CS 224N Final Project

Unsupervised Web Page Clustering

Spring 2000, Stanford Univ.

Paul Ruhlen — ruhlen@cs
Husrev Tolga Ilhan — ilhan@leland

V. Benjamin Livshits — livshits@cs

Introduction

Problem

With the huge proliferation of the World Wide Web, meaningfully indexing or searching
millions of non-homogenous documents has become an increasing challenge and
opportunity. We were curious how much structure could be elicited directly from sets of
web pages, with no supervised training or "priming" of classifiers. While this
unsupervised approach is unlikely to achieve the accuracy of a hand-trained or
constructed system, it could suggest some lower bound on the need for expensive and
slow human indexing of the millions of new sites and pages being continuously added to
the Web.

Approach, Data, Evaluation

We decided to explore the behavior of the EM algorithm when used for clustering a set
of Web pages, in large part to gain experience with issues of clustering and web
processing. We initially decided to learn a set of Naive Bayes classifiers, one for each
cluster, and to iterate EM to Maximize the likelihood of the data given these classifiers,
and then use these new classifiers to re-assign the pages fractional membership in the
various clusters, according the their Expectation of being in each.

Our data were drawn from various categories or "topics" in the www.dmoz.org directory.
This directory is similar in purpose and scope to Yahoo! and other web indices, although
it is maintained by a community of volunteer editors, and unlike Yahoo! dmoz.org has an
open licensing agreement that allows free use for derivative works, such as this
research. Selecting documents that were pre-categorized guaranteed there was some
underlying structure we could try to learn.

To evaluate our system’s performance, we carried along with each page its original
category string under dmoz.org, such as "Sports/Badminton/". To measure the quality of
the current learned clusters, we found, for each cluster, the most frequent original
category string among its members (counting as members only items with a higher
fractional expectation of being in this category than in any other). Then every member
that matched this most frequent original category was counted as correctly categorized,
and any other member was counted as an error.

This measure of accuracy had the advantage that achieving 100% percent meant we
had exactly re-created the original clusters. It had the disadvantage that no "partial
credit" was given for clustering similar documents together that happened to have been
originally indexed separately, perhaps arbitrarily or mistakenly by a human editor. (We
discovered at least once such mis-categorization, when a site on Chinese calligraphy
ended up counting as an error in our calligraphy cluster, because it had been indexed
under sculpture.)

It also gave no direct penalty to splitting an original single cluster into two or more
parts, although such a split guaranteed that members of at least one other cluster would
have to be counted as errors, since there would not be enough remaining clusters to go
around.

Findings

We achieved surprisingly good accuracy rates on sets of up to 300 pages, drawn from
up to 8 categories, reaching average accuracies across multiple runs as high as 92%.
The approach did not seem likely to scale well up to thousands of categories without
substantial redesign.

Literature

We actually did very minimal literature review when starting this project, in part because
of the very limited time for the project, and because we felt we would learn a great deal
just "getting our hands dirty" with attempts to build and improve a clustering system.

We did take a close look at Hierarchically classifying documents using very few words, by
Koller, D., Sahami, M., Proc. of the 14th International Conference on Machine Learning
ICML97, pp. 170---178, 1997.

While this was a semi-supervised learning system, classifying computer science research
papers into an existing hierarchical category tree, it did train Naive Bayes classifiers
using EM to let a large body of unlabeled training data improve the performance of the
classifiers. It also used an extension to NB classifiers that learned limited dependencies
among words, and learned a hierarchical set of classifiers, to reduce the size and scope
of each classifier and improve reliability.

We also took a quick look at: A Corpus-Based Investigation of Definite Description Use,
Massimo Poesio, Renata Vieira, Centre for Cognitive Science, The University of
Edinburgh, and a few other papers on Kappa as an alternate measure of the reliability of
our clusters. We decided that consistency of learned clusters from one run to the next
was less meaningful than agreement with human editors, since learning such inane
clusters as alphabetic ranges of the first word of the document would be completely
consistent and repeatable, but equally useless as category clusters.

