDD-based solver for Datalog queries
used for static analysis in the past. Because repeatedly
starting bddbddb is inefficient we perform both the points-
to analysis and run our Datalog queries corresponding to
the policies in Section 4 as part of one run for each widget.

Our analysis is quite scalable in practice, as shown in
Figure 17. This histogram shows the distribution of analy-
sis time, in seconds. These results were obtained on a
Pentium Core 2 duo 3 GHz machine with 4 GB of mem-
ory, running Microsoft Vista SP1. Note that the analysis
time includes the JavaScript parsing time, the normaliza-
tion time, the points-to analysis time, and the time to run
all nine policies. For the vast majority of widgets, the
analysis time is under 4 seconds, as shown by the cumula-
tive percentage curve in the figure. The bddbddb-based
approach has been shown to scale to much larger pro-
grams — up to 500,000 lines of code — in the past [32], so
we are confident that we should be able to scale to larger
codebases in GATEKEEPER as well.

5.4 Runtime Instrumentation
Programs outside of the JavaScriptSAFE language subset
but within the JavaScriptGK language subset require instru-
mentation. Figure 19 summarizes data on the number of
instrumentation points required, both as an absolute num-
ber and in proportion of the number of widgets that re-
quired instrumentation.

We plan to fully assess our runtime overhead as part of
future work. However, we do not anticipate it to be pro-

hibitively high. The number of instrumentation points per
instrumented widget ranges roughly in proportion to the
size and complexity of the widget. However, it is gen-
erally difficult to perform large-scale overhead measure-
ments for a number of highly interactive widgets.

Instead we have devised an experiment to approximate
the overheads. Note that we can discern the average den-
sity of checks from the numbers in Figure 19: for instance,
for Live.com, the number of instrumentation points per
file is 1.74, with an average file being 105 lines, as shown
in Figure 15. This yields about 2% of all lines being in-
strumentated, on average.

To mimic this runtime check density, we generate a test
script shown in Figure 20 with 100 fields stores, where the
first two stores require runtime checking and the other 98
are statically known. For Sidebar and Google widgets,
we construct similar test scripts with a different density
of checks. As shown below, we use index innerHTML
for one out of two rewritten cases for Live. We use it
for 2 out of 3 cases for Sidebase, and 2 out of 4 cases
for Google. This represents a pretty high frequency of
innerHTML assignments.

We wrap this code in a loop that we run 1,000 times to
be able to measure the overheads reliably and then take
the median over several runs to account for noise. The
baseline is the same test with no index or right-hand side
checks. We observe overheads ranging between 40–73%
across the different instrumentation densities, as shown in
Figure 19. It appears that calls to toStaticHTML result in
a pretty substantial runtime penalty. This is likely because
the relatively heavy-weight HTML parser of the browser
needs to be invoked on every HTML snippet.

Note that this experiment provides an approximate
measure of overhead that real programs are likely to expe-
rience. However, these numbers are encouraging, as they
are significantly smaller overheads on the order of 6–40x
that tools like Caja may induce [28].



console.log(new Date().getTime());

var v1 = new Array();

var v2 = "<div onclick=’alert(38);’>" +

"<h2>Hello<script>alert(38)</script></div>";

for(var iter = 0; iter < 1000; iter++){

// first store: check

var i = ’innerHTML’;

if (i==="onclick" || i==="onkeypress" || ...) {

alert("Disguised eval at <file>:<line>");

} else

if(i==="innerHTML" && __IsUnsafe(v2)){

alert("Unsafe innerHTML at <file>:<line>");

} else {

v1[i] = v2;

}

// second store: check

i = ’onclick’;

if (i==="onclick" || i==="onkeypress" || ...) {

alert("Disguised eval at <file>:<line>");

} else

if(i==="innerHTML" && __IsUnsafe(v2)){

alert("Unsafe innerHTML at <file>:<line>");

} else {

v1[i] = v2;

}

// all other stores are unchecked

v1[i] = 2;

v1[i] = 3;

...

v1[i] = 100;

}

console.log(new Date().getTime());

Figure 20: Measuring the overhead of GATEKEEPER checking.