Design and Algorithms

The system we designed has two major parts: a Perl script for downloading, parsing,
filtering, and caching the URLs as files of tokens, and a C++ program for reading and
clustering the resulting files, and measuring the accuracy of the learned clusters.

Download and HTML Parse

We decided early on to download and cache web pages, in order to isolate our
clustering tests from the often slow response times of some web servers, and to
improve repeatability in testing, since pages that were present in one download might
be unavailable the next. We chose Perl to implement this portion of the system, due to
its strong features for network and socket I/O, ease of text processing and filtering, and
extensive library modules. Most HTML tags were completely removed from the text,
leaving only the visible plain text from the web page, with no formatting information
remaining.

We also chose to implement an optional stop-word list at this point, to remove high-
frequency low-information common words. We started with a list of generally common
English words, and supplemented it during development with vocabulary common to

web pages, such as dlick, e-mail, visit, and site, with our final set including 156 words.
Stop-word filtering, like most features of the script, could be controlled through
command-line options, so comparative tests were simple to perform.

We also stripped out all characters other than letters, hyphens, apostrophes, and
periods, and then dropped all tokens that contained no letters, or that were shorter than
four characters. For almost all testing we shifted all text to lower-case, to better smooth
the text distribution.

We eventually decided to parse the META tags for Keywords and Description, and
include their text along with the page title in the cached file, each surrounded by
delimiter tags so the cluster program could choose whether to include or even
emphasize those words. This particularly helped classify some minimal pages that were
the top of an HTML frame set or contained only a "splash" image. In keeping with the
ever-changing structure of the Web, we discovered a fairly high fraction of pages listed
in the dmoz.org directory were just "Click here for new location" pointers, or were frame
sets or splash pages with no META tags or other significant text. A more sophisticated
front end could try to recognize such pages and download the new location or child
pages. We decided to simply discard pages that were shorter than 150 characters, once
keywords, title, and description were included, which removed most of these
unclassifiable pages from our test sets.

In our largest test set of 1493 URLs, 97% of the pages downloaded without an error,
and of those, 75% passed the length threshold and were cached for clustering.

The initial version of our Perl front end would simply take a file of URLs and dmoz.org
category strings, download, parse, and filter each one, and store it in a text file named
after the original URL. It would also create an index file, containing all the filenames and
category strings, which would serve as the initial input to the clustering stage. As we
expanded our testing to cover larger and more challenging test sets, it became
cumbersome to hand-construct the URL files. So we expanded the capabilities of our
front end to be able to take a set of dmoz.org categories and create a URL file by reading
the dmoz.org directory contents directly. Finally, in order to be able to create arbitrarily
large test sets for scalability testing, we added the ability to randomly walk the dmoz.org
directory and generate any number of "leaf node" categories.

Initialization

Our C++ clustering program scanned the index file generated by the front end, and for
each file listed, created a new Document object, appended onto a list of Documents. It
opened the file and read in all the tokens in the file into a word frequency "map"
member of the Document, and filled in the original dmoz.org category string as another
member. This original category was completely ignored by all clustering algorithms, and
used only by the evaluation routine for judging the accuracy of learned clusters. The
word frequencies were then normalized within each Document to sum to one, so that
they represented the probability of a random token in that Document being of that type.
Since each document’s word frequency map contained only the filtered words in that
particular document, it was much smaller than a smoothed distribution across the entire
vocabulary, and could be processed more quickly.

We implemented various attempts at elimination "noise" words that were beyond what a
fixed stop-word list could accomplish. An option (-r) would prune the word frequencies

to remove all words that occurred in only one Document, since we considered learning
single-document clusters to be outside our domain, and we learned that "outlier" pages
could otherwise dominate some classifiers. Such words could obviously contribute no
positive evidence in learning which documents to cluster together.

We also experimented with an option (-m N) to further prune the word frequencies to
preserve only the N words in each document that occurred across the largest number of
different documents. Any word in the entire vocabulary flagged to be thus preserved by
any document was preserved in all documents, and all other words were deleted in
every document.