6 Related Work

Much of the work related to this paper focuses on limit-
ing various attack vectors that exist in JavaScript. They
do this through the use of type systems, language restric-
tions, and modifications to the browser or the runtime. We
describe these strategies in turn below.

6.1 Static Safety Checks

JavaScript is a highly dynamic language which makes it
difficult to reason about programs written in it. However,
with certain expressiveness restrictions, desirable secu-
rity properties can be achieved. ADSafe and Facebook
both implement a form of static checking to ensure a form
of safety in JavaScript code. ADSafe [13] disallows dy-
namic content, such as eval, and performs static check-
ing to ensure the JavaScript in question is safe. Facebook
takes an approach similar to ours in rewriting statically
unresolved field stores, however, it appears that, unlike
GATEKEEPER, they do not try to do local static analysis
of field names. Facebook uses a JavaScript language vari-
ant called FBJS [15], that is like JavaScript in many ways,

but DOM access is restricted and all variable names are
prefixed with a unique identifier to prevent name clashes
with other FBJS programs on the same page.

In many ways, however, designing a safe language sub-
set is a tricky business. Until recently, is was difficult to
write anything but most simple applications in AdSafe be-
cause of its static restrictions, at least in our personal ex-
perience. More recently, AdSafe was updated with APIs
to lift some of initial restrictions and allow DOM access,
etc., as well as several illustrative sample widgets. Over-
all, these changes to allow compelling widgets to be writ-
ten are an encouraging sign. While quite expressive, FBJS
has been the subject of several well-publicised attacks
that circumvent the isolation of the global object offered
through Facebook sandbox rewriting [2]. This demon-
strates that while easy to implement, reasoning about what
static language restrictions accomplish is tricky.

GATEKEEPER largely sidesteps the problem of proper
language subset design, opting for whole program analy-
sis instead. We do no try to prove that JavaScriptSAFE pro-
grams cannot pollute the global namespace for all pro-
grams, for example. Instead, we take the entire program
and a representation of its environment and use our static
analysis machinery to check if this may happen for the in-
put program in question. The use of static and points-to
analysis for finding and vulnerabilities and ensuring se-
curity properties has been previously explored for other
languages such as C [6] and Java [23].

An interesting recent development in JavaScript
language standards committees is the strict mode
(use strict) for JavaScript [14], page 223, which is be-
ing proposed around the time of this writing. Strict mode
accomplishes many of the goals that JavaScriptSAFE is de-
signed to accomplish: eval is largely prohibited, bad
coding practices such as assigning to the arguments ar-
ray are prevented, with is no longer allowed, etc. Since
the strict mode supports customization capabilities, going
forward we hope to be able to express JavaScriptSAFE and
JavaScriptGK restrictions in a standards-compliant way, so
that future off-the-shelf JavaScript interpreters would be
able to enforce them.

6.2 Rewriting and Instrumentation
A practical alternative to static language restrictions is
instrumentation. Caja [29] is one such attempt at limit-
ing capabilities of JavaScript programs and enforcing this
through the use of runtime checks. WebSandbox is an-
other project with similar goals that also attempts to en-
force reliability and resource restrictions in addition to se-
curity properties [25].

Yu et al. traverse the JavaScript document and rewrite
based on a security policy [35]. Unlike Caja and Web-
Sandbox, they prove the correctness of their rewriting



with operational semantics for a subset of JavaScript
called CoreScript. BrowserShield [30] similarly uses dy-
namic and recursive rewriting to ensure that JavaScript
and HTML are safe, for a chosen version of safety, and
all content generated by the JavaScript and HTML is
also safe. Instrumentation can be used for more than
just enforcing security policies. AjaxScope [20] rewrites
JavaScript to insert instrumentation that sends runtime in-
formation, such as error reporting and memory leak de-
tection, back to the content provider.

Compared to these techniques, GATEKEEPER has two
main advantages. First, as a mostly static analysis, GATE-
KEEPER places little runtime overhead burden on the user.
While we are not aware of a comprehensive overhead
evaluation that has been published, it appears that the run-
time overhead of Caja and WebSandbox may be high, de-
pending on the level of rewriting. For instance, a Caja au-
thors’ report suggest that the overhead of various subsets
that are part of Caja are 6–40x [28]. Second, as evidenced
by the Facebook exploits mentioned above [2], it is chal-
lenging to reason about whether source-level rewriting
provides complete isolation. We feel that sound static
analysis may provide a more systematic way to reason
about what code can do, especially in the long run, as it
pertains to issues of security, reliability, and performance.
While the soundness of the native environment and ex-
haustiveness of our runtime checks might be weak points
of our approach, we feel that we can address these chal-
lenges as part of future work.