Other options would delete words in each document that occurred £ N times (-f N), so —
f 1 discarded singleton words, or would keep only the N most frequent types in each
document (-k N). After all such pruning of word frequencies, they were renormalized.

K-means

We experimented briefly with a K-means clustering algorithm, as had been suggested in
the review of our project proposal. In this algorithm, documents are randomly assigned
to some single cluster, then each cluster constructs a "centroid" word frequency
distribution averaged across all its member documents. Then documents are iteratively
re-assigned to the cluster with the closest centroid, using as a distance measure the dot
product between the centroid and its word frequency, both being re-normalized as a
unit vector. Iteration halts when documents stop moving between clusters.

We implemented K-means as "hard" clustering, in which each document belongs to only
the closest cluster.

EM Algorithm

We spent considerably more time experimenting with a version of the Expectation-
Maximization algorithm, which uses "soft" clustering of fractionally assigning documents
to multiple clusters, based on their probability of belonging to each cluster (the
Expectation phase). Then it constructs each cluster’s classifier based the average across
its member documents, each weighted by their fractional expectation of being in that
cluster (the Maximization phase).

The halting condition is based on each document comparing its old vector of
Expectations to the new one after each E-phase, finding the largest absolute change in
the vector, and then finding the largest of these changes across all documents. If this
maximum Expectation change is below some threshold (0.0001 for most of our testing),
we conclude that EM has converged and halt.

We implemented two types of classifiers for use with the EM algorithm, with a command
line option to select which one to use.
Naive Bayes Classifier

For the Naive Bayes classifier, each cluster maximized the likelihood of the documents
that fractionally belonged to it by constructing an average word frequency distribution
across them, much like the K-means centroid, but weighted by the expectations.

Smoothing of this distribution (to avoid any 0 probability words) was achieved by
smoothing all the expectation vectors slightly. By ensuring that every document had at
least a non-zero epsilon membership in each cluster (set to 10-10), this guaranteed that
each cluster gave every word across the full vocabulary of the test set a positive
probability.

For each document’s expectations, it passed its word frequency map into the LogProb
method of each cluster, and got back the Log Probability of that document "occurring,"
conditional on it being from that cluster. LogProb calculated the sum across every word
in the document’s word frequency of the log of the product of that frequency and the
classifier’s probability for that word. In probability space, this is the equivalent of
computing the product across each word w in the document of P(w| ¢), which the Naive
Bayes assumption substitutes for the probability of the full document given the cluster,
by assuming the individual words occur independently. This math is all done in Log
space to avoid the risk of underflow from multiplying together many very small
probabilities.

We calculate for each document D, for every cluster C:

P(D|C)P(C)

Py norm{ P(D| CYP(O))

P(C| D)=

= norm| P(C)| | P(w|C) |= norm(P(C)eLogpmb(W})

W

where "norm" simply renormalizes each term as a probability by dividing by the sum of
all terms across clusters. We chose to ignore the prior probability of each cluster P(C),
assuming that every cluster was equally probable (i.e., of equal size). To calculate the
exponent term, since the normalization needs to be done in Probability space, not Log
space, we first subtracted from every LogProb the largest (most positive) LogProb value,
then took the exponent of each term and normalized them. This subtraction was
equivalent to multiplying each probability by the same (very large) constant value, which
avoided underflow that would result from taking the exponent of such large negative
numbers, and then disappeared when normalized.

Cosine Similarity Classifier

We also implemented a classifier based on the cosine similarity measure, instead of the
NB probability, which in effect assumed that P(D|C) was proportional to vector cosine
between the document’s word frequencies and the cluster’s centroid. This was not really
mathematically justified, since unless these two vectors were almost completely
orthogonal, meaning they shared no word in common with more than a tiny frequency,
they would have some significant similarity.

This approach was really a "soft" variant of K-means clustering, permitting (and almost
guaranteeing) fractional membership in multiple clusters, but using Euclidean distance
for expectation weightings rather than a strictly probabilistic formula.

Results

Nonetheless, using EM with the cosine classifier gave us our only successful clustering
behavior, and formed the basis for most of our further experiments and extensions.

K-means clustering never iterated more than once, because no document ever moved
from the cluster to which it was initially (and randomly) assigned. Apparently, such
"hard" clustering on the relatively small sets of data points (hundreds of documents),
and the high dimensionality of the parameter space (10,000 words in the vocabulary),
meant that any set of documents could find a centroid along some "word dimensions"
that was closer than those any other sets.

Perhaps more surprisingly, the Naive Bayes classifiers behaved quite similarly, in that
documents rarely switched from the clusters to which they were first randomly assigned.
We used various diagnostics to examine the causes, and discovered that almost every
document contained words that were infrequent in other documents and therefore in
other clusters. Since the membership of the document in its initial cluster guaranteed
that every word in the document had a value in the classifier significantly greater than
zero, it's probability P(D|C) was significantly greater than zero in its cluster. But since
every other cluster almost always had tiny epsilon smoothing values for one or more
words in the document, the product of the probabilities across all words was nearly zero,
even if many other words were a good match in frequency.

So the negative evidence of even one "missing" word in another cluster was enough to
lock documents out of almost ever preferring a new cluster and switching.

We tried several variations in an attempt to "shake loose" this rigid stability of the NB
clusters. We aggressively smoothed the expectation vectors (option —s), and thus the
classifier distributions, by adding 1.0 to each expectation in the document and
renormalizing. This was equivalent to setting each expectation E to (E+1)/(N+1), where
N is the number of clusters, or an interpolation of each E with 1/N. The result was that
expectations started and remained more evenly spread across the clusters, but a cluster
that started with a slight lead over the others for a document, tended strongly to
maintain that lead. Expectations tended to converge quickly to 2/(N+1) for the initial
cluster and 1/(N+1) for the others. This was again due to the power with NB classifiers
of negative evidence, even though this was somewhat weakened by every cluster
having a significant fraction of each document’s word frequencies.

Another variation was in initialization of expectations before the first M-phase (-i option).
Rather than assign each document entirely to a single cluster (except for the epsilon
smoothing), each expectation was set to 1/N, and then slightly randomly perturbed by
up to 1%. This too had little effect on the pattern of rigid convergence to the initially
leading clusters, even when combined with the aggressive smoothing option.

Fortunately, the behavior of the "soft" cosine was much more promising. On our
simplest test set of 22 documents from only 2 categories, the base cosine measure, with
no additional options, achieved 100% accuracy on 20 out of 20 runs with different
random starts. The random initial assignments had accuracies of between 54% and
72%. Throughout our tests with cosine, it always significantly improved accuracies over
the random starting positions. While accuracies on the more complex test sets did vary
with starting position, the best results were never due to the data already being "pre-
clustered" by the random start.

When we ran the system on our next most difficult test set, "Set2" consisting of 73 URLs
drawn from 5 widely-spaced different dmoz.org categories, we began seeing more
complex patterns of convergence. In particular, the accuracy would always peak in
accuracy and decline, usually within 5 iterations, at an average of 84% correct, but then
continue iterating another 60+ times before the Expectation deltas converged, with a
final accuracy averaging below 69%.

Clearly what EM was minimizing in its gradient descent, the differences between the
cluster centroids and the fractional document expectations, did not map precisely to
minimizing deviation from the original human-generated category labels. These two
were clearly related, however, in that EM consistently reached a much-improved level of
accuracy before overshooting on its way down its error slope.

At this point we implemented and tested several of the options described above,
including pruning out words on various criteria, and options to emphasize words in the
title (-e N) or in META tag keywords (-y N), counting such words as though they
occurred N times instead of just once.

We discovered that the cruder methods for removing infrequent "noise" words
substantially reduced accuracy. When we examined some basic word counts across the
cached text files, we discovered that infrequent words often contained critical
information about the topic of the page. For example within a Badminton category, of
the 12 documents that contained the word "badminton," 4 of them used it only once, so
stripping out singletons within documents, or keeping only the N most frequent words,
discarded important information more than it filtered out irrelevant noise.