6.3 Runtime and Browser Support

Current browser infrastructure and the HTML standard re-
quire a page to fully trust foreign JavaScript if they want
the foreign JavaScript to interact with their site. The al-
ternative is to place foreign JavaScript in an isolated en-
vironment, which disallows any interaction with the host-
ing page. This leads to web sites trusting untrustworthy
JavaScript code in order to provide a richer web site. One
solution to get around this all-or-nothing trust problem is
to modify browsers and the HTML standard to include
a richer security model that allows untrusted JavaScript
controlled access to the hosting page.

MashupOS [18] proposes a new browser that is mod-
eled after an OS and modifies the HTML standard to pro-
vide new tags that make use of new browser functional-
ity. They provide rich isolation between execution en-
vironments, including resource sharing and communica-
tion across instances. In a more lightweight modification
to the browser and HTML, Felt et al. [16] add a new
HTML tag that labels a div element as untrusted and lim-
its the actions that any JavaScript inside of it can take.
This would allow content providers to create a sand box
in which to place untrusted JavaScript. Integrating GATE-

KEEPER techniques into the browser itself, without rely-
ing on server-side analysis, and making them fast enough
for daily use, is part of future work.

6.4 Typing and Analysis of JavaScript
A more useful type system in JavaScript could prevent er-
rors or safety violations. Since JavaScript does not have a
rich type system to begin with, the work here is devising
a correct type system for JavaScript and then building on
the proposed type system. Soft typing [8] might be one of
the more logical first steps in a type system for JavaScript.
Much like dynamic rewriters insert code that must be ex-
ecuted to ensure safety, soft typing must insert runtime
checks to ensure type safety.

Other work has been done to devise a static type system
that describes the JavaScript language [4, 5, 31]. These
works focus on a subset of JavaScript and provide sound
type systems and semantics for their restricted subests
of JavaScript. As far as we can tell, none of these ap-
proaches have been applied to realistic bodies of code.
GATEKEEPER uses a pointer analysis to reason about the
JavaScript program in contrast to the type systems and
analyses of these works. We feel that the ability to reason
about pointers and the program call graph allows us to ex-
press more interesting security policies than we would be
able otherwise.

A contemporaneous project by Chugh et al. focuses on
staged analysis of JavaScript and finding information flow
violations in client-side code [10]. Chugh et al. focus
on information flow properties such as reading document
cookies and changing the locations, not unlike the loca-
tion policy described in Section 4.4. A valuable feature of
that work is its support for dynamically loaded and gener-
ated JavaScript in the context of what is generally thought
of as whole-program analysis.

7 Conclusions

This paper presents GATEKEEPER, a mostly static sound
policy enforcement tool for JavaScript programs. GATE-
KEEPER is built on top of what to our knowledge is the
first pointer analysis developed for JavaScript. To show
the practicality of our approach, we describe nine rep-
resentative security and reliability policies for JavaScript
widgets. Statically checking these policies results in 1,341
verified warnings in 684 widgets, with 113 false positives
affecting only two widgets.

We feel that static analysis of JavaScript is a key build-
ing block for enabling an environment in which code from
different parties can safely co-exist and interact. The abil-
ity to analyze a programming language using automatic
tools is a valuable one for long-term language success.



It is therefore our hope that our experience with ana-
lyzable JavaScript language subsets will inform the de-
sign of language restrictions build into future versions of
the JavaScript language, as illustrated by the JavaScript
use strict mode.

While in this paper our focus is on policy enforcement,
the techniques outlines here are generally useful for any
task that involves reasoning about code such as code op-
timization, rewriting, program understanding tools, bug
finding tools, etc. Moreover, we hope that GATEKEEPER
paves the way for centrally-hosted software repositories
such as the iPhone application store, Windows Market-
place, or Android Market to ensure the security and qual-
ity of software contributed by third parties.
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