Since peak accuracy seemed to vary widely from run to run, even with the same
options, we realized we needed to perform multiple runs to reduce the stochastic noise
in our accuracy measurements. We used a set of simple scripts to let us run batches of
20 runs with a particular set of options, store the results, and filter out the significant
numbers. Among the options that did not severely reduce peak accuracy (see Figure 1),
there was disappointingly little variance from the base (no options) system. Since there
is still some stochastic noise from random starting conditions in this data, even averaged
over 20 runs, differences of 1 or 2% in accuracy could easily be due to chance, rather
than a true difference in performance. Emphasizing title words slightly hurt
performance, probably due to the many non-descriptive titles such as "Anne’s Corner of
the Web." Emphasizing keywords by 5 seemed to help a bit, although tests on other
sets would should such emphasis having a negative effect.

Peak Set? accuracy across 2A0runs

008 L\\T_—f'_“‘“————_,__f”"‘“————__r_f'

0.9

l

t J

0.25 /

0.7s s =

Best Accurac,
o
o

—4— Juerage

—=— max

—— min

S TN

N |

I:l E T T T T T T
-i -y -e5 basz e -z -1 Bl

Options

Figure 1

We also experimented briefly with trying to "guess" where the peak accuracy would
occur, so we could halt EM iterations at that point. We noticed that, even across test
sets, there was a consistent "elbow" in the curve of declining expectation deltas around
the point of maximum accuracy. So we constructed a measure of the second derivative
of Expectations that could usually predict within one or two iterations where a good
halting point would be.

We also noticed a pattern that one or two clusters tended to go "extinct" in most runs.
While they still could contain some fractional expectation of some documents, no
document had them as their highest-expectation cluster when EM converged, and so
they contributed nothing to the final accuracy score.

Clearly though, a different approach was needed to significantly improve system
performance, and to more robustly deal with the disconnect between peak accuracy and
convergence.

Enhancements

Information Theory and Feature Selection

In discussions with Dan Klein, he suggested we concentrate on some form of "top-
down" identification of the relatively few words that are the best features for
distinguishing the clusters, rather that a "bottom-up" attempt to eliminate the worst
words. This brought to mind the use of information theory in decision tree learning for
selecting a feature to "split" the tree on at any point, by calculating the information gain
after each possible split (or equivalently, the reduction in entropy).

To accomplish this, we added an entropy option (-h K) that would keep in each
classifier, in each M-phase iteration, only the K words with the lowest entropy for
distinguishing documents being inside the cluster vs. outside. Besides calculating the
normalized classifier as the expectation-weighted average of member documents’ word
frequencies, we also constructed an "anti-classifier" for each cluster, of the average
weighted distribution of words across all the other clusters. We could then examine each
pair of frequencies of each word, and calculate the entropy using the following formula.
We developed this ourselves, having not found an equation for information gain based
on fractional data samples, with the counts of data instances (documents) all normalized
away.

For each word type w, let f,, be the frequency with which it occurs in the current cluster,
and f,," be its frequency across all other clusters. Then the probability of being in this
cluster given that the word occurs is Pcw+ = f,, / (f, + f,/) and the probability of being
in a different cluster given the word occurs in 1 — Pcw+. The probability of being in this
cluster given the word doesn't occur is Pcw—= (1 -f,)/ (1 -f,) + (1 —f,")) of being
in a different cluster, 1 — Pcw—. Also the overall probability of the word occurring,
assuming N equal-sized clusters, is the weighted sum of f, and f./
Pw = (f, / N) + f,/ “ (N — 1) / N. Then the entropy of cluster membership given the
word occurred is

Hw = — (Pcw™ x log Pcw™) — ((1 — Pcw™) X log (1 — Pcw+))

bits. And the corresponding entropy given the word not occurring is HW' = — (Pcw— " log
Pcw-) — ((1 — Pcw=) “ log (1 — Pcw-)) bits. And the total expected entropy from
knowing whether this word occurred is the weighted sum of these two values:

Htotal = Hw x Pw + HwW' x (1 — Pw).

Testing with a pair of artificial documents with only a handful of words confirmed that
Htotal has the desired behavior that it is 1 (no information gain) for words with equal
distribution in and out of the cluster, and it's lowest for words that occur only in one
distribution but not the other. And for different word pairs with the same ratio of
frequency, it's lower for words with higher overall frequency (so the pair 0.04, 0.02
scores lower than the pair 0.02, 0.01).

The system builds a list of all the words in the classifier and their Htotal values, sorts it
in ascending order, and removes all but the K lowest scoring words from the classifier.
Although Htotal is symmetric whether the evidence of the word is positive or negative
for membership in the cluster, (f,, > f,’ or vice versa), our experience with Naive Bayes

classifiers led us to believe that the absence of a word was rarely a useful indicator.
Only word pairs with f,, > f,,” were considered when selecting the K best features.

The improvements when testing on our larger more complex data sets were impressive.
On Set3, containing 201 documents drawn from 7 more closely-related categories (3
under the visual arts, 2 under radio), the average peak accuracy jumped by 5% or more
over any of the other enhancements we had attempted (See Figure 2). Just as
importantly, using almost any value for —h K nearly eliminated problem with large
declines in accuracy before convergence, and clusters going extinct. EM always
converged at or within one or two documents of the highest accuracy achieved by any
run using this feature selection (See Figure 3). And the rate of clusters going "extinct"
fell dramatically as well, from 77% of runs on Set3 converging with 4 or more empty
clusters (out of 7) to less than 6% of runs converging with a single empty cluster.

Feak Setd accuracy across 20runs

o.as

0.4

*»

E
L

Be st Dcourmcy
[=}
o1

=]
B
o

—#—due @ge

—=—n 3x

—a—m |

— e

T

o.r

~

0.5

oplona

Figure 2

Also interestingly, our diagnostics displayed the words selected for each classifier after
the final iteration (or in verbose mode, at every iteration), and these words often read
like human-selected keywords for identifying that category. For instance, a Set3 "Radio
Guides" cluster learned "radio, stations, live, world, music, audio, online, broadcasting,
country, station, television, rock, and broadcast" as its highest-information words, and
another on Calligraphy learned "calligraphy, lettering, hand, design, invitations,
wedding, calligraphers, calligraphic, guild, calligrapher, join, gift, and weddings"

T T T T T
-yi0 -l WS = -mi0 baze -5 -r 1S -0 -is -i2o

Both numerically and subjectively, this method of identifying relevant vs. irrelevant
words was far superior to our other attempts.

Final Set? accuracy across 20 runs

o.as
] f/ =

0.85

——dl e [@dge

—=—n ax

/
[/
) NN/ NAS =
VAN AV AV
e

0.Es

Bz st b couracy
(=]
o

(=]
-
o

0.5

-m1i0 -r w10 e baze -l -8 - -is -i10 15 - 20
cplona

Figure 3

It did still have limitations, and our average accuracies across runs remained bounded at
about 92% in Set2 and 87% for Set3 (see Figures 4). For Set2 the best accuracy was
achieved with a relatively small set of K features, 10 or 20 words, while for Set3,
accuracy continue to slightly increase up through 70 words, the largest we tested. This
is probably due to the fact that the categories in Set2 are widely spaced, so few words
are needed to distinguish between them, and a smaller set of higher-frequency words is
less noisy and smoother. But with Set3’s closely-related categories, a much larger set of
words is needed to simultaneously distinguish each cluster from both distant clusters
and its nearby "siblings."

In examining the final clusters learned we also noted a problem when trying to learn
clusters of very different sizes. The larger categories would often split their documents
between 2 clusters, one of which would subsume a much smaller category, by including
a few key words that identified those documents better than any other cluster. But most
feature words were identical to the classifier for cluster with the other half of the
documents from this category. The fractional expectations of many of these large-

category documents was split almost evenly between these two clusters, while the
subsumed smaller category documents generally had expectations close to 1 of being in
their cluster together. Even when small clusters were successfully learned, it was clear
from the fractional expectations of documents in large clusters, and the high-information
feature words of the smaller clusters, that they had a large number of documents from
the larger cluster with significant fractional membership in the small cluster. So even
then a larger cluster was close to dividing and subsuming the small cluster.

Feak Set? msccuracy across 20runs=s

0.as

. o g —

.

-
- +

N I—I’_‘._./._“\/
——*

£ L
0.85 e ——

M

Be s b courmcy
a
o1

=]
B
o

—h—3U e @ge
—@—max
—a—m

o.r

AT,

0.Es

DE T T T T T T T T T T T T T T T T T T
-k10- -¥5 -k10- -b20- -k10 -k15 -430- -420- -b20 -bGO- -630- -b25 -b30 -k50 -k7O0- -k d0 -kE0 -iS0-
) es es -1 r) r))

aplons

Figure 4

We ran out of time to really analyze and address this limitation. One possible approach
would be to somehow discount "minority" fractional members of a cluster in favor of
members with a very high expectation of membership, in particular when the number of
fractional members is very large compared to the high expectation members. Another
would be to examine our assumptions our expected entropy calculations about equal-
sized clusters, and consider removing or weakening any current bias towards learning
clusters of roughly equal size.

-k70

Scalability

We wanted to know whether our algorithms would still perform well when scaled up to
much larger sets of clusters and documents. Unfortunately, our first attempt at feeding
in a test set with almost 1500 hundred pages and 96 clusters quickly revealed we had
implemented several routines in a highly non-efficient manner, and completing even a
single run to convergence would take days. Some simple optimization changes let us run
the base version of our EM with cosine classifiers for one run, taking several hours to do
so, and accuracy peaked at 51% on the second iteration and then declined to %15
(about the same as the initial accuracy) over 20 iterations, converging with 81 of the 96
learned clusters being empty. The complexity of our algorithm when learning N clusters
over D documents, each with an average internal vocabulary size of V was O(NDV), so
while V remains fairly fixed, run time blows up fairly quickly when both N and D increase
by an order of magnitude.

Unfortunately, our algorithm for computing information gain for feature selection would
need considerable redesign to be able to run faster than O(N2DV), so each iteration
would take upwards of 8 hours on this largest set. We scaled back the set size to 48
clusters and 454 documents, and a single run using the —h 50 option reached an
accuracy of 68% in 13 iterations then slowly declined to 65% over another 90 iterations,
when we terminated it after 14 hours. Clearly substantial redesign and testing would be
needed before this approach could successfully cluster any large portion of the full
dmoz.org directory, if then.

Final Test

We also reserved a final test set that we had not used in development, similar in size to
Set3, and ran a final sequence of test runs against it using "-r —h 50" options, which had
performed very well on Set3. 40 test runs produced an average accuracy of 78%, max
and min of 84% and 70%, respectively, which were lower than on Set3, but by less than
5%. This reasonably high performance seems to indicate we had not overfit our stop-
word list, algorithms, or other options to our development test sets.

Conclusions

We achieved a fairly high level of agreement with human editors in clustering
moderately-sized sets of web pages, even when topics were closely related. Examining
some of the mis-classified pages on our better test runs showed that many of them
were probably unclassifiable based on only their content text, being longer-than usual
"we've moved" pages, "choose hi/lo BW" or other splash pages. And a few were
extreme outliers in word frequency for their category, such as a Palm Pilot page that
never used words like paim, pilot, handheld, or software.

The improvements from information gain feature selection were impressive, particularly
considering our fairly casual understanding of the theory behind it. A more complex
application of information theory might be the best way to address the remaining
problems of large clusters consuming smaller ones, clusters going empty.

The scalability of this approach remains a major weakness, and it might never scale to
domains of hundreds of categories or more, even with further analysis and optimization.
But it does seem to indicate that a simple text frequency analysis contains extremely
relevant information about the topical similarity of pages. Such clustering might be a
reasonable first stage when creating an index of smaller sets of documents, such as the
pages within a company or departmental web site.

